1
|
Li H, Xia W, Guo H, Wang Y, Wang Q, Zhang G, Ma Q, Zhou J, Wang T. Auxin inhibited colonization of antibiotic resistant bacteria in soybean sprouts and spread of resistance genes to endophytic bacteria: Highlighting energy metabolism and immunity mechanism. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138280. [PMID: 40252322 DOI: 10.1016/j.jhazmat.2025.138280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/28/2025] [Accepted: 04/12/2025] [Indexed: 04/21/2025]
Abstract
Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are widely in vegetables, posing health risk. Plant auxins are commonly used to enhance vegetable yield, yet the regulatory mechanisms governing their impact on ARGs transmission to endophytic bacteria remain poorly understood. This study tracked ARB colonization and ARGs spread into endophytic bacteria in soybean sprouts exposed to gibberellin (GA) and 6-benzyladenine (BA). The application of GA and BA during the imbibition, sprouting, and germination periods of soybean sprouts all inhibited the transfer of ARB and ARGs. The enrichment of ARB and ARGs in different tissues of soybean sprouts was ranked as seed coat > hypocotyl > cotyledon. BA and GA enhanced the stability of plant cell wall-cell membrane system, promoted energy metabolism in plants, and activated the immunity mechanism. Especially, the plant hormone signal transduction pathway under GA exposure explained 44.8 % and 96.7 % of inhibition on ARB colonization and ARGs transfer, respectively; the plant-pathogen interaction pathway dominated the inhibition of antibiotic resistance under BA exposure, which explained 51 % and 65.9 % of inhibition on ARB colonization and ARGs transfer. These findings provide new insights into ARB colonization in soybean sprouts and the transmission of ARGs to endophytic bacteria under auxin stress.
Collapse
Affiliation(s)
- Hu Li
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Wenhui Xia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yanjie Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Qi Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Guodong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Qiuling Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
2
|
Ji XL, Zhao LL, Liu B, Yuan YB, Han Y, You CX, An JP. MdZFP7 integrates JA and GA signals via interaction with MdJAZ2 and MdRGL3a in regulating anthocyanin biosynthesis and undergoes degradation by the E3 ubiquitin ligase MdBRG3. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1339-1363. [PMID: 39936840 DOI: 10.1111/jipb.13862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025]
Abstract
Jasmonic acid (JA) and gibberellin (GA) coordinate many aspects of plant growth and development, including anthocyanin biosynthesis. However, the crossover points of JA and GA signals and the pathways through which they interact to regulate anthocyanin biosynthesis are poorly understood. Here, we investigated the molecular mechanism by which the zinc finger protein (ZFP) transcription factor Malus domestica ZFP7 (MdZFP7) regulates anthocyanin biosynthesis by integrating JA and GA signals at the transcriptional and post-translational levels. MdZFP7 is a positive regulator of anthocyanin biosynthesis, which fulfills its role by directly activating the expression of MdMYB1 and enhancing the transcriptional activation of MdWRKY6 on the target genes MdDFR and MdUF3GT. MdZFP7 integrates JA and GA signals by interacting with the JA repressor apple JASMONATE ZIM-DOMAIN2 (MdJAZ2) and the GA repressor apple REPRESSOR-of-ga1-3-like 3a (MdRGL3a). MdJAZ2 weakens the transcriptional activation of MdMYB1 by MdZFP7 and disrupts the MdZFP7-MdWRKY6 interaction, thereby reducing the anthocyanin biosynthesis promoted by MdZFP7. MdRGL3a contributes to the stimulation of anthocyanin biosynthesis by MdZFP7 by sequestering MdJAZ2 from the MdJAZ2-MdZFP7 complex. The E3 ubiquitin ligase apple BOI-related E3 ubiquitin-protein ligase 3 (MdBRG3), which is antagonistically regulated by JA and GA, targets the ubiquitination degradation of MdZFP7. The MdBRG3-MdZFP7 module moves the crosstalk of JA and GA signals from the realm of transcriptional regulation and into the protein post-translational modification. In conclusion, this study not only elucidates the node-role of MdZFP7 in the integration of JA and GA signals, but also describes the transcriptional and post-translational regulatory network of anthocyanin biosynthesis with MdZFP7 as the hub.
Collapse
Affiliation(s)
- Xing-Long Ji
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ling-Ling Zhao
- Yantai Academy of Agricultural Sciences, Yantai, 265599, China
| | - Baoyou Liu
- Yantai Academy of Agricultural Sciences, Yantai, 265599, China
| | - Yong-Bing Yuan
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Jian-Ping An
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
3
|
Wang C, Xuan X, Wang W, Sadeghnezhad E, Luo L, Gong P, Wu Q, Chao R, Chen X, Yu M, Qi Z, Zhang X, Wang F, Dong T, Ren Y, Meng L, Fang J. Gibberellin Mediates VvmiR397a-VvLAC4 via VvSLR1-VvWRKY26 Cascade Signal to Repress the Seed-Stone Development During GA-Induced Grape Parthenocarpy. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40269609 DOI: 10.1111/pce.15570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/25/2025]
Abstract
Exogenous gibberellin (GA) effectively inhibits the development of lignified seed-stone in grapes by inducing parthenocarpic seedless berries and significantly improving berry quality. However, the molecular mechanisms underlying this process remain elusive. Here, we uncovered the roles of miR397a in GA signalling-mediated grape seed-stone development through VvSLR1-VvWRKY26 cascade modulation in grapes, indicating 'VvSLR1-VvWRKY26-VvmiR397a-VvLAC4' is the key signalling regulatory module in lignin synthesis of seed-stone in GA-induced grape parthenocarpic berries. VvSLR1 inhibits VvmiR397a expression through interaction with VvWRKY26 and promotes the laccase-mediated lignin synthesis, while GA depresses lignin synthesis by overcoming VvSLR1-mediated multi-level cascade signals. We identified GA responsive cis-element of VvMIR397a promoter bound by VvWRKY26, which activated VvmiR397a expression, whereby inhibiting VvLAC4 level. The expression patterns and cleavage roles' variation of VvmiR397a-VvLAC4 during the seed stones of grape stone-hardening stage indicated that this pair is the one main regulatory module from VvLACs family in this process. Overexpression of VvMIR397a in tobacco and short tandem target mimic (STTM) assays of VvmiR397a/FvmiR397 in grape/strawberry highlighted the function of miR397a-LACs module during modulation of lignin synthesis. Our findings shed novel insights into the GA-responsive roles of VvmiR397a through multi-level cascade signals during modulation of grape seed-stone development, which has important implications for the molecular breeding of high-quality seedless grape berries.
Collapse
Affiliation(s)
- Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xuxian Xuan
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Wenran Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ehsan Sadeghnezhad
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Linjia Luo
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Peijie Gong
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Qiqi Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ruiqiang Chao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xinpeng Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Mucheng Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ziyang Qi
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiaowen Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fei Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Tianyu Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yanhua Ren
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Laisheng Meng
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Qian C, Shao Y, Cai Z, Zhang B, Sohail H, Liu J, Kan J, Zhang M, Xiao L, Yang X, Qi X. Melatonin Reduces Lignin Biosynthesis by Fostering Epigenetic Modifications in Water Bamboo Shoots under Cold Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7504-7516. [PMID: 40097916 DOI: 10.1021/acs.jafc.4c11281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Chilling injury and lignin deposition reduce the market value of water bamboo shoots (Zizania latifolia) during cold storage. Melatonin (MT) application has been found to be effective in mitigating chilling injury in cold-stored vegetables and fruits. Thus, considering the importance of chilling stress in water bamboo shoots, we have examined the impact of exogenous MT application under cold storage. It was found that exogenous MT increased the expression of ZlCDPK12 and decreased the expression of genes in the phenylpropanoid pathway, including ZlPOD16, ZlC4H, ZlPAL1, ZlCAD2, and ZlCCR1. It delayed skin browning and softening, reduced weight loss, and maintained total phenol and flavonoid contents while reducing lignin deposition. Moreover, the transcript abundance of phenylpropane metabolism-related transcription factors ZlERF4, ZlbHLH49, and ZlMYC2.2 is correlated with promoter DNA methylation. Overall, our study provides insights into how exogenous MT treatment effectively inhibits the deterioration of water bamboo shoots during cold storage. Furthermore, the integration of transcriptome and DNA methylation data lays a foundation for future improvements through genetic engineering.
Collapse
Affiliation(s)
- Chunlu Qian
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225001, China
| | - Yuyang Shao
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225001, China
| | - Zichen Cai
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225001, China
| | - Bei Zhang
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225001, China
| | - Hamza Sohail
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jun Liu
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225001, China
| | - Juan Kan
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225001, China
| | - Man Zhang
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225001, China
| | - Lixia Xiao
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225001, China
| | - Xiaodong Yang
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xiaohua Qi
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Sardoei AS, Tahmasebi M, Bovand F, Ghorbanpour M. Exogenously applied gibberellic acid and benzylamine modulate growth and chemical constituents of dwarf schefflera: a stepwise regression analysis. Sci Rep 2024; 14:7896. [PMID: 38570571 PMCID: PMC10991322 DOI: 10.1038/s41598-024-57985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/24/2024] [Indexed: 04/05/2024] Open
Abstract
Ornamental foliage plants that have a dense appearance are highly valued. One way to achieve this is by using plant growth regulators as a tool for plant growth management. In a greenhouse with a mist irrigation system, a study was conducted on dwarf schefflera, an ornamental foliage plant, which was exposed to foliar application of gibberellic acid and benzyladenine hormones. The hormones were sprayed on dwarf schefflera leaves at 0, 100, and 200 mg/l concentrations, at 15-day intervals in three stages. The experiment was conducted as a factorial based on a completely randomized design, with four replicates. The combination of gibberellic acid and benzyladenine at 200 mg/l concentration had a significant effect on leaf number, leaf area, and plant height. The treatment also resulted in the highest content of photosynthetic pigments. Furthermore, the highest soluble carbohydrate to reducing sugars ratio was observed in treatments of 100 and 200 mg/l benzyladenine, and 200 mg/l gibberellic acid + benzyladenine. Stepwise regression analysis showed that root volume was the first variable to enter the model, explaining 44% of variations. The next variable was root fresh weight, and the two-variable model explained 63% of variations in leaf number. The greatest positive effect on leaf number was related to root fresh weight (0.43), which had a positive correlation with leaf number (0.47). The results showed that 200 mg/l concentration of gibberellic acid and benzyladenine significantly improved morphological growth, chlorophyll and carotenoid synthesis, and reducing sugar and soluble carbohydrate contents in dwarf schefflera.
Collapse
Affiliation(s)
- Ali Salehi Sardoei
- Crop and Horticultural Science Research Department, South Kerman Agricultural and Natural Resources Research and Education Center, AREEO, Jiroft, Iran.
| | - Mojtaba Tahmasebi
- Department of Landscape Architecture, University of Florida, Gainesville, FL, USA
| | - Fatemeh Bovand
- Department of Agronomy and Plant Breeding, Islamic Azad University, Arak, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
6
|
Shen C, Huang B, Hu L, Yuan H, Huang Y, Wang Y, Sun Y, Li Y, Zhang J, Xin J. Comparative transcriptome analysis and Arabidopsis thaliana overexpression reveal key genes associated with cadmium transport and distribution in root of two Capsicum annuum cultivars. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133365. [PMID: 38163407 DOI: 10.1016/j.jhazmat.2023.133365] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
The molecular mechanisms underlying high and low cadmium (Cd) accumulation in hot pepper cultivars remain unclear. In this study, comparative transcriptome analysis of root between high-Cd (J) and low-Cd (Z) cultivars was conducted under hydroponic cultivation with 0 and 0.4 mg/L Cd, respectively. The results showed that J enhanced the root uptake of Cd by elevating the expression of Nramp5 and counteracting Cd toxicity by increasing the expression of genes, such as NIR1, GLN1, and IAA9. Z reduced Cd accumulation by enhancing the cell wall lignin synthesis genes PAL, COMT, 4CL, LAC, and POD and the Cd transporters ABC, MTP1, and DTX1. Elevated expression of genes related to sulfur metabolism was observed in Z, potentially contributing to its ability to detoxify Cd. To investigate the function of CaCOMT1, an Arabidopsis thaliana overexpression line (OE-CaCOMT1) was constructed. The results revealed that OE-CaCOMT1 drastically increased the lignin content by 38-42% and reduced the translocation of Cd to the aboveground parts by 32%. This study provides comprehensive insights into the mechanisms underlying Cd accumulation in hot pepper cultivars using transcriptome analysis. Moreover, this study elucidates the critical function of CaCOMT1, providing a theoretical foundation for the production of low-Cd vegetables for food safety.
Collapse
Affiliation(s)
- Chuang Shen
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Baifei Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Lu Hu
- Hunan Huanbaoqiao Ecology and Environment Engineering Co., Ltd., Changsha 410221, China
| | - Haiwei Yuan
- Hunan Huanbaoqiao Ecology and Environment Engineering Co., Ltd., Changsha 410221, China
| | - Yingying Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yanbin Wang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yingfang Sun
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yi Li
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Jirong Zhang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Junliang Xin
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China.
| |
Collapse
|
7
|
Wang H, Zhang Y, Feng X, Hong J, Aamir Manzoor M, Zhou X, Zhou Q, Cai Y. Transcription factor PbMYB80 regulates lignification of stone cells and undergoes RING finger protein PbRHY1-mediated degradation in pear fruit. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:883-900. [PMID: 37944017 DOI: 10.1093/jxb/erad434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
The Chinese white pear (Pyrus bretschneideri) fruit carries a high proportion of stone cells, adversely affecting fruit quality. Lignin is a main component of stone cells in pear fruit. In this study, we discovered that a pear MYB transcription factor, PbMYB80, binds to the promoters of key lignin biosynthesis genes and inhibits their expression. Stable overexpression of PbMYB80 in Arabidopsis showed that lignin deposition and secondary wall thickening were inhibited, and the expression of the lignin biosynthesis genes in transgenic Arabidopsis was decreased. Transient overexpression of PbMYB80 in pear fruit inhibited lignin metabolism and stone cell development, and the expression of some genes in the lignin metabolism pathway was reduced. In contrast, silencing PbMYB80 with VIGS increased the lignin and stone cell content in pear fruit, and increased expression of genes in the lignin metabolism pathway. By screening a pear fruit cDNA library in yeast, we found that PbMYB80 binds to a RING finger (PbRHY1) protein. We also showed that PbRHY1 exhibits E3 ubiquitin ligase activity and degrades ubiquitinated PbMYB80 in vivo and in vitro. This investigation contributes to a better understanding of the regulation of lignin biosynthesis in pear fruit, and provides a theoretical foundation for increasing pear fruit quality at the molecular level.
Collapse
Affiliation(s)
- Han Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yingjie Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xiaofeng Feng
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Jiayi Hong
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Muhammad Aamir Manzoor
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xinyue Zhou
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Qifang Zhou
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yongping Cai
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
8
|
Jie H, He P, Zhao L, Ma Y, Jie Y. Molecular Mechanisms Regulating Phenylpropanoid Metabolism in Exogenously-Sprayed Ethylene Forage Ramie Based on Transcriptomic and Metabolomic Analyses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3899. [PMID: 38005796 PMCID: PMC10675582 DOI: 10.3390/plants12223899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Ramie (Boehmeria nivea [L.] Gaud.), a nutritious animal feed, is rich in protein and produces a variety of secondary metabolites that increase its palatability and functional composition. Ethylene (ETH) is an important plant hormone that regulates the growth and development of various crops. In this study, we investigated the impact of ETH sprays on the growth and metabolism of forage ramie. We explored the mechanism of ETH regulation on the growth and secondary metabolites of forage ramie using transcriptomic and metabolomic analyses. Spraying ramie with ETH elevated the contents of flavonoids and chlorogenic acid and decreased the lignin content in the leaves and stems. A total of 1076 differentially expressed genes (DEGs) and 51 differentially expressed metabolites (DEMs) were identified in the leaves, and 344 DEGs and 55 DEMs were identified in the stems. The DEGs that affect phenylpropanoid metabolism, including BGLU41, LCT, PER63, PER42, PER12, PER10, POD, BAHD1, SHT, and At4g26220 were significantly upregulated in the leaves. Ethylene sprays downregulated tyrosine and chlorogenic acid (3-O-caffeoylquinic acid) in the leaves, but lignin biosynthesis HCT genes, including ACT, BAHD1, and SHT, were up- and downregulated. These changes in expression may ultimately reduce lignin biosynthesis. In addition, the upregulation of caffeoyl CoA-O-methyltransferase (CCoAOMT) may have increased the abundance of its flavonoids. Ethylene significantly downregulated metabolites, affecting phenylpropanoid metabolism in the stems. The differential 4CL and HCT metabolites were downregulated, namely, phenylalanine and tyrosine. Additionally, ETH upregulated 2-hydroxycinnamic acid and the cinnamyl hydroxyl derivatives (caffeic acid and p-coumaric acid). Cinnamic acid is a crucial intermediate in the shikimic acid pathway, which serves as a precursor for the biosynthesis of flavonoids and lignin. The ETH-decreased gene expression and metabolite alteration reduced the lignin levels in the stem. Moreover, the HCT downregulation may explain the inhibited lignin biosynthesis to promote flavonoid biosynthesis. In conclusion, external ETH application can effectively reduce lignin contents and increase the secondary metabolites of ramie without affecting its growth and development. These results provide candidate genes for improving ramie and offer theoretical and practical guidance for cultivating ramie for forage.
Collapse
Affiliation(s)
- Hongdong Jie
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.J.); (P.H.); (L.Z.); (Y.M.)
| | - Pengliang He
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.J.); (P.H.); (L.Z.); (Y.M.)
| | - Long Zhao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.J.); (P.H.); (L.Z.); (Y.M.)
| | - Yushen Ma
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.J.); (P.H.); (L.Z.); (Y.M.)
| | - Yucheng Jie
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.J.); (P.H.); (L.Z.); (Y.M.)
- Hunan Provincial Engineering Technology Research Center for Grass Crop Germplasm Innovation and Utilization, Changsha 410128, China
| |
Collapse
|
9
|
Li J, Zhang Y, Li Z, Dai H, Luan X, Zhong T, Chen S, Xie XM, Qin G, Zhang XQ, Peng H. OsPEX1, an extensin-like protein, negatively regulates root growth in a gibberellin-mediated manner in rice. PLANT MOLECULAR BIOLOGY 2023; 112:47-59. [PMID: 37097548 DOI: 10.1007/s11103-023-01347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/01/2023] [Indexed: 05/09/2023]
Abstract
Leucine-rich repeat extensins (LRXs) are required for plant growth and development through affecting cell growth and cell wall formation. LRX gene family can be classified into two categories: predominantly vegetative-expressed LRX and reproductive-expressed PEX. In contrast to the tissue specificity of Arabidopsis PEX genes in reproductive organs, rice OsPEX1 is also highly expressed in roots in addition to reproductive tissue. However, whether and how OsPEX1 affects root growth is unclear. Here, we found that overexpression of OsPEX1 retarded root growth by reducing cell elongation likely caused by an increase of lignin deposition, whereas knockdown of OsPEX1 had an opposite effect on root growth, indicating that OsPEX1 negatively regulated root growth in rice. Further investigation uncovered the existence of a feedback loop between OsPEX1 expression level and GA biosynthesis for proper root growth. This was supported by the facts that exogenous GA3 application downregulated transcript levels of OsPEX1 and lignin-related genes and rescued the root developmental defects of the OsPEX1 overexpression mutant, whereas OsPEX1 overexpression reduced GA level and the expression of GA biosynthesis genes. Moreover, OsPEX1 and GA showed antagonistic action on the lignin biosynthesis in root. OsPEX1 overexpression upregulated transcript levels of lignin-related genes, whereas exogenous GA3 application downregulated their expression. Taken together, this study reveals a possible molecular pathway of OsPEX1mediated regulation of root growth through coordinate modulation of lignin deposition via a negative feedback regulation between OsPEX1 expression and GA biosynthesis.
Collapse
Affiliation(s)
- Jieni Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, College of Food Science and Engineering, Foshan University, Foshan, 528000, China
| | - Yuexiong Zhang
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhenyong Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hang Dai
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xin Luan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Tianxiu Zhong
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Shu Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xin-Ming Xie
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Gang Qin
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Xiang-Qian Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, College of Food Science and Engineering, Foshan University, Foshan, 528000, China.
| | - Haifeng Peng
- Guangdong Laboratory for Lingnan Modern Agriculture,College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
10
|
Li Y, Shi S, Zhang Y, Zhang A, Wang Z, Yang Y. Copper stress-induced phytotoxicity associated with photosynthetic characteristics and lignin metabolism in wheat seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114739. [PMID: 36893694 DOI: 10.1016/j.ecoenv.2023.114739] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Copper (Cu) pollution is one of environmental problems that adversely affects the growth and development of plants. However, knowledge of lignin metabolism associated with Cu-induced phytotoxicity mechanism is insufficient. The objective of this study was to reveal the mechanisms underlying Cu-induced phytotoxicity by evaluating changes in the photosynthetic characteristics and lignin metabolism in the seedlings of wheat cultivar 'Longchun 30'. Treatment with varying concentrations of Cu clearly retarded seedling growth, as demonstrated by a reduction in the growth parameters. Cu exposure reduced the photosynthetic pigment content, gas exchange parameters, and chlorophyll fluorescence parameters, including the maximum photosynthetic efficiency, potential efficiency of photosystem II (PS II), photochemical efficiency of PS II in light, photochemical quenching, actual photochemical efficiency, quantum yield of PS II electron transport, and electron transport rate, but notably increased the nonphotochemical quenching and quantum yield of regulatory energy dissipation. Additionally, a significant increase was observed in the amount of cell wall lignin in wheat leaves and roots under Cu exposure. This increase was positively associated with the up-regulation of enzymes related to lignin synthesis, such as phenylalanine ammonia-lyase, 4-coumarate:CoA ligase, cinnamyl alcohol dehydrogenase, laccase, cell wall bound (CW-bound) guaiacol peroxidase, and CW-bound conifer alcohol peroxidase, and TaPAL, Ta4CL, TaCAD, and TaLAC expression. Correlation analysis revealed that lignin levels in the cell wall were negatively correlated with the growth of wheat leaves and roots. Taken together, Cu exposure inhibited photosynthesis in wheat seedlings, resulting from a reduction in photosynthetic pigment content, light energy conversion, and photosynthetic electron transport in the leaves of Cu-stressed seedlings, and the Cu-inhibitory effect on seedling growth was related to the inhibition of photosynthesis and an increase in cell wall lignification.
Collapse
Affiliation(s)
- Yaping Li
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Shuqian Shi
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Ya Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Aimei Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Zhaofeng Wang
- College of Bioengineering and Technology, Tianshui Normal University, Tianshui 741000, PR China
| | - Yingli Yang
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
11
|
Shi F, Zhao Z, Jiang Y, Liu S, Tan C, Liu C, Ye X, Liu Z. Whole transcriptome analysis and construction of a ceRNA regulatory network related to leaf and petiole development in Chinese cabbage (Brassica campestris L. ssp. pekinensis). BMC Genomics 2023; 24:144. [PMID: 36964498 PMCID: PMC10039531 DOI: 10.1186/s12864-023-09239-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/09/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND The growth and development of leaves and petioles have a significant effect on photosynthesis. Understanding the molecular mechanisms underlying leaf and petiole development is necessary for improving photosynthetic efficiency, cultivating varieties with high photosynthetic efficiency, and improving the yield of crops of which the leaves are foodstuffs. This study aimed to identify the mRNAs, long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) related to leaf and petiole development in Chinese cabbage (Brassica campestris L. ssp. pekinensis). The data were used to construct a competitive endogenous RNA (ceRNA) network to obtain insights into the mechanisms underlying leaf and petiole development. RESULTS The leaves and petioles of the 'PHL' inbred line of Chinese cabbage were used as research materials for whole transcriptome sequencing. A total of 10,646 differentially expressed (DE) mRNAs, 303 DElncRNAs, 7 DEcircRNAs, and 195 DEmiRNAs were identified between leaves and petioles. Transcription factors and proteins that play important roles in leaf and petiole development were identified, including xyloglucan endotransglucosylase/hydrolase, expansion proteins and their precursors, transcription factors TCP15 and bHLH, lateral organ boundary domain protein, cellulose synthase, MOR1-like protein, and proteins related to plant hormone biosynthesis. A ceRNA regulatory network related to leaf and petiole development was constructed, and 85 pairs of ceRNA relationships were identified, including 71 DEmiRNA-DEmRNA, 12 DEmiRNA-DElncRNA, and 2 DEmiRNA-DEcircRNA pairs. Three LSH genes (BrLSH1, BrLSH2 and BrLSH3) with significant differential expression between leaves and petioles were screened from transcriptome data, and their functions were explored through subcellular localization analysis and transgenic overexpression verification. BrLSH1, BrLSH2 and BrLSH3 were nuclear proteins, and BrLSH2 inhibited the growth and development of Arabidopsis thaliana. CONCLUSIONS This study identifies mRNAs and non-coding RNAs that may be involved in the development of leaves and petioles in Chinese cabbage, and establishes a ceRNA regulatory network related to development of the leaves and petioles, providing valuable genomic resources for further research on the molecular mechanisms underlying leaf and petiole development in this crop species.
Collapse
Affiliation(s)
- Fengyan Shi
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
- Vegetable Research Institute of Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Zifan Zhao
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Yang Jiang
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Song Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Chong Tan
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Chuanhong Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Xueling Ye
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China.
| | - Zhiyong Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China.
| |
Collapse
|
12
|
Ritonga FN, Zhou D, Zhang Y, Song R, Li C, Li J, Gao J. The Roles of Gibberellins in Regulating Leaf Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:1243. [PMID: 36986931 PMCID: PMC10051486 DOI: 10.3390/plants12061243] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/11/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Plant growth and development are correlated with many aspects, including phytohormones, which have specific functions. However, the mechanism underlying the process has not been well elucidated. Gibberellins (GAs) play fundamental roles in almost every aspect of plant growth and development, including cell elongation, leaf expansion, leaf senescence, seed germination, and leafy head formation. The central genes involved in GA biosynthesis include GA20 oxidase genes (GA20oxs), GA3oxs, and GA2oxs, which correlate with bioactive GAs. The GA content and GA biosynthesis genes are affected by light, carbon availability, stresses, phytohormone crosstalk, and transcription factors (TFs) as well. However, GA is the main hormone associated with BR, ABA, SA, JA, cytokinin, and auxin, regulating a wide range of growth and developmental processes. DELLA proteins act as plant growth suppressors by inhibiting the elongation and proliferation of cells. GAs induce DELLA repressor protein degradation during the GA biosynthesis process to control several critical developmental processes by interacting with F-box, PIFS, ROS, SCLl3, and other proteins. Bioactive GA levels are inversely related to DELLA proteins, and a lack of DELLA function consequently activates GA responses. In this review, we summarized the diverse roles of GAs in plant development stages, with a focus on GA biosynthesis and signal transduction, to develop new insight and an understanding of the mechanisms underlying plant development.
Collapse
Affiliation(s)
- Faujiah Nurhasanah Ritonga
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
- Graduate School, Padjadjaran University, Bandung 40132, West Java, Indonesia
| | - Dandan Zhou
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
- College of Life Science, Shandong Normal University, Jinan 250100, China
| | - Yihui Zhang
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
| | - Runxian Song
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Cheng Li
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
| | - Jingjuan Li
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
| | - Jianwei Gao
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
| |
Collapse
|
13
|
Li Y, Zhang T, Kang Y, Wang P, Yu W, Wang J, Li W, Jiang X, Zhou Y. Integrated metabolome, transcriptome analysis, and multi-flux full-length sequencing offer novel insights into the function of lignin biosynthesis as a Sesuvium portulacastrum response to salt stress. Int J Biol Macromol 2023; 237:124222. [PMID: 36990407 DOI: 10.1016/j.ijbiomac.2023.124222] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
Sesuvium portulacastrum is a typical halophyte. However, few studies have investigated its salt-tolerant molecular mechanism. In this study, metabolome, transcriptome, and multi-flux full-length sequencing analysis were conducted to investigate the significantly different metabolites (SDMs) and differentially expressed genes (DEGs) of S. portulacastrum samples under salinity. The complete-length transcriptome of S. portulacastrum was developed, which contained 39,659 non-redundant unigenes. RNA-seq results showed that 52 DEGs involved in lignin biosynthesis may be responsible for S. portulacastrum salt tolerance. Furthermore, 130 SDMs were identified, and the salt response could be attributed to the p-coumaryl alcohol-rich in lignin biosynthesis. The co-expression network that was constructed after comparing the different salt treatment processes showed that the p-Coumaryl alcohol was linked to 30 DEGs. Herein, 8 structures genes, i.e., Sp4CL, SpCAD, SpCCR, SpCOMT, SpF5H, SpCYP73A, SpCCoAOMT, and SpC3'H were identified as significant factors in regulating lignin biosynthesis. Further investigation revealed that 64 putative transcription factors (TFs) may interact with the promoters of the above-mentioned genes. Together, the data revealed a potential regulatory network comprising important genes, putative TFs, and metabolites involved in the lignin biosynthesis of S. portulacastrum roots under salt stress, which could serve as a rich useful genetic resource for breeding excellent salt-tolerant plants.
Collapse
|
14
|
Wang XJ, Luo Q, Li T, Meng PH, Pu YT, Liu JX, Zhang J, Liu H, Tan GF, Xiong AS. Origin, evolution, breeding, and omics of Apiaceae: a family of vegetables and medicinal plants. HORTICULTURE RESEARCH 2022; 9:uhac076. [PMID: 38239769 PMCID: PMC10795576 DOI: 10.1093/hr/uhac076] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/17/2022] [Indexed: 01/22/2024]
Abstract
Many of the world's most important vegetables and medicinal crops, including carrot, celery, coriander, fennel, and cumin, belong to the Apiaceae family. In this review, we summarize the complex origins of Apiaceae and the current state of research on the family, including traditional and molecular breeding practices, bioactive compounds, medicinal applications, nanotechnology, and omics research. Numerous molecular markers, regulatory factors, and functional genes have been discovered, studied, and applied to improve vegetable and medicinal crops in Apiaceae. In addition, current trends in Apiaceae application and research are also briefly described, including mining new functional genes and metabolites using omics research, identifying new genetic variants associated with important agronomic traits by population genetics analysis and GWAS, applying genetic transformation, the CRISPR-Cas9 gene editing system, and nanotechnology. This review provides a reference for basic and applied research on Apiaceae vegetable and medicinal plants.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guizhou 550025, China
| | - Qing Luo
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guizhou 550006, China
| | - Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping-Hong Meng
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guizhou 550006, China
| | - Yu-Ting Pu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guizhou 550025, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Zhang
- College of Agronomy, Jilin Agricultural University, Changchun 210095, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guo-Fei Tan
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guizhou 550006, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Cheng L, Zhao C, Zhao M, Han Y, Li S. Lignin Synthesis, Affected by Sucrose in Lotus ( Nelumbo nucifera) Seedlings, Was Involved in Regulation of Root Formation in the Arabidopsis thanliana. Int J Mol Sci 2022; 23:ijms23042250. [PMID: 35216366 PMCID: PMC8875098 DOI: 10.3390/ijms23042250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
Adventitious roots (ARs) have an unmatched status in plant growth and metabolism due to the degeneration of primary roots in lotuses. In the present study, we sought to assess the effect of sucrose on ARs formation and observed that lignin synthesis was involved in ARs development. We found that the lignification degree of the ARs primordium was weaker in plants treated with 20 g/L sucrose than in 50 g/L sucrose treatment and control plants. The contents of lignin were lower in plants treated with 20 g/L sucrose and higher in plants treated with 50 g/L sucrose. The precursors of monomer lignin, including p-coumaric acid, caffeate, sinapinal aldehyde, and ferulic acid, were lower in the GL50 library than in the GL20 library. Further analysis revealed that the gene expression of these four metabolites had no novel difference in the GL50/GL20 libraries. However, a laccase17 gene (NnLAC17), involved in polymer lignin synthesis, had a higher expression in the GL50 library than in the GL20 library. Therefore, NnLAC17 was cloned and the overexpression of NnLAC17 was found to directly result in a decrease in the root number in transgenic Arabidopsis plants. These findings suggest that lignin synthesis is probably involved in ARs formation in lotus seedlings.
Collapse
Affiliation(s)
- Libao Cheng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (C.Z.); (M.Z.); (Y.H.)
- Correspondence:
| | - Chen Zhao
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (C.Z.); (M.Z.); (Y.H.)
| | - Minrong Zhao
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (C.Z.); (M.Z.); (Y.H.)
| | - Yuyan Han
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (C.Z.); (M.Z.); (Y.H.)
| | - Shuyan Li
- College of Guangling, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
16
|
Han MH, Yang N, Wan QW, Teng RM, Duan AQ, Wang YH, Zhuang J. Exogenous melatonin positively regulates lignin biosynthesis in Camellia sinensis. Int J Biol Macromol 2021; 179:485-499. [PMID: 33684430 DOI: 10.1016/j.ijbiomac.2021.03.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/07/2021] [Accepted: 03/04/2021] [Indexed: 01/23/2023]
Abstract
Melatonin (MT) is a bioactive molecule that can regulate various developmental processes. Changes in lignin content play important roles in plant growth and development. Herein, quantitative analysis and histochemical staining showed that lignin content significantly increased over time, and melatonin treatment triggered the lignification at 8 and 16 d in tea leaves. The POD activity participated in lignin formation had also been significantly improved. The effect of melatonin on the increase of lignin content was attenuation over time. Sequencing results based on transcriptome at 8 and 16 d showed that 5273 and 3019 differentially expressed genes (DEGs) were identified in CK1 vs. MT1 and CK2 vs. MT2, respectively. A total of 67 DEGs were annotated to lignin biosynthesis, and 38 and 9 genes were significantly up-regulated under melatonin treatment, respectively. Some transcription factor genes such as MYB were also identified among the two pairwise comparisons, which might relate to lignin metabolism. Melatonin increased the degree of lignification in tea leaves by modifying the enzyme genes expression involved in lignin synthesis pathway. These results provide a reference for further study on the molecular mechanism of the dynamic changes of lignin content induced by melatonin treatment in tea plants.
Collapse
Affiliation(s)
- Miao-Hua Han
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ni Yang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qi-Wen Wan
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Rui-Min Teng
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ao-Qi Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
17
|
Khadr A, Wang GL, Wang YH, Zhang RR, Wang XR, Xu ZS, Tian YS, Xiong AS. Effects of auxin (indole-3-butyric acid) on growth characteristics, lignification, and expression profiles of genes involved in lignin biosynthesis in carrot taproot. PeerJ 2020; 8:e10492. [PMID: 33354430 PMCID: PMC7731654 DOI: 10.7717/peerj.10492] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022] Open
Abstract
Carrot is an important root vegetable crop abundant in bioactive compounds including carotenoids, vitamins, and dietary fibers. Carrot intake and its products are gradually growing owing to its high antioxidant activity. Auxins are a class of plant hormones that control many processes of plant growth and development. Yet, the effects of exogenous application of auxin on lignin biosynthesis and gene expression profiles of lignin-related genes in carrot taproot are still unclear. In order to investigate the effect of exogenous indole-3-butyric acid (IBA) on lignin-related gene profiles, lignin accumulation, anatomical structures and morphological characteristics in carrot taproots, carrots were treated with different concentrations of IBA (0, 50, 100, and 150 µM). The results showed that IBA application significantly improved the growth parameters of carrot. The 100 or 150 µM IBA treatment increased the number and area of xylem vessels, whereas transcript levels of lignin-related genes were restricted, resulting in a decline in lignin content in carrot taproots. The results indicate that taproot development and lignin accumulation may be influenced by the auxin levels within carrot plants.
Collapse
Affiliation(s)
- Ahmed Khadr
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Guang-Long Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Rong-Rong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xin-Rui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yong-Sheng Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Khadr A, Wang YH, Zhang RR, Wang XR, Xu ZS, Xiong AS. Cytokinin (6-benzylaminopurine) elevates lignification and the expression of genes involved in lignin biosynthesis of carrot. PROTOPLASMA 2020; 257:1507-1517. [PMID: 32577829 DOI: 10.1007/s00709-020-01527-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/16/2020] [Indexed: 05/09/2023]
Abstract
Carrot is a root crop consumed worldwide and has great nutritional qualities. It is considered as one of the ten most important vegetable crops. Cytokinins are an essential class of the plant hormones that regulate many processes of plant growth. Till now, the effects of cytokinin, BAP, on lignin biosynthesis and related gene expression profiles in carrot taproot is unclear. In order to investigate the effect of applied BAP on lignin-related gene expression profiles, lignin accumulation, anatomical structures, and morphological characters in carrot taproots. Carrot roots were treated with different concentrations of BAP (0, 10, 20, and 30 mg L-1). The results showed that the application of BAP significantly increased plant length, shoot fresh weight, root fresh weight, and taproot diameter. In addition, BAP at 20 mg L-1 or 30 mg L-1 enhanced the average number of petioles. BAP treatment led to increased number and width of xylem vessels. The parenchyma cell numbers of pith were significantly induced in taproots treated with the BAP at a concentration of 30 mg L-1. BAP significantly upregulated most of the expression levels of lignin biosynthesis genes, caused elevated lignin accumulation in carrot taproots. Our results indicate that BAP may play important roles in growth development and lignification in carrot taproots. Our results provide a valuable database for more studies, which may focus on the regulation of root lignification via controlling cytokinin levels in carrot taproots.
Collapse
Affiliation(s)
- Ahmed Khadr
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Rong-Rong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Xin-Rui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
19
|
Duan AQ, Tao JP, Jia LL, Tan GF, Liu JX, Li T, Chen LZ, Su XJ, Feng K, Xu ZS, Xiong AS. AgNAC1, a celery transcription factor, related to regulation on lignin biosynthesis and salt tolerance. Genomics 2020; 112:5254-5264. [PMID: 32976976 DOI: 10.1016/j.ygeno.2020.09.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/01/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
The NAC transcription factor participates in various biotic and abiotic stress responses and plays a critical role in plant development. Lignin is a water-insoluble dietary fiber, but it is second only to cellulose in abundance. Celery is the main source of dietary fiber, but its quality and production are limited by various abiotic stresses. Here, AgNAC1 containing the NAM domain was identified from celery. AgNAC1 was found to be a nuclear protein. Transgenic Arabidopsis thaliana plants hosting AgNAC1 have longer root lengths and stomatal axis lengths than the wide type (WT). The evidence from lignin determination and expression levels of lignin-related genes indicated that AgNAC1 plays a vital role in lignin biosynthesis. Furthermore, the results of the physiological characterization and the drought and salt treatments indicate that AgNAC1-overexpressing plants are significantly resistive to salt stress. Under drought and salt treatments, the AgNAC1 transgenic Arabidopsis thaliana plants presented increased superoxide dismutase (SOD) and peroxidase (POD) activities and decreased malondialdehyde (MDA) content and size of stomatal apertures relatively to the WT plants. The AgNAC1 served as a positive regulator in inducing the expression of stress-responsive genes. Overall, the overexpressing AgNAC1 enhanced the plants' resistance to salt stress and played a regulatory role in lignin accumulation.
Collapse
Affiliation(s)
- Ao-Qi Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian-Ping Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Li-Li Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guo-Fei Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang 55006, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Long-Zheng Chen
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210095, China
| | - Xiao-Jun Su
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210095, China
| | - Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
20
|
Yin L, Xing GM, Sun S, Wang GL, Liu JX, Ding X, Shen D, Feng K, Xu ZS, Xiong AS. Comparison of ascorbic acid and lignin accumulation in four white celery varieties and transcriptional profiling of genes related to the metabolic pathways. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1779126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Lian Yin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Guo-Ming Xing
- Collaborative Innovation Center for Improving Quality and Increase Profits of Protected Vegetables in Shanxi, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Sheng Sun
- Collaborative Innovation Center for Improving Quality and Increase Profits of Protected Vegetables in Shanxi, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
- Department of Horticulture and Landscape, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, PR China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Xu Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Di Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| |
Collapse
|
21
|
Tao J, Li S, Ye F, Zhou Y, Lei L, Zhao G. Lignin - An underutilized, renewable and valuable material for food industry. Crit Rev Food Sci Nutr 2019; 60:2011-2033. [PMID: 31547671 DOI: 10.1080/10408398.2019.1625025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Lignin is the second most abundant biorenewable polymers only next to cellulose and is ubiquitous in various plant foods. In food industry, lignin often presented as a major component of by-products from plant foods. In the last decade, the food and nutritional interests of lignin attracted more and more attentions and great progresses have been accomplished. In the present review, the structure, physicochemical properties, dietary occurrence and preparation methods of lignin from food resources were summarized. Then, the versatile activities of food lignin were introduced under the subtitles of antioxidant, antimicrobial, antiviral, antidiabetic and other activities. Finally, the potential applications of food lignin were proposed as a food bioactive ingredient, an improver of food package films and a novel material in fabricating drug delivery vehicles and contaminant passivators. Hopefully, this review could bring new insights in exploiting lignin from nutrition- and food-directed views.
Collapse
Affiliation(s)
- Jianming Tao
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Sheng Li
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Yun Zhou
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Lin Lei
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing, People's Republic of China.,Chongqing Engineering Research Centre of Regional Foods, Chongqing, People's Republic of China
| |
Collapse
|