1
|
Naz N, Asghar A, Basharat S, Fatima S, Hameed M, Ahmad MSA, Ahmad F, Shah SMR, Ashraf M. Phytoremediation through microstructural and functional alterations in alkali weed ( Cressa cretica L.) in the hyperarid saline desert. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:913-927. [PMID: 37985450 DOI: 10.1080/15226514.2023.2282044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Salt excretory halophytes are the major sources of phytoremediation of salt-affected soils. Cressa cretica is a widely distributed halophyte in hypersaline lands in the Cholistan Desert. Therefore, identification of key physio-anatomical traits related to phytoremediation in differently adapted C. cretica populations was focused on. Four naturally adapted ecotypes of non-succulent halophyte Cressa cretica L. form hyper-arid and saline desert Cholistan. The selected ecotypes were: Derawar Fort (DWF, ECe 20.8 dS m-1) from least saline site, Traway Wala Toba (TWT, ECe 33.2 dS m-1) and Bailah Wala Dahar (BWD, ECe 45.4 dS m-1) ecotypes were from moderately saline sites, and Pati Sir (PAS, ECe 52.4 dS m-1) was collected from the highly saline site. The natural population of this species was collected and carefully brought to the laboratory for different structural and functional traits. As a result of high salinity, Na+, Cl-, K+, and Ca2+ content significantly increased at root and shoot level. At root level, some distinctive modifications such as increased sclerification in vascular bundles, enlarged vascular bundles, metaxylem vessels, phloem region, and storage parenchyma (cortex) are pivotal for water storage under extreme arid and osmotic condition. At the stem level, enhanced sclerification in outer cortex and vascular bundles, stem cellular area, cortical proportion, metaxylem and phloem area, and at the leaf level, very prominent structural adaptations were thicker and smaller leaves with increased density of salt glands and trichomes at surface, few and large stomata, reduced cortical and mesophyll parenchyma, and narrow xylem vessels and phloem area represent their non-succulent nature. The ecotype collected from hypersaline environments was better adapted regarding growth traits, ion uptake and excretion, succulence, and phytoremediation traits. More importantly, structural and functional traits such as root length and biomass, accumulation of toxic ions along with K+ in root and shoot, accumulation of Ca2+ in shoot and Mg2+ in root, excretion of toxic ions were the highest in this ecotype. In conclusion, all these alterations strongly favor water conservation, which certainly contributes to ecotypes survival under salt-induced physiological drought.
Collapse
Affiliation(s)
- Nargis Naz
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ansa Asghar
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sana Basharat
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sana Fatima
- Department of Botany, The Government Sadiq College University, Bahawalpur, Pakistan
| | - Mansoor Hameed
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Farooq Ahmad
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Syed Mohsan Raza Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
2
|
Azizi S, Seyed Hajizadeh H, Aghaee A, Kaya O. In vitro assessment of physiological traits and ROS detoxification pathways involved in tolerance of Damask rose genotypes under salt stress. Sci Rep 2023; 13:17795. [PMID: 37853072 PMCID: PMC10584874 DOI: 10.1038/s41598-023-45041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023] Open
Abstract
Rosa damascena is one of the most important medicinal and ornamental plants in Iran which is tolerant of salinity to some extent. However, the selection of genotypes that are more tolerant to salinity will influence on Damask cultivation in salt stress-affected regions. For this purpose, a factorial experiment in a completely randomized design with three replicates was performed under in vitro conditions on four Damask rose genotypes (Atashi, Bi-Khar, Chahar-Fasl and Kashan) at 5 concentrations of NaCl (0, 25, 50, 75, and 100 mM), and the physico-chemical traits were measured 14 and 28 days after treatment.The results showed that Atashi genotype with high levels of Chl a, Chl b, total Chl content, carotenoids, relative leaf water content, proline, total soluble protein, TPC, TFC, TAA, and the highest increase in the activity of antioxidant enzymes such as GPX, APX, CAT, SOD, and POD as well as the lowest amount of hydrogen peroxide showed a better protection mechanism against oxidative damage than the other three genotypes (Bi-Khar, Chahar-Fasl and Kashan) in the 14th and 28th days by maintaining the constructive and induced activities of antioxidant enzymes, it was shown that Bi-Khar genotype had moderate tolerance and Kashan and Chahar-Fasl genotypes had low tolerance to salinity stress. In vitro selection methods can be used effectively for salt tolerant screening of Damask rose genotypes, although the same experiment should be conducted in open filed cultures to verify the in vitro experimental results.
Collapse
Affiliation(s)
- Sahar Azizi
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, 55136-553, Iran
| | - Hanifeh Seyed Hajizadeh
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, 55136-553, Iran.
| | - Ahmad Aghaee
- Department of Biology, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Ozkan Kaya
- Erzincan Horticultural Research Institute, Republic of Turkey, Ministry of Agriculture and Forestry, Erzincan, 24060, Turkey
- Department of Plant Sciences, North Dakota State University, 58102, Fargo, ND, USA
| |
Collapse
|
3
|
Pakzad R, Fatehi F, Kalantar M, Maleki M. Proteomics approach to investigating osmotic stress effects on pistachio. FRONTIERS IN PLANT SCIENCE 2023; 13:1041649. [PMID: 36762186 PMCID: PMC9907329 DOI: 10.3389/fpls.2022.1041649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Osmotic stress can occur due to some stresses such as salinity and drought, threatening plant survival. To investigate the mechanism governing the pistachio response to this stress, the biochemical alterations and protein profile of PEG-treated plants was monitored. Also, we selected two differentially abundant proteins to validate via Real-Time PCR. Biochemical results displayed that in treated plants, proline and phenolic content was elevated, photosynthetic pigments except carotenoid decreased and MDA concentration were not altered. Our findings identified a number of proteins using 2DE-MS, involved in mitigating osmotic stress in pistachio. A total of 180 protein spots were identified, of which 25 spots were altered in response to osmotic stress. Four spots that had photosynthetic activities were down-regulated, and the remaining spots were up-regulated. The biological functional analysis of protein spots exhibited that most of them are associated with the photosynthesis and metabolism (36%) followed by stress response (24%). Results of Real-Time PCR indicated that two of the representative genes illustrated a positive correlation among transcript level and protein expression and had a similar trend in regulation of gene and protein. Osmotic stress set changes in the proteins associated with photosynthesis and stress tolerance, proteins associated with the cell wall, changes in the expression of proteins involved in DNA and RNA processing occur. Findings of this research will introduce possible proteins and pathways that contribute to osmotic stress and can be considered for improving osmotic tolerance in pistachio.
Collapse
Affiliation(s)
- Rambod Pakzad
- Department of Plant Breeding, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Foad Fatehi
- Department of Agriculture, Payame Noor University (PNU), Tehran, Iran
| | - Mansour Kalantar
- Department of Plant Breeding, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Mahmood Maleki
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
4
|
Alhamza Juameer RA, Assi Obaid A, Ayed Yousif S. Improved micropropagation and salinity tolerance of strawberry (Fragaria X ananssa L) cv. Albion. BIONATURA 2022; 7:1-7. [DOI: 10.21931/rb/2022.07.04.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Gamma-ray has been used to increase genetic variation to obtain salt-tolerant plants in strawberries.The protocol was established to multiply strawberry cv. Albion from runner segments cultured on multiplication Murashige and Skoog (MS) medium contain 0.5 mg l-1 of 6-benzyl adenine (BA) and 0.1 mg l-1 of Naphthaleneacetic acid (NAA). Cultures were irradiated with gamma rays at (0, 20, 50, 100) Gy after 30 days, and the irradiated and unirradiated shoots were exposed to different concentrations of Sodium Chloride (NaCl) (6,10,14, 22) dS m-1. The results showed the superiority of doses 20 and 50 Gy in giving the highest rate of the number of shoots reached (9.25 and 8.44) shoot explant-1. The treatment 6 dS m-1 NaCl with 20 Gy was superior in giving the highest fresh
4.75 g and dry weight 0.36 g. A significant increase of proline was observed in the shoots irradiated with a dose of 50 Gy and grown on a medium with 22 mg l-1 of NaCl, as it reached 34.36 (µm proline g-1 fresh weight) compared 6 dS m-1 and unirradiated media and the highest enzyme activity of (POD) was )263.50 units g-1 FW ( when treated with 100 Gy grown on a medium with 22 ds m-1 of salt. While the dose exceeded 20 Gy without adding salt, as it gave the highest activity of (CAT) enzyme, reaching )4.042 units g-1 FW(. It was observed that multiplication was generally restricted, depending on the increase in salt applications and gamma rays.
Keywords: BA, NAA, Fragaria, Micropropagation, mutation gamma ray. Salt tolerance.
Collapse
|
5
|
Omidi M, Khandan-Mirkohi A, Kafi M, Zamani Z, Ajdanian L, Babaei M. Biochemical and molecular responses of Rosa damascena mill. cv. Kashan to salicylic acid under salinity stress. BMC PLANT BIOLOGY 2022; 22:373. [PMID: 35896978 PMCID: PMC9327194 DOI: 10.1186/s12870-022-03754-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Today, salinity stress is one of the most important abiotic stresses in the world, because it causes damage to many agricultural products and reduces their yields. Oxidative stress causes tissue damages in plants, which occurs with the production of reactive oxygen species (ROS) when plants are exposed to environmental stresses such as salinity. Today, it is recommended to use compounds that increase the resistance of plants to environmental stresses and improve plant metabolic activities. Salicylic acid (SA), as an intracellular and extracellular regulator of the plant response, is known as one of these effective compounds. Damask rose (Rosa damascena Mill.) is a medicinal plant from the Rosaceae, and its essential oils and aromatic compounds are used widely in the cosmetic and food industries in the world. Therefore, considering the importance of this plant from both medicinal and ornamental aspects, for the first time, we investigated one of the native cultivars of Iran (Kashan). Since one of the most important problems in Damask rose cultivation is the occurrence of salinity stress, for the first time, we investigated the interaction of several levels of NaCl salinity (0, 4, 8, and 12 ds m- 1) with SA (0, 0.5, 1, and 2 mM) as a stress reducer. RESULTS Since salinity stress reduces plant growth and yield, in this experiment, the results showed that the increase in NaCl concentration caused a gradual decrease in photosynthetic and morphological parameters and an increase in ion leakage. Also, increasing the level of salinity stress up to 12 ds m- 1 affected the amount of chlorophyll, root length and leaf total area, all of which reduced significantly compared to plants under no stress. However, many studies have highlighted the application of compounds that reduce the negative effects of stress and increase plant resistance and tolerance against stresses. In this study, the application of SA even at low concentration (0.5 mM) could neutralize the negative effects of salinity stress in the Rosa damascena. In this regard, the results showed that salinity increases the activity of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) and the concentration of proline, protein and glycine betaine (GB). Overexpression of antioxidant genes (Ascorbate Peroxidase (APX), CAT, Peroxidase (POD), Fe-SOD and Cu-SOD) showed an important role in salt tolerance in Damascus rose. In addition, 0.5 mm SA increased the activity of enzymatic and non-enzymatic systems and increased salinity tolerance. CONCLUSIONS The change in weather conditions due to global warming and increased dryness contributes to the salinization of the earth's surface soils. Therefore, it is of particular importance to measure the threshold of tolerance of roses to salinity stress and the effect of stress-reducing substances in plants. In this context, SA has various roles such as increasing the content of pigments, preventing ethylene biosynthesis, increasing growth, and activating genes involved in stress, which modifies the negative effects of salinity stress. Also, according to the results of this research, even in the concentration of low values, positive results can be obtained from SA, so it can be recommended as a relatively cheap and available material to improve production in saline lands.
Collapse
Affiliation(s)
- Mohammad Omidi
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587, Iran.
| | - Azizollah Khandan-Mirkohi
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587, Iran
| | - Mohsen Kafi
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587, Iran
| | - Zabihollah Zamani
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587, Iran
| | - Ladan Ajdanian
- Department of Horticultural Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehdi Babaei
- Department of Horticultural Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
6
|
Hajivand S, Kashanizadeh S, Javanshah A. Effects of different antifreeze chemicals on late spring frost in pistachio. PROTOPLASMA 2022; 259:91-102. [PMID: 33855643 DOI: 10.1007/s00709-021-01638-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Frost injury is one of the major limiting factors to horticultural crops production and distribution. Despite numerous efforts and researches concerning freezing injury reduction, it still accounts for more than 50% of the fruit losses in the horticulture sector. In the present investigation, we aimed to investigate the effects of different antifreeze compounds (Tiofer®, Cropaid®, Bio-Bloom®, amino acid (mixture), salicylic acid, and water (control)) on pistachio trees behavior under low-temperature regimes (2 °C, 0 °C, -2 °C, -4 °C, -6 °C, and spring natural temperature). The applied chemicals improved the osmolyte content during the cold stress. Tiofer® and Cropaid® could increase the proline content better than other compounds. Salicylic acid and Cropaid® application increased the guaiacol peroxidase (GPX) content better than other compounds. For ascorbate peroxidase (APX), Tiofer® and Bio-Bloom®, and for catalase (CAT), Tiofer®, Cropaid®, and salicylic acid performed better. Applying chemicals also improved the photosynthetic pigments under cold stress. Among all treatments, Tiofer® and Bio-Bloom® improved the chlorophyll a (Chla), while chlorophyll b (Chlb) better improved by Tiofer® and Cropaid®; moreover, carotenoids had better increase in Cropaid®, amino acid, and salicylic acid treatments. All applied chemicals except Tiofer® had a good effect on the anthocyanin content increase under cold stress. In conclusion, based on the findings presented here, applying antifreeze compounds, such as Tiofer®, Cropaid® Bio-Bloom®, salicylic acid, and amino acid, could effectively ameliorate the adverse effects of cold stress. Osmolytes and antioxidant (GPX, APX, CAT) contents, photosynthetic pigments (chlorophyll a and b and carotenoid), and anthocyanins were improved. Among all applied antifreezes, Tiofer® and Cropaid® were the most effective ones.
Collapse
Affiliation(s)
- Shokrollah Hajivand
- Department of Genetics and Breeding, Temperae Fruits Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Saeid Kashanizadeh
- Department of Genetics and Breeding, Temperae Fruits Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Amanallah Javanshah
- Department of Genetics and Breeding, Temperae Fruits Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
7
|
Nounjan N, Theerakulpisut P. Physiological evaluation for salt tolerance in green and purple leaf color rice cultivars at seedling stage. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2819-2832. [PMID: 35035138 PMCID: PMC8720124 DOI: 10.1007/s12298-021-01114-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
UNLABELLED Anthocyanin, a water-soluble pigment found in plants, has been reported to be associated with abiotic stress tolerance including salt stress. For a better understanding of the role of anthocyanin in response to salt stress, two salt-tolerant rice genotypes having different leaf anthocyanin content, one having green ('Pokkali'; PK) and the other purple leaves ('Niew Dam 019'; ND 019), were used in this study. After being subjected to salt stress (150 mM NaCl) for 5 d, the 3-week-old rice genotypes PK and ND 019 exhibited significant physiological responses (water content, Na+/K+ ratio, osmolyte accumulation, osmotic adjustment, antioxidant capacity, membrane damage and chlorophyll) and expression of ion transporter genes, indicating overall salt tolerance ability. However, the green-leaved rice variety, PK, had better root-to-shoot Na+ exclusion mechanism than the purple-leaved variety, ND 019 as evidenced by lower Na+ accumulation in leaves compared to ND 019 despite the fact that they accumulated the similar level of Na+ in roots. On the other hand, ND 019 accumulated higher concentration of osmolytes leading to more enhanced osmotic adjustment. These results revealed that Na+ ion exclusion was the prominent salt tolerance mechanism in the green-leaved PK whereas in the purple-leaved ND 019 osmotic adjustment was the more significant strategy. Under salt stress, there was no remarkable change in anthocyanin in PK while a reduction was found in ND 019. Thus, it could be proposed that anthocyanin did not play a vital role in protecting the purple-leaved rice, ND 019 from salt stress during seedling stage. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01114-y.
Collapse
Affiliation(s)
- Noppawan Nounjan
- Salt-Tolerant Rice Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Nai Mueang, Mueang Khon Kaen, Khon Kaen, 40002 Thailand
| | - Piyada Theerakulpisut
- Salt-Tolerant Rice Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Nai Mueang, Mueang Khon Kaen, Khon Kaen, 40002 Thailand
| |
Collapse
|
8
|
Vahdati K, Sarikhani S, Arab MM, Leslie CA, Dandekar AM, Aletà N, Bielsa B, Gradziel TM, Montesinos Á, Rubio-Cabetas MJ, Sideli GM, Serdar Ü, Akyüz B, Beccaro GL, Donno D, Rovira M, Ferguson L, Akbari M, Sheikhi A, Sestras AF, Kafkas S, Paizila A, Roozban MR, Kaur A, Panta S, Zhang L, Sestras RE, Mehlenbacher SA. Advances in Rootstock Breeding of Nut Trees: Objectives and Strategies. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112234. [PMID: 34834597 PMCID: PMC8623031 DOI: 10.3390/plants10112234] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 05/31/2023]
Abstract
The production and consumption of nuts are increasing in the world due to strong economic returns and the nutritional value of their products. With the increasing role and importance given to nuts (i.e., walnuts, hazelnut, pistachio, pecan, almond) in a balanced and healthy diet and their benefits to human health, breeding of the nuts species has also been stepped up. Most recent fruit breeding programs have focused on scion genetic improvement. However, the use of locally adapted grafted rootstocks also enhanced the productivity and quality of tree fruit crops. Grafting is an ancient horticultural practice used in nut crops to manipulate scion phenotype and productivity and overcome biotic and abiotic stresses. There are complex rootstock breeding objectives and physiological and molecular aspects of rootstock-scion interactions in nut crops. In this review, we provide an overview of these, considering the mechanisms involved in nutrient and water uptake, regulation of phytohormones, and rootstock influences on the scion molecular processes, including long-distance gene silencing and trans-grafting. Understanding the mechanisms resulting from rootstock × scion × environmental interactions will contribute to developing new rootstocks with resilience in the face of climate change, but also of the multitude of diseases and pests.
Collapse
Affiliation(s)
- Kourosh Vahdati
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran 3391653755, Iran; (S.S.); (M.M.A.); (M.R.R.)
| | - Saadat Sarikhani
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran 3391653755, Iran; (S.S.); (M.M.A.); (M.R.R.)
| | - Mohammad Mehdi Arab
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran 3391653755, Iran; (S.S.); (M.M.A.); (M.R.R.)
| | - Charles A. Leslie
- Department of Plant Sciences, University of California Davis, One Shields, Avenue, Davis, CA 95616, USA; (C.A.L.); (A.M.D.); (T.M.G.); (G.M.S.); (L.F.)
| | - Abhaya M. Dandekar
- Department of Plant Sciences, University of California Davis, One Shields, Avenue, Davis, CA 95616, USA; (C.A.L.); (A.M.D.); (T.M.G.); (G.M.S.); (L.F.)
| | - Neus Aletà
- Institut de Recerca i Tecnologia Agroalimentàries, IRTA Fruit Production, Torre Marimon, 08140 Caldes de Montbui, Spain;
| | - Beatriz Bielsa
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Av. Montañana 930, 50059 Zaragoza, Spain; (B.B.); (Á.M.); (M.J.R.-C.)
| | - Thomas M. Gradziel
- Department of Plant Sciences, University of California Davis, One Shields, Avenue, Davis, CA 95616, USA; (C.A.L.); (A.M.D.); (T.M.G.); (G.M.S.); (L.F.)
| | - Álvaro Montesinos
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Av. Montañana 930, 50059 Zaragoza, Spain; (B.B.); (Á.M.); (M.J.R.-C.)
| | - María José Rubio-Cabetas
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Av. Montañana 930, 50059 Zaragoza, Spain; (B.B.); (Á.M.); (M.J.R.-C.)
- Instituto Agroalimentario de Aragón–IA2 (CITA-Universidad de Zaragoza), 50059 Zaragoza, Spain
| | - Gina M. Sideli
- Department of Plant Sciences, University of California Davis, One Shields, Avenue, Davis, CA 95616, USA; (C.A.L.); (A.M.D.); (T.M.G.); (G.M.S.); (L.F.)
| | - Ümit Serdar
- Department of Horticulture, Faculty of Agriculture, Ondokuz Mayıs University, Samsun 55139, Turkey; (Ü.S.); (B.A.)
| | - Burak Akyüz
- Department of Horticulture, Faculty of Agriculture, Ondokuz Mayıs University, Samsun 55139, Turkey; (Ü.S.); (B.A.)
| | - Gabriele Loris Beccaro
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10124 Torino, Italy; (G.L.B.); (D.D.)
| | - Dario Donno
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10124 Torino, Italy; (G.L.B.); (D.D.)
| | - Mercè Rovira
- Institut de Recerca i Tecnologia Agroalimentàries, IRTA Fruit Production, Mas Bové, Ctra. Reus-El Morell, Km. 3.8, 43120 Constantí, Spain;
| | - Louise Ferguson
- Department of Plant Sciences, University of California Davis, One Shields, Avenue, Davis, CA 95616, USA; (C.A.L.); (A.M.D.); (T.M.G.); (G.M.S.); (L.F.)
| | | | - Abdollatif Sheikhi
- Department of Horticultural Sciences, College of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran;
| | - Adriana F. Sestras
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Salih Kafkas
- Department of Horticulture, Faculty of Agriculture, Cukurova University, Adana 01380, Turkey; (S.K.); (A.P.)
| | - Aibibula Paizila
- Department of Horticulture, Faculty of Agriculture, Cukurova University, Adana 01380, Turkey; (S.K.); (A.P.)
| | - Mahmoud Reza Roozban
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran 3391653755, Iran; (S.S.); (M.M.A.); (M.R.R.)
| | - Amandeep Kaur
- Department of Horticulture and Landscape Architecture, Oklahoma State University, Stillwater, OK 74078, USA; (A.K.); (S.P.); (L.Z.)
| | - Srijana Panta
- Department of Horticulture and Landscape Architecture, Oklahoma State University, Stillwater, OK 74078, USA; (A.K.); (S.P.); (L.Z.)
| | - Lu Zhang
- Department of Horticulture and Landscape Architecture, Oklahoma State University, Stillwater, OK 74078, USA; (A.K.); (S.P.); (L.Z.)
| | - Radu E. Sestras
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | | |
Collapse
|
9
|
Zhang S, Quartararo A, Betz OK, Madahhosseini S, Heringer AS, Le T, Shao Y, Caruso T, Ferguson L, Jernstedt J, Wilkop T, Drakakaki G. Root vacuolar sequestration and suberization are prominent responses of Pistacia spp. rootstocks during salinity stress. PLANT DIRECT 2021; 5:e00315. [PMID: 34027297 PMCID: PMC8133763 DOI: 10.1002/pld3.315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/15/2021] [Accepted: 02/27/2021] [Indexed: 05/11/2023]
Abstract
Understanding the mechanisms of stress tolerance in diverse species is needed to enhance crop performance under conditions such as high salinity. Plant roots, in particular in grafted agricultural crops, can function as a boundary against external stresses in order to maintain plant fitness. However, limited information exists for salinity stress responses of woody species and their rootstocks. Pistachio (Pistacia spp.) is a tree nut crop with relatively high salinity tolerance as well as high genetic heterogeneity. In this study, we used a microscopy-based approach to investigate the cellular and structural responses to salinity stress in the roots of two pistachio rootstocks, Pistacia integerrima (PGI) and a hybrid, P. atlantica x P. integerrima (UCB1). We analyzed root sections via fluorescence microscopy across a developmental gradient, defined by xylem development, for sodium localization and for cellular barrier differentiation via suberin deposition. Our cumulative data suggest that the salinity response in pistachio rootstock species is associated with both vacuolar sodium ion (Na+) sequestration in the root cortex and increased suberin deposition at apoplastic barriers. Furthermore, both vacuolar sequestration and suberin deposition correlate with the root developmental gradient. We observed a higher rate of Na+ vacuolar sequestration and reduced salt-induced leaf damage in UCB1 when compared to P. integerrima. In addition, UCB1 displayed higher basal levels of suberization, in both the exodermis and endodermis, compared to P. integerrima. This difference was enhanced after salinity stress. These cellular characteristics are phenotypes that can be taken into account during screening for sodium-mediated salinity tolerance in woody plant species.
Collapse
Affiliation(s)
- Shuxiao Zhang
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Alessandra Quartararo
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Department of Agricultural & Forest ScienceUniversity of PalermoViale delle ScienzePalermoItaly
| | - Oliver Karl Betz
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Shahab Madahhosseini
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Present address:
Genetic and Plant Production DepartmentVali‐e‐Asr University of RafsanjanRafsanjanIran
| | - Angelo Schuabb Heringer
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Present address:
Unidade de Biologia IntegrativaSetor de Genômica e ProteômicaUENFRio de JaneiroRJBrazil
| | - Thu Le
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Yuhang Shao
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Present address:
Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of AgricultureNanjing Agricultural UniversityNanjingJiangsu ProvinceP. R. China
| | - Tiziano Caruso
- Department of Agricultural & Forest ScienceUniversity of PalermoViale delle ScienzePalermoItaly
| | - Louise Ferguson
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Judy Jernstedt
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Thomas Wilkop
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Light Microscopy CoreDepartment of PhysiologyUniversity of KentuckyLexingtonKYUSA
| | - Georgia Drakakaki
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| |
Collapse
|
10
|
Phytostimulatory Influence of Comamonas testosteroni and Silver Nanoparticles on Linum usitatissimum L. under Salinity Stress. PLANTS 2021; 10:plants10040790. [PMID: 33923824 PMCID: PMC8073072 DOI: 10.3390/plants10040790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/20/2022]
Abstract
They were shifting in land use increases salinity stress, significant abiotic stress affecting plant growth, limiting crop productivity. This work aimed to improve Linum usitatissimum L. (linseed) growth under salinity using Comamonas testosteroni and silver nanoparticles (AgNPs). AgNPs were fabricated exploiting Rosmarinus officinalis and monitored by U.V./Vis spectrophotometry scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR). Photosynthetic pigments, enzymatic and nonenzymatic antioxidants of linseed were investigated under salt stress in treated and untreated plants with C. testosteroni alongside AgNPs. Our findings recorded the formation of AgNPs at 457 nm, which were globular and with a diameter of 75 nm. Notably, chlorophyll-a, b, and total chlorophyll reduction while enhanced carotenoids and anthocyanin contents were attained under salinity stress. Total dissoluble sugars, proline, and dissoluble proteins, H2O2, malondialdehyde, enzymatic and nonenzymatic antioxidants were significantly elevated in NaCl well. Combined AgNPs and C. testosteroni elevated photosynthetic pigments. Also, they led to the mounting of soluble sugars, proline, and soluble proteins. H2O2 and malondialdehyde decreased while enzymatic and nonenzymatic antioxidants increased in response to AgNPs, C. testosteroni, and their combination. Thus, AgNPs and C. testosteroni might bio-fertilizers to improve linseed crop productivity under salinity stress.
Collapse
|
11
|
Raoufi A, Rahemi M, Salehi H, Pessarakli M. Pistacia vera L. genotypes; a potential rival for UCB-1 rootstock for cultivating under salt stress conditions. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Jamshidi Goharrizi K, Amirmahani F, Salehi F. Assessment of changes in physiological and biochemical traits in four pistachio rootstocks under drought, salinity and drought + salinity stresses. PHYSIOLOGIA PLANTARUM 2020; 168:973-989. [PMID: 31670837 DOI: 10.1111/ppl.13042] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/16/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
In this study, 7-month-old UCB-1, Badami, Ghazvini and Kale-Ghouchi pistachio rootstocks were exposed to control, drought, salinity and drought + salinity environments for 60 d. Total chlorophyll and total carotenoid contents decreased in all cultivars under drought, salinity and drought + salinity stresses. Under drought and salinity stresses, alone or in combination, Na+ and Cl- ions increased in all four pistachio rootstocks, while K+ ion decreased only in Ghazvini and Kaleh-Ghouchi cultivars. The enzyme activities of ascorbate peroxidase, polyphenol oxidase, catalase and guaiacol peroxidase increased in all cultivars when subjected to all three stresses with the exception of the ascorbate peroxidase activity in Kale-Ghouchi cultivar during drought stress. Oxidative stress parameters including electrolyte leakage, malondialdehyde, other aldehydes and hydrogen peroxide increased under all three stress conditions in all genotypes. The content of proline, total free amino acids and total soluble carbohydrates were enhanced under drought, salinity and drought + salinity stresses, whereas the protein content decreased in all pistachio rootstocks. In all evaluated traits, except for the K+ ion content and APX activity, the highest impacts was seen for drought + salinity > salinity > drought stresses, respectively. For the first time, we have proven that K+ ion content has a positive correlation with the ascorbate peroxidase, polyphenol oxidase, catalase and guaiacol peroxidase enzymes activities under drought + salinity stress. Finally, based on the bi-plot and cluster analyses, we have selected the UCB-1 > Badami > Ghazvini > Kale-Ghouchi cultivars as the most tolerant pistachio rootstocks under drought + salinity stress, respectively.
Collapse
Affiliation(s)
| | - Farzaneh Amirmahani
- Genetic Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Fatemeh Salehi
- Department of Ecology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
13
|
Akbari M, Katam R, Husain R, Farajpour M, Mazzuca S, Mahna N. Sodium Chloride Induced Stress Responses of Antioxidative Activities in Leaves and Roots of Pistachio Rootstock. Biomolecules 2020; 10:E189. [PMID: 31991933 PMCID: PMC7072476 DOI: 10.3390/biom10020189] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 11/16/2022] Open
Abstract
Salinity substantially affects plant growth and crop productivity worldwide. Plants adopt several biochemical mechanisms including regulation of antioxidant biosynthesis to protect themselves against the toxic effects induced by the stress. One-year-old pistachio rootstock exhibiting different degrees of salinity tolerance were subjected to sodium chloride induced stress to identify genetic diversity among cultivated pistachio rootstock for their antioxidant responses, and to determine the correlation of these enzymes to salinity stress. Leaves and roots were harvested following NaCl-induced stress. The results showed that a higher concentration of NaCl treatment induced oxidative stress in the leaf tissue and to a lesser extent in the roots. Both tissues showed an increase in ascorbate peroxidase, superoxide dismutase, catalase, glutathione reductase, peroxidase, and malondialdehyde. Responses of antioxidant enzymes were cultivar dependent, as well as temporal and dependent on the salinity level. Linear and quadratic regression model analysis revealed significant correlation of enzyme activities to salinity treatment in both tissues. The variation in salinity tolerance reflected their capabilities in orchestrating antioxidant enzymes at the roots and harmonized across the cell membranes of the leaves. This study provides a better understanding of root and leaf coordination in regulating the antioxidant enzymes to NaCl induced oxidative stress.
Collapse
Affiliation(s)
- Mohammad Akbari
- Department of Horticultural Sciences, University of Tabriz, Tabriz 51666, Iran;
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Ramesh Katam
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Rabab Husain
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
- School of Science, Engineering, and Technology, Pennsylvania State University, Harrisburg, PA 17057, USA
| | - Mostafa Farajpour
- Seed and Plant Improvement Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sari 19395-1113, Iran;
| | - Silvia Mazzuca
- Dipartimento di Chimica e Tecnologie Chimiche, Universita Della, Calabria, 87036 Rende, Italy;
| | - Nasser Mahna
- Department of Horticultural Sciences, University of Tabriz, Tabriz 51666, Iran;
| |
Collapse
|
14
|
Bilska K, Wojciechowska N, Alipour S, Kalemba EM. Ascorbic Acid-The Little-Known Antioxidant in Woody Plants. Antioxidants (Basel) 2019; 8:E645. [PMID: 31847411 PMCID: PMC6943661 DOI: 10.3390/antiox8120645] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 01/21/2023] Open
Abstract
Reactive oxygen species (ROS) are constantly produced by metabolically active plant cells. The concentration of ROS may determine their role, e.g., they may participate in signal transduction or cause oxidative damage to various cellular components. To ensure cellular homeostasis and minimize the negative effects of excess ROS, plant cells have evolved a complex antioxidant system, which includes ascorbic acid (AsA). AsA is a multifunctional metabolite with strong reducing properties that allows the neutralization of ROS and the reduction of molecules oxidized by ROS in cooperation with glutathione in the Foyer-Halliwell-Asada cycle. Antioxidant enzymes involved in AsA oxidation and reduction switches evolved uniquely in plants. Most experiments concerning the role of AsA have been performed on herbaceous plants. In addition to extending our understanding of this role in additional taxa, fundamental knowledge of the complex life cycle stages of woody plants, including their development and response to environmental factors, will enhance their breeding and amend their protection. Thus, the role of AsA in woody plants compared to that in nonwoody plants is the focus of this paper. The role of AsA in woody plants has been studied for nearly 20 years. Studies have demonstrated that AsA is important for the growth and development of woody plants. Substantial changes in AsA levels, as well as reduction and oxidation switches, have been reported in various physiological processes and transitions described mainly in leaves, fruits, buds, and seeds. Evidently, AsA exhibits a dual role in the photoprotection of the photosynthetic apparatus in woody plants, which are the most important scavengers of ozone. AsA is associated with proper seed production and, thus, woody plant reproduction. Similarly, an important function of AsA is described under drought, salinity, temperature, light stress, and biotic stress. This report emphasizes the involvement of AsA in the ecological advantages, such as nutrition recycling due to leaf senescence, of trees and shrubs compared to nonwoody plants.
Collapse
Affiliation(s)
- Karolina Bilska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (K.B.); (N.W.); (S.A.)
| | - Natalia Wojciechowska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (K.B.); (N.W.); (S.A.)
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Shirin Alipour
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (K.B.); (N.W.); (S.A.)
- Department of Forestry, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad, Iran
| | - Ewa Marzena Kalemba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (K.B.); (N.W.); (S.A.)
| |
Collapse
|