1
|
Khoshnood Z. A review on toxic effects of pesticides in Zebrafish, Danio rerio and common carp, Cyprinus carpio, emphasising Atrazine herbicide. Toxicol Rep 2024; 13:101694. [PMID: 39131695 PMCID: PMC11314875 DOI: 10.1016/j.toxrep.2024.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
The widespread use of pesticides has emerged as a pressing environmental concern nowadays. These chemical compounds pose a significant threat to aquatic organisms due to their toxic effects. Zebrafish and common carp are two common species used in pesticide toxicity studies. Atrazine, a widely used herbicide, is one of the most prevalent globally, detectable in nearly all surface waters. This article examines existing literature to provide a comprehensive review of the toxic effects of Atrazine on Zebrafish and common carp. The findings reveal that exposure to atrazine triggers a range of biochemical, physiological, behavioral, and genetic alterations in these fish species, even at concentrations deemed environmentally relevant. These changes could have severe consequences, including increased mortality rates, reproductive failures, and potentially leading to fish populations decline. It is, therefore, imperative to prioritize stringent regulatory measures to curb the usage of this herbicide and safeguard fish species as unintended victims of aquatic ecosystems.
Collapse
Affiliation(s)
- Zahra Khoshnood
- Department of Biology, Dezful Branch, Islamic Azad University, Dezful, Iran
| |
Collapse
|
2
|
Xu Y, Guo R, Huang T, Guo C. miRNA-7145-cuedc2 axis controls hematopoiesis through JAK1/STAT3 signaling pathway. Cell Death Discov 2024; 10:209. [PMID: 38697957 PMCID: PMC11066045 DOI: 10.1038/s41420-024-01977-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
Hematopoiesis ensures tissue oxygenation, and remodeling as well as immune protection in vertebrates. During embryogenesis, hemangioblasts are the source of all blood cells. Gata1a and pu.1 are co-expressed in hemangioblasts before hemangioblasts are differentiated into blood cells. However, the genes that determine the differentiation of hemangioblasts into myeloid or erythroid cell lineages have not been fully uncovered. Here we showed that miRNA-7145, a miRNA with previously unknown function, was enriched in erythrocytes at the definitive wave, but not expressed in myeloid cells. Overexpression and loss-of-function analysis of miRNA-7145 revealed that miRNA-7145 functions as a strong inhibitor for myeloid progenitor cell differentiation while driving erythropoiesis during the primitive wave. Furthermore, we confirmed that cuedc2 is one of miRNA-7145 targeted-genes. Overexpression or knock-down of cuedc2 partially rescues the phenotype caused by miRNA-7145 overexpression or loss-of-function. As well, overexpression and loss-of-function analysis of cuedc2 showed that cuedc2 is required for myelopoiesis at the expense of erythropoiesis. Finally, we found that overexpression of zebrafish cuedc2 in 293 T cell inhibits the JAK1/STAT3 signaling pathway. Collectively, our results uncover a previously unknown miRNA-7145-cuedc2 axis, which regulate hematopoiesis through inhibiting the JAK1/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yongsheng Xu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650500, China.
| | - Rui Guo
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Tao Huang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Chunming Guo
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
3
|
Huang G, Gong Q, Zhang K, Abdelhafez HEDH, Yu J, Guo J. Regulation of BTB (POZ) Structural Domain 6b by MicroRNA-222b in Zebrafish Embryos after Exposure to Di(2-ethylhexyl)phthalate at Low Concentrations. Chem Res Toxicol 2024; 37:311-322. [PMID: 38238692 DOI: 10.1021/acs.chemrestox.3c00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a sort of endocrine disruptor that induces abnormal physiological and biochemical activities such as epigenetic alterations, apoptosis, and oxidative stress. MicroRNAs (miRNAs) are a class of short noncoding RNAs that may regulate the expression of many protein-coding genes when organisms are exposed to environmental chemicals. miR-222b is a differentially expressed miRNA after DEHP exposure. miRNA-mRNA prediction suggested that BTB (POZ) structural domain 6b (BTBD6B) might be a target mRNA of miR-222b, and DEHP exposure altered its expression. However, the correlation between miR-222b and BTBD6B has not been experimentally confirmed. The aim of this study was to investigate the regulation of BTBD6B by miR-222b in zebrafish embryos under the effect of low concentration of DEHP. Dual fluorescent protein assays and dual luciferase reporter gene assays confirmed the interaction between miR-222b and the 3'-untranslated region (3'-UTR) of BTBD6B. Ectopic expression assays showed that miR-222b could negatively regulate BTBD6B in ZF4 cells. However, the relative expression of miR-222b and BTBD6B was significantly higher at both transcriptional and post-transcriptional levels in zebrafish embryos exposed to low concentrations of DEHP. The results of this study improved our understanding of the molecular mechanism of DEHP exposure toxicity. It identified that the aberrant expression of miR-222b/BTBD6B may be one of the mechanisms of DEHP toxicity, which can provide a theoretical reference and scientific basis for environmental management and biological health risk assessment.
Collapse
Affiliation(s)
- Ge Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang, Hangzhou 310018, China
| | - Qi Gong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang, Hangzhou 310018, China
| | - Kai Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang, Hangzhou 310018, China
| | - Hossam El Din H Abdelhafez
- Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticides Lab, Agricultural Research Center, Ministry of Agriculture, Giza11435, Egypt
| | - Junjie Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang, Hangzhou 310018, China
| | - Jiangfeng Guo
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang, Hangzhou 310018, China
| |
Collapse
|
4
|
Nguyen DH, Uddin MJ, Al-Tawfiq JA, Memish ZA, Chu DT. RNA therapeutics for diarrhea. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:295-309. [PMID: 38458741 DOI: 10.1016/bs.pmbts.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Diarrhea is caused by a variety of bacterial and viral agents, inflammatory conditions, medications, and hereditary conditions. Secretory diarrhea involves several ion and solute transporters, activation of the cyclic nucleotide and Ca2+ signaling pathways, as well as intestinal epithelial secretion. In many cases of secretory diarrhea, activation of Cl- channels, such as the cystic transmembrane conduction regulator and the Ca2+stimulated Cl- channel fibrosis, promote secretion while concurrently inhibiting Na+ transport expressing fluid absorption. Current diarrhea therapies include rehydration and electrolyte replacement via oral rehydration solutions, as well as medications that target peristalsis or fluid secretion. The rising understanding of RNA function and its importance in illness has encouraged the use of various RNAs to operate selectively on "untreatable" proteins, transcripts, and genes. Some RNA-based medications have received clinical approval, while others are currently in research or preclinical studies. Despite major obstacles in the development of RNA-based therapies, many approaches have been investigated to improve intracellular RNA trafficking and metabolic stability.
Collapse
Affiliation(s)
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka, Bangladesh; Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Jaffar A Al-Tawfiq
- Infectious Disease Unit, Specialty Internal Medicine, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Infectious Disease Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States; Infectious Disease Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ziad A Memish
- Director Research and Innovation Centre, King Saud Medical City, Ministry of Health and College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
5
|
Jing J, Zhang S, Wei J, Yang Y, Zheng Q, Zhu C, Li S, Cao H, Fang F, Liu Y, Ling YH. MiR-188-5p regulates the proliferation and differentiation of goat skeletal muscle satellite cells by targeting calcium/calmodulin dependent protein kinase II beta. Anim Biosci 2023; 36:1775-1784. [PMID: 37402449 PMCID: PMC10623032 DOI: 10.5713/ab.23.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/29/2023] [Accepted: 06/14/2023] [Indexed: 07/06/2023] Open
Abstract
OBJECTIVE The aim of this study was to reveal the role and regulatory mechanism of miR-188-5p in the proliferation and differentiation of goat muscle satellite cells. METHODS Goat skeletal muscle satellite cells isolated in the pre-laboratory were used as the test material. First, the expression of miR-188-5p in goat muscle tissues at different developmental stages was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). In addition, miR-188-5p was transfected into goat skeletal muscle satellite cells by constructing mimics and inhibitors of miR-188-5p, respectively. The changes of differentiation marker gene expression were detected by qPCR method. RESULTS It was highly expressed in adult goat latissimus dorsi and leg muscles, goat fetal skeletal muscle, and at the differentiation stage of muscle satellite cells. Overexpression and interference of miR-188-5p showed that miR-188-5p inhibited the proliferation and promoted the differentiation of goat muscle satellite cells. Target gene prediction and dual luciferase assays showed that miR-188-5p could target the 3'untranslated region of the calcium/calmodulin dependent protein kinase II beta (CAMK2B) gene and inhibit luciferase activity. Further functional studies revealed that CAMK2B promoted the proliferation and inhibited the differentiation of goat muscle satellite cells, whereas si-CAMK2B restored the function of miR-188-5p inhibitor. CONCLUSION These results suggest that miR-188-5p inhibits the proliferation and promotes the differentiation of goat muscle satellite cells by targeting CAMK2B. This study will provide a theoretical reference for future studies on the molecular mechanisms of skeletal muscle development in goats.
Collapse
Affiliation(s)
- Jing Jing
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036,
China
| | - Sihuan Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036,
China
| | - Jinbo Wei
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036,
China
| | - Yuhang Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036,
China
| | - Qi Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036,
China
| | - Cuiyun Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036,
China
| | - Shuang Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036,
China
| | - Hongguo Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036,
China
| | - Fugui Fang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036,
China
| | - Yong Liu
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, Anhui Province 236041,
China
| | - Ying-hui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036,
China
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, Anhui Province 236041,
China
| |
Collapse
|
6
|
Dalle Carbonare L, Minoia A, Braggio M, Bertacco J, Piritore FC, Zouari S, Vareschi A, Elia R, Vedovi E, Scumà C, Carlucci M, Bhandary L, Mottes M, Romanelli MG, Valenti MT. Modulation of miR-146b Expression during Aging and the Impact of Physical Activity on Its Expression and Chondrogenic Progenitors. Int J Mol Sci 2023; 24:13163. [PMID: 37685971 PMCID: PMC10488278 DOI: 10.3390/ijms241713163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The finding of molecules associated with aging is important for the prevention of chronic degenerative diseases and for longevity strategies. MicroRNAs (miRNAs) are post-transcriptional regulators involved in many biological processes and miR-146b-5p has been shown to be involved in different degenerative diseases. However, miR-146b-5p modulation has not been evaluated in mesenchymal stem cells (MSCs) commitment or during aging. Therefore, the modulation of miR-146b-5p in the commitment and differentiation of mesenchymal cells as well as during maturation and aging in zebrafish model were analyzed. In addition, circulating miR-146b-5p was evaluated in human subjects at different age ranges. Thus, the role of physical activity in the modulation of miR-146b-5p was also investigated. To achieve these aims, RT (real-time)-PCR, Western blot, cell transfections, and three-dimensional (3D) culture techniques were applied. Our findings show that miR-146b-5p expression drives MSCs to adipogenic differentiation and increases during zebrafish maturation and aging. In addition, miR-146b-5p expression is higher in females compared to males and it is associated with the aging in humans. Interestingly, we also observed that the physical activity of walking downregulates circulating miR-146b-5p levels in human females and increases the number of chondroprogenitors. In conclusion, miR-146b-5p can be considered an age-related marker and can represent a useful marker for identifying strategies, such as physical activity, aimed at counteracting the degenerative processes of aging.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Arianna Minoia
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Michele Braggio
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Jessica Bertacco
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (J.B.); (F.C.P.); (M.M.); (M.G.R.)
| | - Francesca Cristiana Piritore
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (J.B.); (F.C.P.); (M.M.); (M.G.R.)
| | - Sharazed Zouari
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Anna Vareschi
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Rossella Elia
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Ermes Vedovi
- Recovery and Functional Rehabilitation, Integrated University Hospital of Verona, 37100 Verona, Italy; (E.V.); (C.S.)
| | - Cristina Scumà
- Recovery and Functional Rehabilitation, Integrated University Hospital of Verona, 37100 Verona, Italy; (E.V.); (C.S.)
| | - Matilde Carlucci
- Health Directorate, Integrated University Hospital of Verona, 37100 Verona, Italy;
| | | | - Monica Mottes
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (J.B.); (F.C.P.); (M.M.); (M.G.R.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (J.B.); (F.C.P.); (M.M.); (M.G.R.)
| | - Maria Teresa Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (J.B.); (F.C.P.); (M.M.); (M.G.R.)
| |
Collapse
|
7
|
Quesnelle DC, Bendena WG, Chin-Sang ID. A Compilation of the Diverse miRNA Functions in Caenorhabditis elegans and Drosophila melanogaster Development. Int J Mol Sci 2023; 24:ijms24086963. [PMID: 37108126 PMCID: PMC10139094 DOI: 10.3390/ijms24086963] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
MicroRNAs are critical regulators of post-transcriptional gene expression in a wide range of taxa, including invertebrates, mammals, and plants. Since their discovery in the nematode, Caenorhabditis elegans, miRNA research has exploded, and they are being identified in almost every facet of development. Invertebrate model organisms, particularly C. elegans, and Drosophila melanogaster, are ideal systems for studying miRNA function, and the roles of many miRNAs are known in these animals. In this review, we compiled the functions of many of the miRNAs that are involved in the development of these invertebrate model species. We examine how gene regulation by miRNAs shapes both embryonic and larval development and show that, although many different aspects of development are regulated, several trends are apparent in the nature of their regulation.
Collapse
Affiliation(s)
| | - William G Bendena
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Ian D Chin-Sang
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
8
|
Zhang R, Sun Y, Zhang Q, Lin J, Zhang Y, Chen X, Liu T, Li Q. Overexpression of miR-124-3p affects zebrafish inner ear development and hearing function via downregulation of EYA1 gene expression. Neurosci Lett 2023; 802:137172. [PMID: 36898654 DOI: 10.1016/j.neulet.2023.137172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023]
Abstract
The EYA1 gene is essential for normal inner ear development and affects the development and function of the inner ear in a dose-dependent manner. However, the mechanisms regulating EYA1 gene expression are not well understood. Recently, miRNAs have become recognized as important regulators of gene expression. In this study, we identified miR-124-3p through a microRNA (miRNA) target prediction website and found that miR-124-3p and its target site in the EYA1 3' untranslated region (3'UTR) are conserved in most vertebrates. Both in vivo and in vitro, the interaction of miR-124-3p with the EYA1 3'UTR exerts a negative regulatory effect. Microinjection of agomiR-124-3p into zebrafish embryos resulted in a phenotype of reduced auricular area, suggesting inner ear dysplasia. In addition, injection of agomiR-124-3p or antagomiR-124-3p caused abnormal hearing function in zebrafish. In conclusion, our results suggest that miR-124-3p can affect inner ear development and hearing function in zebrafish by regulating EYA1.
Collapse
Affiliation(s)
- Ruizhi Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases (Fudan University), Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yanhe Sun
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases (Fudan University), Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Qi Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases (Fudan University), Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jia Lin
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases (Fudan University), Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yinglan Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases (Fudan University), Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xudong Chen
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases (Fudan University), Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Ting Liu
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases (Fudan University), Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases (Fudan University), Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| |
Collapse
|
9
|
G-Quadruplexes Regulate miRNA Biogenesis in Live Zebrafish Embryos. Int J Mol Sci 2023; 24:ijms24054828. [PMID: 36902262 PMCID: PMC10002522 DOI: 10.3390/ijms24054828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
RNA guanine quadruplexes (G4s) regulate RNA functions, metabolism, and processing. G4s formed within precursors of microRNAs (pre-miRNAs) may impair pre-miRNAs maturation by Dicer, thus repressing mature miRNA biogenesis. As miRNAs are essential for proper embryonic development, we studied the role of G4s on miRNA biogenesis in vivo during zebrafish embryogenesis. We performed a computational analysis on zebrafish pre-miRNAs to find putative G4 forming sequences (PQSs). The precursor of the miRNA 150 (pre-miR-150) was found to contain an evolutionarily conserved PQS formed by three G-tetrads and able to fold in vitro as G4. MiR-150 controls the expression of myb, which shows a well-defined knock-down phenotype in zebrafish developing embryos. We microinjected zebrafish embryos with in vitro transcribed pre-miR-150 synthesized using either GTP (G-pre-miR-150) or 7-Deaza-GTP, a GTP analogue unable to form G4s (7DG-pre-miR-150). Compared to embryos injected with G-pre-miR-150, embryos injected with 7DG-pre-miR-150 showed higher levels of miRNA 150 (miR-150) and lower levels of myb mRNA and stronger phenotypes associated with myb knock-down. The incubation of pre-miR-150 prior to the injection with the G4 stabilizing ligand pyridostatin (PDS) reverted gene expression variations and rescued the phenotypes related to myb knock-down. Overall, results suggest that the G4 formed in pre-miR-150 functions in vivo as a conserved regulatory structure competing with the stem-loop structure necessary for miRNA biogenesis.
Collapse
|
10
|
Shwe A, Krasnov A, Visnovska T, Ramberg S, Østbye TKK, Andreassen R. Differential Expression of miRNAs and Their Predicted Target Genes Indicates That Gene Expression in Atlantic Salmon Gill Is Post-Transcriptionally Regulated by miRNAs in the Parr-Smolt Transformation and Adaptation to Sea Water. Int J Mol Sci 2022; 23:ijms23158831. [PMID: 35955964 PMCID: PMC9369087 DOI: 10.3390/ijms23158831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/19/2022] Open
Abstract
Smoltification (parr-smolt transformation) is a complex developmental process consisting of developmental changes that lead to remodeling of the Atlantic salmon gill. Here, the expression changes of miRNAs and mRNAs were studied by small-RNA sequencing and microarray analysis, respectively, to identify miRNAs and their predicted targets associated with smoltification and subsequent sea water adaptation (SWA). In total, 18 guide miRNAs were identified as differentially expressed (gDE miRNAs). Hierarchical clustering analysis of expression changes divided these into one cluster of 13 gDE miRNAs with decreasing expression during smoltification and SWA that included the miRNA-146, miRNA-30 and miRNA-7132 families. Another smaller cluster that showed increasing expression consisted of miR-101a-3p, miR-193b-5p, miR-499a-5p, miR-727a-3p and miR-8159-5p. The gDE miRNAs were predicted to target 747 of the genes (DE mRNAs), showing expression changes in the microarray analysis. The predicted targets included genes encoding NKA-subunits, aquaporin-subunits, cystic fibrosis transmembrane conductance regulator and the solute carrier family. Furthermore, the predicted target genes were enriched in biological processes associated with smoltification and SWA (e.g., immune system, reactive oxygen species, stress response and extracellular matrix organization). Collectively, the results indicate that remodeling of the gill involves the post-transcriptional regulation of gene expression by the characterized gDE miRNAs.
Collapse
Affiliation(s)
- Alice Shwe
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
| | - Aleksei Krasnov
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1430 Ås, Norway
| | - Tina Visnovska
- Bioinformatics Core Facility, Oslo University Hospital, 0372 Oslo, Norway
| | - Sigmund Ramberg
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
| | - Tone-Kari K. Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1430 Ås, Norway
| | - Rune Andreassen
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
- Correspondence:
| |
Collapse
|
11
|
Hu R, Xu Y, Han B, Chen Y, Li W, Guan G, Hu P, Zhou Y, Xu Q, Chen L. MiR-202-3p determines embryo viability during mid-blastula transition. Front Cell Dev Biol 2022; 10:897826. [PMID: 36003151 PMCID: PMC9393261 DOI: 10.3389/fcell.2022.897826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Developmental growth is an intricate process involving the coordinated regulation of the expression of various genes, and microRNAs (miRNAs) play crucial roles in diverse processes throughout animal development. The mid-blastula transition (MBT) is a developmental milestone when maternal RNAs are cleared and the zygotic genome programmed asynchronous cell division begins to drive embryogenesis. While mechanisms underlying MBT have been intensively revealed, factors regulating cell proliferation at the transition remain largely unknown. We report here a microRNA, miR-202-3p to be a key factor that determines embryonic fate during MBT in zebrafish. A miR-202-3p antagomir specifically terminated embryo development at the mid-blastula stage. In vivo deletion of the miR-202 locus recapitulated the fatal phenotypes, which were rescued only by miR-202-3p or its precursor. Transcriptome comparison revealed >250 RNAs including both maternal and zygotic origins were dysregulated at MBT in the miR-202−/− embryos, corresponding with arrays of homeostatic disorders leading to massive apoptosis. A trio of genes: nfkbiaa, perp and mgll, known to be intimately involved with cell proliferation and survival, were identified as direct targets of miR-202-3p. Importantly, over- or under-expression of any of the trio led to developmental delay or termination at the blastula or gastrula stages. Furthermore, nfkbiaa and perp were shown to inter-regulate each other. Thus, miR-202-3p mediates a regulatory network whose components interact closely during MBT to determine embryonic viability and development.
Collapse
Affiliation(s)
- Ruiqin Hu
- International Joint Research Centre for Marine Biosciences (Ministry of Science and Technology), College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Centre for Marine Biosciences, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yanna Xu
- International Joint Research Centre for Marine Biosciences (Ministry of Science and Technology), College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Centre for Marine Biosciences, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Bingshe Han
- International Joint Research Centre for Marine Biosciences (Ministry of Science and Technology), College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Centre for Marine Biosciences, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yi Chen
- International Joint Research Centre for Marine Biosciences (Ministry of Science and Technology), College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Centre for Marine Biosciences, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenhao Li
- International Joint Research Centre for Marine Biosciences (Ministry of Science and Technology), College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Centre for Marine Biosciences, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Guijun Guan
- International Joint Research Centre for Marine Biosciences (Ministry of Science and Technology), College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Centre for Marine Biosciences, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Peng Hu
- International Joint Research Centre for Marine Biosciences (Ministry of Science and Technology), College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Centre for Marine Biosciences, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yan Zhou
- International Joint Research Centre for Marine Biosciences (Ministry of Science and Technology), College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Centre for Marine Biosciences, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Qianghua Xu
- International Joint Research Centre for Marine Biosciences (Ministry of Science and Technology), College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Centre for Marine Biosciences, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, College of Marine Science, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- International Joint Research Centre for Marine Biosciences (Ministry of Science and Technology), College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Centre for Marine Biosciences, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- *Correspondence: Liangbiao Chen,
| |
Collapse
|
12
|
The impact of single walled carbon nanotubes on the expression of microRNA in zebrafish (Danio rerio) embryos. Endocr Regul 2022; 56:115-125. [PMID: 35489050 DOI: 10.2478/enr-2022-0013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective. Single-walled carbon nanotubes (SWCNTs) are able to cross the blood-brain barrier, penetrate through the cell membrane, and accumulate in the cell nucleus, which purposefully allows their use in the health sciences as imaging probes and drug carriers in the cancer therapy. The aim of this study was to investigate the effect of low doses of SWCNTs on the expression of microRNAs associated with the cell proliferation and the brain development in zebrafish (Danio rerio) embryos. Methods. The zebrafish embryos (72 h post fertilization) were exposed to low doses of SWCNTs (2 and 8 ng/ml of medium) for 24 or 72 h. The microRNAs (miR-19, miR-21, miR-96, miR-143, miR-145, miR-182, and miR-206) expression levels were measured by quantitative polymerase chain reaction analysis. Results. It was found that low doses of SWCNTs elicited dysregulation in the expression of numerous cell proliferation and brain development-related microRNAs (miR-19, miR-21, miR-96, miR-143, miR-145, miR-182, and miR-206) in dose- (2 and 8 ng/ml of medium) as well as malformations in the zebrafish embryos brain development in a time-dependent (24 and 72 h) manner. Conclusion. Taken together, the present data indicate that the low doses of SWCNTs disturbed the genome functions and reduced the miR-19, miR-21, miR-96, miR-143, miR-145, miR-182, and miR-206 expression levels in dose- and time-dependent manners and interrupted the brain development in the zebrafish embryos indicating for both the genotoxic and the neurotoxic interventions.
Collapse
|
13
|
Chakraborty S, Woldemariam NT, Visnovska T, Rise ML, Boyce D, Santander J, Andreassen R. Characterization of miRNAs in Embryonic, Larval, and Adult Lumpfish Provides a Reference miRNAome for Cyclopterus lumpus. BIOLOGY 2022; 11:biology11010130. [PMID: 35053128 PMCID: PMC8773022 DOI: 10.3390/biology11010130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/28/2022]
Abstract
Simple Summary Lumpfish (Cyclopterus lumpus) is an emergent aquaculture species, and its miRNA repertoire is still unknown. miRNAs are critical post-transcriptional modulators of teleost gene expression. Therefore, a lumpfish reference miRNAome was characterized by small RNA sequencing and miRDeep analysis of samples from different organs and developmental stages. The resulting miRNAome, an essential reference for future expression analyses, consists of 443 unique mature miRNAs from 391 conserved and eight novel miRNA genes. Enrichment of specific miRNAs in particular organs and developmental stages indicates that some conserved lumpfish miRNAs regulate organ and developmental stage-specific functions reported in other teleosts. Abstract MicroRNAs (miRNAs) are endogenous small RNA molecules involved in the post-transcriptional regulation of protein expression by binding to the mRNA of target genes. They are key regulators in teleost development, maintenance of tissue-specific functions, and immune responses. Lumpfish (Cyclopterus lumpus) is becoming an emergent aquaculture species as it has been utilized as a cleaner fish to biocontrol sea lice (e.g., Lepeophtheirus salmonis) infestation in the Atlantic Salmon (Salmo salar) aquaculture. The lumpfish miRNAs repertoire is unknown. This study identified and characterized miRNA encoding genes in lumpfish from three developmental stages (adult, embryos, and larvae). A total of 16 samples from six different adult lumpfish organs (spleen, liver, head kidney, brain, muscle, and gill), embryos, and larvae were individually small RNA sequenced. Altogether, 391 conserved miRNA precursor sequences (discovered in the majority of teleost fish species reported in miRbase), eight novel miRNA precursor sequences (so far only discovered in lumpfish), and 443 unique mature miRNAs were identified. Transcriptomics analysis suggested organ-specific and age-specific expression of miRNAs (e.g., miR-122-1-5p specific of the liver). Most of the miRNAs found in lumpfish are conserved in teleost and higher vertebrates, suggesting an essential and common role across teleost and higher vertebrates. This study is the first miRNA characterization of lumpfish that provides the reference miRNAome for future functional studies.
Collapse
Affiliation(s)
- Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL A1C 5S7, Canada;
| | - Nardos T. Woldemariam
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet–Oslo Metropolitan University, Pilestredet 50, N-0130 Oslo, Norway;
| | - Tina Visnovska
- Bioinformatics Core Facility, Oslo University Hospital, 0372 Oslo, Norway;
| | - Matthew L. Rise
- Department of Ocean Sciences, Faculty of Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL A1C 5S7, Canada;
| | - Danny Boyce
- Dr. Joe Brown Aquatic Research Building (JBARB), Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL A1C 5S7, Canada;
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL A1C 5S7, Canada;
- Correspondence: (J.S.); (R.A.)
| | - Rune Andreassen
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet–Oslo Metropolitan University, Pilestredet 50, N-0130 Oslo, Norway;
- Correspondence: (J.S.); (R.A.)
| |
Collapse
|
14
|
Evaluation of endogenous miRNA reference genes across different zebrafish strains, developmental stages and kidney disease models. Sci Rep 2021; 11:22894. [PMID: 34819534 PMCID: PMC8613261 DOI: 10.1038/s41598-021-00075-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/06/2021] [Indexed: 11/14/2022] Open
Abstract
The majority of kidney diseases arise from the loss of podocytes and from morphological changes of their highly complex foot process architecture, which inevitably leads to a reduced kidney filtration and total loss of kidney function. It could have been shown that microRNAs (miRs) play a pivotal role in the pathogenesis of podocyte-associated kidney diseases. Due to their fully functioning pronephric kidney, larval zebrafish have become a popular vertebrate model, to study kidney diseases in vivo. Unfortunately, there is no consensus about a proper normalization strategy of RT-qPCR-based miRNA expression data in zebrafish. In this study we analyzed 9 preselected candidates dre-miR-92a-3p, dre-miR-206-3p, dre-miR-99-1, dre-miR-92b-3p, dre-miR-363-3p, dre-let-7e, dre-miR-454a, dre-miR-30c-5p, dre-miR-126a-5p for their capability as endogenous reference genes in zebrafish experiments. Expression levels of potential candidates were measured in 3 different zebrafish strains, different developmental stages, and in different kidney disease models by RT-qPCR. Expression values were analyzed with NormFinder, BestKeeper, GeNorm, and DeltaCt and were tested for inter-group differences. All candidates show an abundant expression throughout all samples and relatively high stability. The most stable candidate without significant inter-group differences was dre-miR-92b-3p making it a suitable endogenous reference gene for RT-qPCR-based miR expression zebrafish studies.
Collapse
|
15
|
Chakraborty C, Sharma AR, Sharma G, Lee SS. Therapeutic advances of miRNAs: A preclinical and clinical update. J Adv Res 2021; 28:127-138. [PMID: 33364050 PMCID: PMC7753224 DOI: 10.1016/j.jare.2020.08.012] [Citation(s) in RCA: 276] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/10/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
miRNAs, a class of small endogenous RNAs, are one of the essential biopharmaceuticals which are in commercial spans as next-generation medicine in recent times. A snapshot of the current scenario regarding the miRNAs as biopharmaceuticals have been discussed. In this work, biopharmaceutical companies working with miRNAs and the current status of preclinical/clinical trials about miRNA therapeutics have been reviewed. Finally, recent updates on the absorption, distribution, metabolism, and excretion (ADME), as well as a delivery system of miRNAs, have been illustrated.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Rd, Kolkata, West Bengal 700126, India
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| |
Collapse
|
16
|
Moreira R, Romero A, Rey-Campos M, Pereiro P, Rosani U, Novoa B, Figueras A. Stimulation of Mytilus galloprovincialis Hemocytes With Different Immune Challenges Induces Differential Transcriptomic, miRNomic, and Functional Responses. Front Immunol 2020; 11:606102. [PMID: 33391272 PMCID: PMC7773633 DOI: 10.3389/fimmu.2020.606102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Mediterranean mussels (Mytilus galloprovincialis) are marine bivalve molluscs with high resilience to biotic and abiotic stress. This resilience is one of the reasons why this species is such an interesting model for studying processes such as the immune response. In this work, we stimulated mussel hemocytes with poly I:C, β-glucans, and LPS and then sequenced hemocyte mRNAs (transcriptome) and microRNAs (miRNome) to investigate the molecular basis of the innate immune responses against these pathogen-associated molecular patterns (PAMPs). An immune transcriptome comprising 219,765 transcripts and an overview of the mussel miRNome based on 5,175,567 non-redundant miRNA reads were obtained. The expression analyses showed opposite results in the transcriptome and miRNome; LPS was the stimulus that triggered the highest transcriptomic response, with 648 differentially expressed genes (DEGs), while poly I:C was the stimulus that triggered the highest miRNA response, with 240 DE miRNAs. Our results reveal a powerful immune response to LPS as well as activation of certain immunometabolism- and ageing/senescence-related processes in response to all the immune challenges. Poly I:C exhibited powerful stimulating properties in mussels, since it triggered the highest miRNomic response and modulated important genes related to energy demand; these effects could be related to the stronger activation of these hemocytes (increased phagocytosis, increased NO synthesis, and increased velocity and accumulated distance). The transcriptome results suggest that after LPS stimulation, pathogen recognition, homeostasis and cell survival processes were activated, and phagocytosis was induced by LPS. β-glucans elicited a response related to cholesterol metabolism, which is important during the immune response, and it was the only stimulus that induced the synthesis of ROS. These results suggest a specific and distinct response of hemocytes to each stimulus from a transcriptomic, miRNomic, and functional point of view.
Collapse
Affiliation(s)
- Rebeca Moreira
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Alejandro Romero
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Magalí Rey-Campos
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Patricia Pereiro
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Umberto Rosani
- Department of Biology, University of Padova, Padova, Italy.,Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute (AWI), List auf Sylt, Germany
| | - Beatriz Novoa
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Antonio Figueras
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| |
Collapse
|
17
|
Zhuang S, Fu Y, Li J, Li M, Hu X, Zhu J, Tong M. MicroRNA-375 overexpression disrupts cardiac development of Zebrafish (Danio rerio) by targeting notch2. PROTOPLASMA 2020; 257:1309-1318. [PMID: 32468186 DOI: 10.1007/s00709-020-01490-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/13/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs are small noncoding RNAs that are important for proper cardiac development. In our previous study of fetuses with ventricular septal defects, we discovered that microRNA-375 (miR-375) is obviously upregulated compared with that in healthy controls. Our study also confirmed that miR-375 is crucial for cardiomyocyte differentiation. This research mainly focused on the biological significance and mechanism of miR-375 using a zebrafish model. We injected zebrafish embryos with 1-2 nl of a miR-375 mimic at various concentrations (0/2/4/8 μM) or with negative control. The deformation and mortality rates were separately assessed. The different expression levels of miR-375 and related genes were examined by qRT-PCR, and luciferase assays and in situ hybridization were used to clarify the mechanism of miR-375 during embryonic development. Overexpression of miR-375 disrupted the cardiac development of zebrafish embryos. Disruption of miR-375 led to a decreased heart rate, pericardial edema, and abnormal cardiac looping. Various genes involved in cardiac development were downregulated due to the overexpression of miR-375. Moreover, the NOTCH signaling pathway was affected, and the luciferase reporter gene assays confirmed notch2, which was predicted by bioinformatics analysis, as the target gene of miR-375. Our findings demonstrated that the overexpression of miR-375 is detrimental to embryonic development, including cardiac development, and can partially simulate a multisystemic disorder. MiR-375 has an important role during cardiac morphogenesis of zebrafish embryos by targeting notch2, indicating its potential as a diagnostic marker.
Collapse
Affiliation(s)
- Sisi Zhuang
- Department of Child Health Care, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province, Nanjing, 210029, China
| | - Yanrong Fu
- Department of Pediatrics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Jingyun Li
- Department of Child Health Care, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China
| | - Mengmeng Li
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China
| | - Xiaoshan Hu
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China
| | - Jingai Zhu
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China.
| | - Meiling Tong
- Department of Child Health Care, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China.
| |
Collapse
|
18
|
Wang X, Song X, Bhandari RK. Distinct expression patterns of seven crucial microRNAs during early embryonic development in medaka (Oryzias latipes). Gene Expr Patterns 2020; 37:119133. [PMID: 32800847 DOI: 10.1016/j.gep.2020.119133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/18/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
MicroRNAs (i.e. miRNAs) are small non-coding RNAs that play essential modulation roles in embryonic development in vertebrates. Paternal and maternal miRNAs contribute to the development of post-fertilization embryo and zygotic genome activation. The pattern of expression and their roles in embryonic development of medaka are not clearly understood. The present study, therefore, examined a temporal expression of seven miRNAs, ola-let-7a, ola-miR-202-3p, ola-miR-126-3p, ola-miR-122, ola-miR-92a, ola-miR-125a-3p and ola-miR-430a in sperm, oocytes, and embryos during early developmental stages. Three unique expression patterns of miRNAs were observed. ola-let7a, ola-miR-202-3p and ola-miR-126-3p showed both paternal and maternal expression, and ola-miR-122, ola-miR-92a, ola-miR-125a-3p showed maternal expression only. The expression of six out of seven miRNAs significantly decreased after maternal-zygotic transition (MZT), whereas ola-miR-430a expression initiated only after MZT. The temporal dynamic expression of these miRNAs suggests their potential roles in early embryogenesis and genome-zygotic activation in medaka.
Collapse
Affiliation(s)
- Xuegeng Wang
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA
| | - Xiaohong Song
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Ramji K Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA.
| |
Collapse
|
19
|
Yong Huang, Xiong J, Brown PB, Sun X. Identification and Characteristics of Batrachuperus karlschmidti miRNA Using Illumina Deep Sequencing. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020020193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Indrieri A, Carrella S, Carotenuto P, Banfi S, Franco B. The Pervasive Role of the miR-181 Family in Development, Neurodegeneration, and Cancer. Int J Mol Sci 2020; 21:ijms21062092. [PMID: 32197476 PMCID: PMC7139714 DOI: 10.3390/ijms21062092] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs playing a fundamental role in the regulation of gene expression. Evidence accumulating in the past decades indicate that they are capable of simultaneously modulating diverse signaling pathways involved in a variety of pathophysiological processes. In the present review, we provide a comprehensive overview of the function of a highly conserved group of miRNAs, the miR-181 family, both in physiological as well as in pathological conditions. We summarize a large body of studies highlighting a role for this miRNA family in the regulation of key biological processes such as embryonic development, cell proliferation, apoptosis, autophagy, mitochondrial function, and immune response. Importantly, members of this family have been involved in many pathological processes underlying the most common neurodegenerative disorders as well as different solid tumors and hematological malignancies. The relevance of this miRNA family in the pathogenesis of these disorders and their possible influence on the severity of their manifestations will be discussed. A better understanding of the miR-181 family in pathological conditions may open new therapeutic avenues for devasting disorders such as neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; (S.C.); (P.C.)
- Medical Genetics, Department of Translational Medical Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 20090 Milan, Italy
- Correspondence: (A.I.); (S.B.); (B.F.); Tel.: +39-081-19230655 (A.I.); +39-081-19230606 (S.B.); +39-081-19230615 (B.F.)
| | - Sabrina Carrella
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; (S.C.); (P.C.)
- Medical Genetics, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Pietro Carotenuto
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; (S.C.); (P.C.)
- The Institute of Cancer Research, Cancer Therapeutics Unit 15 Cotswold Road, Sutton, London SM2 5NG, UK
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; (S.C.); (P.C.)
- Medical Genetics, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: (A.I.); (S.B.); (B.F.); Tel.: +39-081-19230655 (A.I.); +39-081-19230606 (S.B.); +39-081-19230615 (B.F.)
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; (S.C.); (P.C.)
- Medical Genetics, Department of Translational Medical Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy
- Correspondence: (A.I.); (S.B.); (B.F.); Tel.: +39-081-19230655 (A.I.); +39-081-19230606 (S.B.); +39-081-19230615 (B.F.)
| |
Collapse
|
21
|
Bhattacharya M, Sharma AR, Sharma G, Patra BC, Lee SS, Chakraborty C. Interaction between miRNAs and signaling cascades of Wnt pathway in chronic lymphocytic leukemia. J Cell Biochem 2020; 121:4654-4666. [PMID: 32100920 DOI: 10.1002/jcb.29683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022]
Abstract
Chronic lymphocytic leukemia (CLL), a severe problem all over the world and represents around 25% of all total leukemia cases, is generating the need for novel targets against CLL. Wnt signaling cascade regulates cell proliferation, differentiation, and cell death processes. Thus, any alteration of the Wnt signaling pathway protein cascade might develop into various types of cancers, either by upregulation or downregulation of the Wnt signaling pathway protein components. In addition, it is reported that activation of the Wnt signaling pathway is associated with the transcriptional activation of microRNAs (miRNAs) by binding to its promoter region, suggesting feedback regulation. Considering the protein regulatory functions of various miRNAs, they can be approached therapeutically as modulatory targets for protein components of the Wnt signaling pathway. In this article, we have discussed the potential role of miRNAs in the regulation of Wnt signaling pathway proteins related to the pathogenesis of CLL via crosstalk between miRNAs and Wnt signaling pathway proteins. This might provide a clear insight into the Wnt protein regulatory function of various miRNAs and provide a better understanding of developing advanced and promising therapeutic approaches against CLL.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University Hospital-College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea.,Department of Zoology, Vidyasagar University, Midnapore, West Bengal, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University Hospital-College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Garima Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University Hospital-College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea
| | | | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University Hospital-College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| |
Collapse
|
22
|
Li R, Wang X, Meng Q, Ren L, Weng J, Wang S, Sun J. Characterization and differential expression of microRNA in the freshwater shrimp (Neocaridina heteropoda) with different body length. INVERTEBR REPROD DEV 2019. [DOI: 10.1080/07924259.2019.1694085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ran Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, China
| | - Xin Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, China
| | - Qinghao Meng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, China
| | - Liqi Ren
- Department of biology, Beijing 101 middle school, Beijing, China
| | - Jieyang Weng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, China
| | - Shen Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, China
| |
Collapse
|
23
|
Fischer P, Chen H, Pacho F, Rieder D, Kimmel RA, Meyer D. FoxH1 represses miR-430 during early embryonic development of zebrafish via non-canonical regulation. BMC Biol 2019; 17:61. [PMID: 31362746 PMCID: PMC6664792 DOI: 10.1186/s12915-019-0683-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND FoxH1 is a forkhead transcription factor with conserved key functions in vertebrate mesoderm induction and left-right patterning downstream of the TGF-beta/Nodal signaling pathway. Binding of the forkhead domain (FHD) of FoxH1 to a highly conserved proximal sequence motif was shown to regulate target gene expression. RESULTS We identify the conserved microRNA-430 family (miR-430) as a novel target of FoxH1. miR-430 levels are increased in foxH1 mutants, resulting in a reduced expression of transcripts that are targeted by miR-430 for degradation. To determine the underlying mechanism of miR-430 repression, we performed chromatin immunoprecipitation studies and overexpression experiments with mutant as well as constitutive active and repressive forms of FoxH1. Our studies reveal a molecular interaction of FoxH1 with miR-430 loci independent of the FHD. Furthermore, we show that previously described mutant forms of FoxH1 that disrupt DNA binding or that lack the C-terminal Smad Interaction Domain (SID) dominantly interfere with miR-430 repression, but not with the regulation of previously described FoxH1 targets. CONCLUSIONS We were able to identify the distinct roles of protein domains of FoxH1 in the regulation process of miR-430. We provide evidence that the indirect repression of miR-430 loci depends on the connection to a distal repressive chromosome environment via a non-canonical mode. The widespread distribution of such non-canonical binding sites of FoxH1, found not only in our study, argues against a function restricted to regulating miR-430 and for a more global role of FoxH1 in chromatin folding.
Collapse
Affiliation(s)
- Patrick Fischer
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Hao Chen
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Frederic Pacho
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Dietmar Rieder
- Division of Bioinformatics, Biocenter, Innsbruck Medical University, Innrain 80, 6020, Innsbruck, Austria
| | - Robin A Kimmel
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Dirk Meyer
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria.
| |
Collapse
|
24
|
Xu EG, Magnuson JT, Diamante G, Mager E, Pasparakis C, Grosell M, Roberts AP, Schlenk D. Changes in microRNA-mRNA Signatures Agree with Morphological, Physiological, and Behavioral Changes in Larval Mahi-Mahi Treated with Deepwater Horizon Oil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13501-13510. [PMID: 30376307 DOI: 10.1021/acs.est.8b04169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, we performed a systematic evaluation of global microRNA-mRNA interactions associated with the developmental toxicity of Deepwater Horizon oil using a combination of integrated mRNA and microRNA deep sequencing, expression profiling, gene ontology enrichment, and functional predictions by a series of advanced bioinformatic tools. After exposure to water accommodated fraction (WAF) of both weathered slick oil (0.5%, 1%, and 2%) and source oil (0.125%, 0.25%, and 0.5%) from the Deep Water Horizon oil spill, four dose-dependent miRNAs were identified, including three up-regulated (miR-23b, miR-34b, and miR-181b) and one down-regulated miRNAs (miR-203a) in mahi-mahi hatchings exposed from 6 h postfertilization (hpf) to 48 hpf. Consistent with morphological, physiological, and behavioral changes, the target genes of these miRNAs were largely involved in the development of the cardiovascular, visual, nervous system and associated toxicity pathways, suggesting that miRNAs play an essential role in regulating the responses to oil exposure. The results obtained from this study improve our understanding of the role of miRNAs and their target genes in relation to dose-dependent oil toxicity and provide the potential of using miRNAs as novel biomarkers in future oil studies.
Collapse
Affiliation(s)
- Elvis Genbo Xu
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
| | - Jason T Magnuson
- Department of Biological Sciences & Advanced Environmental Research Institute , University of North Texas in Denton , Denton , Texas 76203 , United States
| | - Graciel Diamante
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
| | - Edward Mager
- Department of Biological Sciences & Advanced Environmental Research Institute , University of North Texas in Denton , Denton , Texas 76203 , United States
| | - Christina Pasparakis
- Department of Marine Biology and Ecology, RSMAS , University of Miami , Miami , Florida 33149 , United States
| | - Martin Grosell
- Department of Marine Biology and Ecology, RSMAS , University of Miami , Miami , Florida 33149 , United States
| | - Aaron P Roberts
- Department of Biological Sciences & Advanced Environmental Research Institute , University of North Texas in Denton , Denton , Texas 76203 , United States
| | - Daniel Schlenk
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
| |
Collapse
|
25
|
Role of microRNAs in inner ear development and hearing loss. Gene 2018; 686:49-55. [PMID: 30389561 DOI: 10.1016/j.gene.2018.10.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/12/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023]
Abstract
The etiology of hearing loss tends to be multi-factorial and affects a significant proportion of the global population. Despite the differences in etiology, a common physical pathological change that leads to hearing loss is damage to the mechanosensory hair cells of the inner ear. MicroRNAs (miRNAs) have been shown to play a role in inner ear development and thus, may play a role in the development or prevention of hearing loss. In this paper, we review the mechanism of action of miRNAs in the auditory system. We present an overview about the role of miRNAs in inner ear development, summarize the current research on the role of miRNAs in gene regulation, and discuss the effects of both miRNA mutations as well as overexpression. We discuss the crucial role of miRNAs in ensuring normal physiological development of the inner ear. Any deviation from the proper function of miRNA in the cochlea seems to contribute to deleterious damage to the structure of the auditory system and subsequently results in hearing loss. As interest for miRNA research increases, this paper serves as a platform to review current understandings and postulate future avenues for research. A better knowledge about the role of miRNA in the auditory system will help in developing novel treatment modalities for restoring hearing function based on regeneration of damaged inner ear hair cells.
Collapse
|
26
|
Gay S, Bugeon J, Bouchareb A, Henry L, Delahaye C, Legeai F, Montfort J, Le Cam A, Siegel A, Bobe J, Thermes V. MiR-202 controls female fecundity by regulating medaka oogenesis. PLoS Genet 2018; 14:e1007593. [PMID: 30199527 PMCID: PMC6147661 DOI: 10.1371/journal.pgen.1007593] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 09/20/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
Female gamete production relies on coordinated molecular and cellular processes that occur in the ovary throughout oogenesis. In fish, as in other vertebrates, these processes have been extensively studied both in terms of endocrine/paracrine regulation and protein expression and activity. The role of small non-coding RNAs in the regulation of animal reproduction remains however largely unknown and poorly investigated, despite a growing interest for the importance of miRNAs in a wide variety of biological processes. Here, we analyzed the role of miR-202, a miRNA predominantly expressed in male and female gonads in several vertebrate species. We studied its expression in the medaka ovary and generated a mutant line (using CRISPR/Cas9 genome editing) to determine its importance for reproductive success with special interest for egg production. Our results show that miR-202-5p is the most abundant mature form of the miRNA and that it is expressed in granulosa cells and in the unfertilized egg. The knock out (KO) of mir-202 gene resulted in a strong phenotype both in terms of number and quality of eggs produced. Mutant females exhibited either no egg production or produced a dramatically reduced number of eggs that could not be fertilized, ultimately leading to no reproductive success. We quantified the size distribution of the oocytes in the ovary of KO females and performed a large-scale transcriptomic analysis approach to identified dysregulated molecular pathways. Together, cellular and molecular analyses indicate that the lack of miR-202 impairs the early steps of oogenesis/folliculogenesis and decreases the number of large (i.e. vitellogenic) follicles, ultimately leading to dramatically reduced female fecundity. This study sheds new light on the regulatory mechanisms that control the early steps of follicular development, including possible targets of miR-202-5p, and provides the first in vivo functional evidence that a gonad-predominant microRNA may have a major role in female reproduction. The role of small non-coding RNAs in the regulation of animal reproduction remains poorly investigated, despite a growing interest for the importance of miRNAs in a wide variety of biological processes. Here, we analyzed the role of miR-202, a miRNA predominantly expressed in gonads in vertebrate. We studied its expression in the medaka ovary and knocked out the mir-202 gene to study its importance for reproductive success. We showed that the lack of miR-202 results in the sterility of both females and males. In particular, it led to a drastic reduction of both the number and the quality of eggs produced by females. Mutant females exhibited either no egg production or produced a drastically reduced number of eggs that could not be fertilized, ultimately leading to no reproductive success. Quantitative histological and molecular analyses indicated that mir-202 KO impairs oocyte development and is also associated with the dysregulation of many genes that are critical for reproduction. This study sheds new light on the regulatory mechanisms that control oogenesis, including possible targets of miR-202-5p, and provides the first in vivo functional evidence that a gonad-predominant microRNA may have a major role in female reproduction.
Collapse
Affiliation(s)
| | | | | | | | - Clara Delahaye
- LPGP, INRA, Rennes, France
- Univ Rennes, INRIA, CNRS, IRISA, Rennes, France
| | - Fabrice Legeai
- Univ Rennes, INRIA, CNRS, IRISA, Rennes, France
- IGEPP, INRA BP35327, Le Rheu, France
| | | | | | - Anne Siegel
- Univ Rennes, INRIA, CNRS, IRISA, Rennes, France
| | | | | |
Collapse
|
27
|
Bhattacharya M, Ghosh S, Malick RC, Patra BC, Das BK. Therapeutic applications of zebrafish (Danio rerio) miRNAs linked with human diseases: A prospective review. Gene 2018; 679:202-211. [PMID: 30201335 DOI: 10.1016/j.gene.2018.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs) are the class of small, non-coding RNAs that are produced from precursor transcripts by subsequent processing steps mediated by members of the RNaseIII family, Dicer and Drosha protein within cell. The importance of zebrafish miRNAs in regulation of normal cellular development and support to various kinds of metabolism process. Although the zebrafish model provides a fundamental platform for the study of developmental biology but recent work with zebrafish model has expanded its appliance to a broad range of experimental studies relevant to different kind of human diseases. Presently, the zebrafish model is used for the study of cardiovascular disease, schizophrenia, bipolar I disorder in eyes, psoriasis, spinal cord injury, cancer and diabetes that showing in some selected miRNAs are regulate these diseases in molecular levels. Here, a superior drive performed to depict the fundamental utilization of the zebrafish miRNAs that targeted to several clinical diseases connected to human. This review aims to provide a summary of understanding of the cellular mechanism which is responsible for selected diseases and suggests some therapeutic application for inhibition of miRNA functions.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Soumendu Ghosh
- Centre For Aquaculture Research, Extension & Livelihood, Department of Aquaculture Management & Technology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Ramesh Chandra Malick
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Bidhan Chandra Patra
- Centre For Aquaculture Research, Extension & Livelihood, Department of Aquaculture Management & Technology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, West Bengal, India.
| |
Collapse
|
28
|
Luby BM, Zheng G. Specific and Direct Amplified Detection of MicroRNA with MicroRNA:Argonaute-2 Cleavage (miRACle) Beacons. Angew Chem Int Ed Engl 2017; 56:13704-13708. [DOI: 10.1002/anie.201707366] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Benjamin M. Luby
- Princess Margaret Cancer Centre and Techna Institute; University Health Network; 101 College St. Toronto ON Canada
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto Ontario Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre and Techna Institute; University Health Network; 101 College St. Toronto ON Canada
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto Ontario Canada
- Department of Medical Biophysics; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
29
|
Luby BM, Zheng G. Specific and Direct Amplified Detection of MicroRNA with MicroRNA:Argonaute-2 Cleavage (miRACle) Beacons. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Benjamin M. Luby
- Princess Margaret Cancer Centre and Techna Institute; University Health Network; 101 College St. Toronto ON Canada
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto Ontario Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre and Techna Institute; University Health Network; 101 College St. Toronto ON Canada
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto Ontario Canada
- Department of Medical Biophysics; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
30
|
Garcia‐Riart B, Lorda‐Diez CI, Marin‐Llera JC, Garcia‐Porrero JA, Hurle JM, Montero JA. Interdigital tissue remodelling in the embryonic limb involves dynamic regulation of the miRNA profiles. J Anat 2017; 231:275-286. [PMID: 28543398 PMCID: PMC5522895 DOI: 10.1111/joa.12629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2017] [Indexed: 11/26/2022] Open
Abstract
Next-generation sequencing in combination with quantitative polymerase chain reaction analysis revealed a dynamic miRNA signature in the interdigital mesoderm of the chick embryonic hinlimb in the course of interdigit remodelling. During this period, 612 previously known chicken miRNAs (gga-miRNAs) and 401 non-identified sequences were expressed in the interdigital mesoderm. Thirty-six microRNAs, represented by more than 750 reads per million, displayed differential expression between stages HH29 (6 id) and HH32 (7.5 id), which correspond to the onset and the peak of interdigital cell death. Twenty miRNAs were upregulated by at least 1.5-fold, and sixteen were downregulated by at least 0.5-fold. Upregulated miRNAs included miRNAs with recognized proapoptotic functions in other systems (miR-181 family, miR-451 and miR-148a), miRNAs associated with inflammation and cell senescence (miR-21 and miR-146) and miRNAs able to induce changes in the extracellular matrix (miR-30c). In contrast, miRNAs with known antiapoptotic effects in other systems, such as miR-222 and miR-205, became downregulated. In addition, miR-92, an important positive regulator of cell proliferation, was also downregulated. Together, these findings indicate a role for miRNAs in the control of tissue regression and cell death in a characteristic morphogenetic embryonic process based on massive apoptosis.
Collapse
Affiliation(s)
- Beatriz Garcia‐Riart
- Departamento de Anatomía y Biología Celular and IDIVALUniversidad de CantabriaSantanderSpain
| | - Carlos I. Lorda‐Diez
- Departamento de Anatomía y Biología Celular and IDIVALUniversidad de CantabriaSantanderSpain
| | - Jessica C. Marin‐Llera
- Departamento de Anatomía y Biología Celular and IDIVALUniversidad de CantabriaSantanderSpain
- Present address:
Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoDistrito FederalMéxico
| | - Juan A. Garcia‐Porrero
- Departamento de Anatomía y Biología Celular and IDIVALUniversidad de CantabriaSantanderSpain
| | - Juan M. Hurle
- Departamento de Anatomía y Biología Celular and IDIVALUniversidad de CantabriaSantanderSpain
| | - Juan A. Montero
- Departamento de Anatomía y Biología Celular and IDIVALUniversidad de CantabriaSantanderSpain
| |
Collapse
|
31
|
The zebrafish miR-125c is induced under hypoxic stress via hypoxia-inducible factor 1α and functions in cellular adaptations and embryogenesis. Oncotarget 2017; 8:73846-73859. [PMID: 29088751 PMCID: PMC5650306 DOI: 10.18632/oncotarget.17994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/06/2017] [Indexed: 12/15/2022] Open
Abstract
Hypoxia is a unique environmental stress. Hypoxia inducible factor-lα (HIF-lα) is a major transcriptional regulator of cellular adaptations to hypoxic stress. MicroRNAs (miRNAs) as posttranscriptional gene expression regulators occupy a crucial role in cell survival under low-oxygen environment. Previous evidences suggested that miR-125c is involved in hypoxia adaptation, but its precise biological roles and the regulatory mechanism underlying hypoxic responses remain unknown. The present study showed that zebrafish miR-125c is upregulated by hypoxia in a Hif-lα-mediated manner in vitro and in vivo. Dual-luciferase assay revealed that cdc25a is a novel target of miR-125c. An inverse correlation between miR-125c and cdc25a was further confirmed in vivo, suggesting miR-125c as a crucial physiological inhibitor of cdc25a which responds to cellular hypoxia. Overexpression of miR-125c suppressed cell proliferation, led to cell cycle arrest at the G1 phase in ZF4 cells and induced apoptotic responses during embryo development. More importantly, miR-125c overexpression resulted in severe malformation and reduction of motility during zebrafish embryonic development. Taken together, we conclude that miR-125c plays a pivotal role in cellular adaptations to hypoxic stress at least in part through the Hif-1α/miR-125c/cdc25a signaling and has great impact on zebrafish early embryonic development.
Collapse
|
32
|
Wirbisky SE, Weber GJ, Schlotman KE, Sepúlveda MS, Freeman JL. Embryonic atrazine exposure alters zebrafish and human miRNAs associated with angiogenesis, cancer, and neurodevelopment. Food Chem Toxicol 2016; 98:25-33. [PMID: 27046698 DOI: 10.1016/j.fct.2016.03.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 03/26/2016] [Accepted: 03/30/2016] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are short, single-stranded RNA that regulate post-transcriptional control of mRNA translation. Knowledge on the role of these critical regulators in toxicological responses in increasing, but is still limited. Atrazine is a herbicide used throughout the Midwestern US that is reported to frequently contaminate potable water supplies above the maximum contaminant level of 3 parts per billion. Atrazine is a suspected endocrine disrupting chemical and studies have begun to investigate the genetic mechanisms of toxicity; however, studies investigating epigenetic mechanisms are limited. In this study both zebrafish and human miRNAs were significantly altered in response to an embryonic atrazine exposure of 0.3, 3, or 30 ppb in zebrafish. Altered miRNAs are known to play a role in angiogenesis, cancer, or neuronal development, differentiation, and maturation. Targeted analysis of altered human miRNAs with genes previously identified to be altered by atrazine exposure revealed several targets linked to cell cycle and cell signaling. Further analysis of hsa-miRNA-126-3p, which had altered expression in all three atrazine treatments at 72 hpf, revealed alterations also occurred at 60 hpf in the 30 ppb treatment group. Results from this study indicate miRNA deregulation in zebrafish and human miRNAs following an embryonic atrazine exposure in zebrafish.
Collapse
Affiliation(s)
- Sara E Wirbisky
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Gregory J Weber
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Kelly E Schlotman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|