1
|
Šabacká P, Maxa J, Švecová J, Talár J, Binar T, Bayer R, Bača P, Dostalová P, Švarc J. Mathematical-Physics Analyses of the Nozzle Shaping at the Aperture Gas Outlet into Free Space under ESEM Pressure Conditions. SENSORS (BASEL, SWITZERLAND) 2024; 24:3436. [PMID: 38894227 PMCID: PMC11174927 DOI: 10.3390/s24113436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
The paper presents a methodology that combines experimental measurements and mathematical-physics analyses to investigate the flow behavior in a nozzle-equipped aperture associated with the solution of its impact on electron beam dispersion in an environmental scanning electron microscope (ESEM). The shape of the nozzle significantly influences the character of the supersonic flow beyond the aperture, especially the shape and type of shock waves, which are highly dense compared to the surrounding gas. These significantly affect the electron scattering, which influences the resulting image. This paper analyzes the effect of aperture and nozzle shaping under specific low-pressure conditions and its impact on the electron dispersion of the primary electron beam.
Collapse
Affiliation(s)
- Pavla Šabacká
- Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 10, 616 00 Brno, Czech Republic (T.B.); (R.B.); (P.D.)
- Institute of Scientific Instruments of the CAS, Královopolská 147, 612 64 Brno, Czech Republic
| | - Jiří Maxa
- Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 10, 616 00 Brno, Czech Republic (T.B.); (R.B.); (P.D.)
- Institute of Scientific Instruments of the CAS, Královopolská 147, 612 64 Brno, Czech Republic
| | - Jana Švecová
- Faculty of Military Leadership, University of Defence, 662 10 Brno, Czech Republic; (J.Š.); (J.Š.)
| | - Jaroslav Talár
- Faculty of Military Leadership, University of Defence, 662 10 Brno, Czech Republic; (J.Š.); (J.Š.)
| | - Tomáš Binar
- Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 10, 616 00 Brno, Czech Republic (T.B.); (R.B.); (P.D.)
| | - Robert Bayer
- Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 10, 616 00 Brno, Czech Republic (T.B.); (R.B.); (P.D.)
| | - Petr Bača
- Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 10, 616 00 Brno, Czech Republic (T.B.); (R.B.); (P.D.)
| | - Petra Dostalová
- Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 10, 616 00 Brno, Czech Republic (T.B.); (R.B.); (P.D.)
| | - Jiří Švarc
- Faculty of Military Leadership, University of Defence, 662 10 Brno, Czech Republic; (J.Š.); (J.Š.)
| |
Collapse
|
2
|
Šabacká P, Maxa J, Bayer R, Binar T, Bača P, Dostalová P, Mačák M, Čudek P. Comparative Analysis of Supersonic Flow in Atmospheric and Low Pressure in the Region of Shock Waves Creation for Electron Microscopy. SENSORS (BASEL, SWITZERLAND) 2023; 23:9765. [PMID: 38139611 PMCID: PMC10747329 DOI: 10.3390/s23249765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
This paper presents mathematical-physics analyses in the field of the influence of inserted sensors on the supersonic flow behind the nozzle. It evaluates differences in the flow in the area of atmospheric pressure and low pressure on the boundary of continuum mechanics. To analyze the formation of detached and conical shock waves and their distinct characteristics in atmospheric pressure and low pressure on the boundary of continuum mechanics, we conduct comparative analyses using two types of inserted sensors: flat end and tip. These analyses were performed in two variants, considering pressure ratios of 10:1 both in front of and behind the nozzle. The first variant involved using atmospheric pressure in the chamber in front of the nozzle. The second type of analysis was conducted with a pressure of 10,000 Pa in front of the nozzle. While this represents a low pressure at the boundary of continuum mechanics, it remains above the critical limit of 113 Pa. This deliberate choice was made as it falls within the team's research focus on low-pressure regions. Although it is situated at the boundary of continuum mechanics, it is intentionally within a pressure range where the viscosity values are not yet dependent on pressure. In these variants, the nature of the flow was investigated concerning the ratio of inertial and viscous flow forces under atmospheric pressure conditions, and it was compared with flow conditions at low pressure. In the low-pressure scenario, the ratio of inertial and viscous flow forces led to a significant reduction in the value of inertial forces. The results showed an altered flow character, characterized by a reduced tendency for the formation of cross-oblique shockwaves within the nozzle itself and the emergence of shockwaves with increased thickness. This increased thickness is attributed to viscous forces inhibiting the thickening of the shockwave itself. This altered flow character may have implications, such as influencing temperature sensing with a tipped sensor. The shockwave area may form in a very confined space in front of the tip, potentially impacting the results. Additionally, due to reduced inertial forces, the cone shock wave's angle is a few degrees larger than theoretical predictions, and there is no tilting due to lower inertial forces. These analyses serve as the basis for upcoming experiments in the experimental chamber designed specifically for investigations in the given region of low pressures at the boundary of continuum mechanics. The objective, in combination with mathematical-physics analyses, is to determine changes within this region of the continuum mechanics boundary where inertial forces are markedly lower than in the atmosphere but remain under the influence of unreduced viscosity.
Collapse
Affiliation(s)
- Pavla Šabacká
- Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 10, 616 00 Brno, Czech Republic (R.B.); (T.B.); (P.B.); (P.D.)
| | - Jiří Maxa
- Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 10, 616 00 Brno, Czech Republic (R.B.); (T.B.); (P.B.); (P.D.)
- Institute of Scientific Instruments of the CAS, Královopolská 147, 612 64 Brno, Czech Republic
| | - Robert Bayer
- Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 10, 616 00 Brno, Czech Republic (R.B.); (T.B.); (P.B.); (P.D.)
| | - Tomáš Binar
- Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 10, 616 00 Brno, Czech Republic (R.B.); (T.B.); (P.B.); (P.D.)
| | - Petr Bača
- Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 10, 616 00 Brno, Czech Republic (R.B.); (T.B.); (P.B.); (P.D.)
| | - Petra Dostalová
- Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 10, 616 00 Brno, Czech Republic (R.B.); (T.B.); (P.B.); (P.D.)
| | - Martin Mačák
- Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 10, 616 00 Brno, Czech Republic (R.B.); (T.B.); (P.B.); (P.D.)
| | - Pavel Čudek
- Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 10, 616 00 Brno, Czech Republic (R.B.); (T.B.); (P.B.); (P.D.)
| |
Collapse
|
3
|
Závacká K, Neděla V, Tihlaříková E, Šabacká P, Maxa J, Heger D. ESEM Methodology for the Study of Ice Samples at Environmentally Relevant Subzero Temperatures: "Subzero ESEM". MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:196-209. [PMID: 34937589 DOI: 10.1017/s1431927621013854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Frozen aqueous solutions are an important subject of study in numerous scientific branches including the pharmaceutical and food industry, atmospheric chemistry, biology, and medicine. Here, we present an advanced environmental scanning electron microscope methodology for research of ice samples at environmentally relevant subzero temperatures, thus under conditions in which it is extremely challenging to maintain the thermodynamic equilibrium of the specimen. The methodology opens possibilities to observe intact ice samples at close to natural conditions. Based on the results of ANSYS software simulations of the surface temperature of a frozen sample, and knowledge of the partial pressure of water vapor in the gas mixture near the sample, we monitored static ice samples over several minutes. We also discuss possible artifacts that can arise from unwanted surface ice formation on, or ice sublimation from, the sample, as a consequence of shifting conditions away from thermodynamic equilibrium in the specimen chamber. To demonstrate the applicability of the methodology, we characterized how the true morphology of ice spheres containing salt changed upon aging and the morphology of ice spheres containing bovine serum albumin. After combining static observations with the dynamic process of ice sublimation from the sample, we can attain images with nanometer resolution.
Collapse
Affiliation(s)
- Kamila Závacká
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 61264Brno, Czech Republic
| | - Vilém Neděla
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 61264Brno, Czech Republic
| | - Eva Tihlaříková
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 61264Brno, Czech Republic
| | - Pavla Šabacká
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 61264Brno, Czech Republic
| | - Jiří Maxa
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 61264Brno, Czech Republic
| | - Dominik Heger
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500Brno, Czech Republic
| |
Collapse
|
4
|
Abstract
Among the different in vitro culture techniques, somatic embryogenesis has been one of the most important developments for plant tissue culture; it has enabled mass propagation and the development of biotechnological tools to enhance the productivity and quality of plantation forestry. This propagation technique together with cryopreservation is the base of multivarietal forestry.The development of somatic embryogenesis in forest trees dates from 1985, and in the last years several studies have focused on the development and optimization of the conifer somatic embryogenesis process to make it more efficient in terms of both the quantity and the characteristics of the plants obtained. However, these advances are not sufficiently refined to be implemented commercially for many Pinus spp. due to the high cost of the process derived from hand labor. Nowadays, trying to add value to the plants produced to compensate the high costs of the process, different studies are being developed in order to obtain Pinus somatic plants with better adaptation to environmental stresses prompted by the current situation of climate change.In this chapter, a summary of the recent somatic embryogenesis systems developed to achieve Pinus spp. high quality plants is presented.
Collapse
Affiliation(s)
| | - Paloma Moncaleán
- Department of Forestry, NEIKER-BRTA. Arkaute Centre, Álava, Spain
| | | |
Collapse
|
5
|
Bathoova M, Švubová R, Bokor B, Neděla V, Tihlaříková E, Martinka M. Silicon triggers sorghum root enzyme activities and inhibits the root cell colonization by Alternaria alternata. PLANTA 2021; 253:29. [PMID: 33423117 DOI: 10.1007/s00425-020-03560-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Silicon inhibits the growth of Alternaria alternata into sorghum root cells by maintaining their integrity through stimulating biochemical defense reactions rather than by silica-based physical barrier creation. Although the ameliorating effect of silicon (Si) on plant resistance against fungal pathogens has been proven, the mechanism of its action needs to be better understood on a cellular level. The present study explores the effect of Si application in sorghum roots infected with fungus Alternaria alternata under controlled in vitro conditions. Detailed anatomical and cytological observations by both fluorescent and electron microscopy revealed that Si supplementation results in the inhibition of fungal hyphae growth into the protoplast of root cells. An approach of environmental scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy enabling spatial detection of Si even at low concentrations showed that there is no continual solid layer of silica in the root cell walls of the rhizodermis, mesodermis and exodermis physically blocking the fungal growth into the protoplasts. Additionally, biochemical evidence suggests that Si speeds up the onset of activities of phenylpropanoid pathway enzymes phenylalanine ammonia lyase, peroxidases and polyphenol oxidases involved in phenolic compounds production and deposition to plant cell walls. In conclusion, Si alleviates the negative impact of A. alternata infection by limiting hyphae penetration through sorghum root cell walls into protoplasts, thus maintaining their structural and functional integrity. This might occur by triggering plant biochemical defense responses rather than by creating compact Si layer deposits.
Collapse
Affiliation(s)
- Monika Bathoova
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15, Bratislava 4, Slovak Republic.
| | - Renáta Švubová
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15, Bratislava 4, Slovak Republic
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15, Bratislava 4, Slovak Republic
- Comenius University Science Park, Comenius University in Bratislava, Ilkovicova 8, 841 04, Bratislava, Slovak Republic
| | - Vilém Neděla
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 612 00, Brno, Czech Republic
| | - Eva Tihlaříková
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 612 00, Brno, Czech Republic
| | - Michal Martinka
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15, Bratislava 4, Slovak Republic
| |
Collapse
|
6
|
Vetráková Ľ, Neděla V, Runštuk J, Tihlaříková E, Heger D, Shalaev E. Dynamical in-situ observation of the lyophilization and vacuum-drying processes of a model biopharmaceutical system by an environmental scanning electron microscope. Int J Pharm 2020; 585:119448. [PMID: 32461002 DOI: 10.1016/j.ijpharm.2020.119448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/23/2020] [Accepted: 05/18/2020] [Indexed: 01/22/2023]
Abstract
The paper discusses the real-time monitoring of the changing sample morphology during the entire lyophilization (freeze-drying) and vacuum-drying processes of model biopharmaceutical solutions by using an environmental scanning electron microscope (ESEM); the device's micromanipulators were used to study the interior of the samples in-situ without exposing the samples to atmospheric water vapor. The individual collapse temperatures (Tc) of the formulations, pure bovine serum albumin (BSA) and BSA/sucrose mixtures, ranged from -5 to -29 °C. We evaluated the impact of the freezing method (spontaneous freezing, controlled ice nucleation, and spray freezing) on the morphologies of the lyophiles at the constant drying temperature of -20 °C. The formulations with Tc above -20 °C resulted in the lyophiles' morphologies significantly dependent on the freezing method. We interpret the observations as an interplay of the freezing rates and directionalities, both of which markedly influence the morphologies of the frozen formulations, and, subsequently, the drying process and the mechanical stability of the freeze-dried cake. The formulation with Tc below -20 °C yielded a collapsed cake with features independent of the freezing method. The vacuum-drying produced a material with a smooth and pore-free surface, where deep cracks developed at the end of the process.
Collapse
Affiliation(s)
- Ľubica Vetráková
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Vilém Neděla
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jiří Runštuk
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Eva Tihlaříková
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Dominik Heger
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Evgenyi Shalaev
- Pharmaceutical Development, Allergan plc, Irvine, CA, United States.
| |
Collapse
|
7
|
Tihlaříková E, Neděla V, Đorđević B. In-situ preparation of plant samples in ESEM for energy dispersive x-ray microanalysis and repetitive observation in SEM and ESEM. Sci Rep 2019; 9:2300. [PMID: 30783188 PMCID: PMC6381206 DOI: 10.1038/s41598-019-38835-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/07/2019] [Indexed: 11/25/2022] Open
Abstract
The Extended Low Temperature Method (ELTM) for the in-situ preparation of plant samples in an environmental scanning electron microscope enables carrying out repetitive topographical and material analysis at a higher resolution in the vacuum conditions of a scanning electron microscope or in the low gas pressure conditions of an environmental scanning electron microscope. The method does not require any chemical intervention and is thus suitable for imaging delicate structures rarely observable with common treatment methods. The method enables both sample stabilization as close to their native state as possible, as well as the transfer of the same sample from a low vacuum to an atmospheric condition for sample storage or later study. It is impossible for wet samples in the environmental scanning electron microscope. Our studies illustrate the high applicability of the ELTM for different types of plant tissue, from imaging of plant waxes at higher resolution, the morphological study of highly susceptible early somatic embryos to the elemental microanalysis of root cells. The method established here provides a very fast, universal and inexpensive solution for plant sample treatment usable in a commercial environmental scanning electron microscope equipped with a cooling Peltier stage.
Collapse
Affiliation(s)
- Eva Tihlaříková
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, 612 00, Czech Republic.
| | - Vilém Neděla
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, 612 00, Czech Republic
| | - Biljana Đorđević
- Department of Plant Biology, Mendel University in Brno, Brno, 613 00, Czech Republic
| |
Collapse
|
8
|
Salaj T, Klubicová K, Matusova R, Salaj J. Somatic Embryogenesis in Selected Conifer Trees Pinus nigra Arn. and Abies Hybrids. FRONTIERS IN PLANT SCIENCE 2019; 10:13. [PMID: 30761164 PMCID: PMC6361753 DOI: 10.3389/fpls.2019.00013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/07/2019] [Indexed: 05/12/2023]
Abstract
Somatic embryogenesis was achieved in the conifers Pinus nigra Arn. and in the hybrids Abies alba ×A. cephalonica and Abies alba ×A. numidica. For initiation of embryogenic tissue in P. nigra, immature zygotic embryos enclosed in megagametophytes were used. The initiated embryogenic cultures were maintained and proliferated on solid culture medium DCR supplemented with 9 μM 2,4-D and 2.2 μM BA. Microscopic investigations revealed the presence of bipolar early somatic embryos in proliferating tissue. Suspension cultures have also been established by resuspending the embryogenic tissue in liquid culture medium. Experimentation with abscisic acid concentration resulted in successful somatic embryo maturation. Besides abscisic acid, the carbohydrate content or higher concentration of gelling agent in maturation medium were also important requirements for somatic embryo maturation. Germination of cotyledonary somatic embryos occurred on hormone-free medium and terminated in somatic seedlings regeneration. The regenerated somatic seedlings were transferred to soil and were capable of successful development. For initiation of embryogenic tissue in Abies hybrids juvenile explants as immature or mature zygotic embryos as well as cotyledons were used and 4.4 μM BA as sole plant growth regulator was sufficient. Medium of the same composition was also suitable for their long-term maintenance. Maturation of somatic embryos was achieved on solid DCR medium supplemented with 38 μM abscisic acid, polyethylene glycol (0, 5, 7.5, and 10% PEG-4000) and different carbohydrates such as maltose, sucrose and glucose (each 3%). PEG-4000 stimulated somatic embryo development depending on the carbohydrate source used. Cotyledonary somatic embryos germinated after desiccation treatment and the regenerated somatic seedlings were transferred to soil. Cryopreservation of embryogenic tissue could be an alternative method for long-term maintenance. For cryopreservation the slow-freezing method was used with success. Tissue regeneration in the post thaw period was relatively high and the regenerated tissue produced mature somatic embryos and subsequent plantlets. The embryogenic tissue was also used in experiments focused on genetic transformation either by biolistic (P. nigra) or Agrobacterium-mediated (Abies hybrids) methods. A proteomic study was performed to gain a deeper insight into the early stages of P. nigra somatic embryogenesis.
Collapse
Affiliation(s)
- Terézia Salaj
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Nitra, Slovakia
| | | | | | | |
Collapse
|
9
|
Đorđević B, Neděla V, Tihlaříková E, Trojan V, Havel L. Effects of copper and arsenic stress on the development of Norway spruce somatic embryos and their visualization with the environmental scanning electron microscope. N Biotechnol 2018; 48:35-43. [PMID: 29782934 DOI: 10.1016/j.nbt.2018.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 11/17/2022]
Abstract
Somatic embryogenesis is an important biotechnological technique which can be used in studies associated with environmental stress. Four embryogenic cell lines of Norway spruce were grown on media enriched with copper and arsenic in concentration ranges 50-500 μM and 10-50 μM, respectively. The effects were observed during subsequent stages of somatic embryogenesis, the characteristics evaluated being proliferation potential, average number of somatic embryos obtained per g/fresh weight, morphology of developed somatic embryos, metal uptake, and microanalysis of macro- and micronutrients uptake. Copper and arsenic at higher concentrations significantly reduced the growth of early somatic embryos. In almost all treatments, the cell line V-1-3 showed the best performance compared with the other lines tested. Environmental scanning electron microscopy was used to visualize and identify morphological abnormalities in the development of somatic embryos. Abnormalities observed were classified into several categories: meristemless somatic embryos, somatic embryos with disrupted meristem, reduced number of cotyledons, single cotyledon and fused cotyledons. With the application of a low temperature method for the environmental scanning electron microscope, samples were stabilized and whole meristems could be investigated in their native state. As far as we are aware, this is the first report of the effect of copper and arsenic during the process of somatic embryogenesis and the first to evaluate the content of macro and micronutrients uptake in Norway spruce.
Collapse
Affiliation(s)
- Biljana Đorđević
- Department of Plant Biology, Mendel University in Brno, Zemědělská 1, Brno 613 00, Czech Republic.
| | - Vilém Neděla
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, Brno 612 64, Czech Republic
| | - Eva Tihlaříková
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, Brno 612 64, Czech Republic
| | - Václav Trojan
- Department of Plant Biology, Mendel University in Brno, Zemědělská 1, Brno 613 00, Czech Republic
| | - Ladislav Havel
- Department of Plant Biology, Mendel University in Brno, Zemědělská 1, Brno 613 00, Czech Republic
| |
Collapse
|