1
|
Robson JK, Ferguson JN, McAusland L, Atkinson JA, Tranchant-Dubreuil C, Cubry P, Sabot F, Wells DM, Price AH, Wilson ZA, Murchie EH. Chlorophyll fluorescence-based high-throughput phenotyping facilitates the genetic dissection of photosynthetic heat tolerance in African (Oryza glaberrima) and Asian (Oryza sativa) rice. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5181-5197. [PMID: 37347829 PMCID: PMC10498015 DOI: 10.1093/jxb/erad239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/20/2023] [Indexed: 06/24/2023]
Abstract
Rising temperatures and extreme heat events threaten rice production. Half of the global population relies on rice for basic nutrition, and therefore developing heat-tolerant rice is essential. During vegetative development, reduced photosynthetic rates can limit growth and the capacity to store soluble carbohydrates. The photosystem II (PSII) complex is a particularly heat-labile component of photosynthesis. We have developed a high-throughput chlorophyll fluorescence-based screen for photosynthetic heat tolerance capable of screening hundreds of plants daily. Through measuring the response of maximum PSII efficiency to increasing temperature, this platform generates data for modelling the PSII-temperature relationship in large populations in a small amount of time. Coefficients from these models (photosynthetic heat tolerance traits) demonstrated high heritabilities across African (Oryza glaberrima) and Asian (Oryza sativa, Bengal Assam Aus Panel) rice diversity sets, highlighting valuable genetic variation accessible for breeding. Genome-wide association studies were performed across both species for these traits, representing the first documented attempt to characterize the genetic basis of photosynthetic heat tolerance in any species to date. A total of 133 candidate genes were highlighted. These were significantly enriched with genes whose predicted roles suggested influence on PSII activity and the response to stress. We discuss the most promising candidates for improving photosynthetic heat tolerance in rice.
Collapse
Affiliation(s)
- Jordan K Robson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - John N Ferguson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- School of Life Sciences, University of Essex, Colchester, UK
| | - Lorna McAusland
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Jonathan A Atkinson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | | - Phillipe Cubry
- Institut de Recherche pour le Developpement, 911 Av. Agropolis, 34394 Montpellier, France
| | - François Sabot
- Institut de Recherche pour le Developpement, 911 Av. Agropolis, 34394 Montpellier, France
| | - Darren M Wells
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Adam H Price
- Institut de Recherche pour le Developpement, 911 Av. Agropolis, 34394 Montpellier, France
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Erik H Murchie
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
2
|
Li Y, Liu Y, Jin L, Peng R. Crosstalk between Ca 2+ and Other Regulators Assists Plants in Responding to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11101351. [PMID: 35631776 PMCID: PMC9148064 DOI: 10.3390/plants11101351] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 05/08/2023]
Abstract
Plants have evolved many strategies for adaptation to extreme environments. Ca2+, acting as an important secondary messenger in plant cells, is a signaling molecule involved in plants' response and adaptation to external stress. In plant cells, almost all kinds of abiotic stresses are able to raise cytosolic Ca2+ levels, and the spatiotemporal distribution of this molecule in distant cells suggests that Ca2+ may be a universal signal regulating different kinds of abiotic stress. Ca2+ is used to sense and transduce various stress signals through its downstream calcium-binding proteins, thereby inducing a series of biochemical reactions to adapt to or resist various stresses. This review summarizes the roles and molecular mechanisms of cytosolic Ca2+ in response to abiotic stresses such as drought, high salinity, ultraviolet light, heavy metals, waterlogging, extreme temperature and wounding. Furthermore, we focused on the crosstalk between Ca2+ and other signaling molecules in plants suffering from extreme environmental stress.
Collapse
|
3
|
Li ZG. Regulative role of calcium signaling on methylglyoxal-improved heat tolerance in maize ( Zea mays L) seedlings. PLANT SIGNALING & BEHAVIOR 2020; 15:1788303. [PMID: 32603245 PMCID: PMC8550205 DOI: 10.1080/15592324.2020.1788303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 05/07/2023]
Abstract
Nowadays, calcium (Ca2+) and methylglyoxal (MG) are all deemed to be second messengers in plants, which participate in various physiological processes, such as seed germination, seedling establishment, plant growth and development, as well as response to environmental stress. However, the Ca2+-MG interaction in the development of thermotolerance in maize seedlings remains unclear. Here, using maize seedlings as materials, the crosstalk between Ca2+ and MG signaling in the acquisition of thermotolerance was explored. The results showed that root-irrigation with Ca2+ and MG alone or in combination increased the survival rate of maize seedlings under heat stress, mitigated the decrease in the tissue vitality, and reduced the membrane lipid peroxidation (in term of the content of malondialdehyde), indicating that Ca2+ and MG could improve the thermotolerance in maize seedlings. In addition, MG-improved thermotolerance was impaired by ethylene glycol-bis(b-aminoethylether)-N,N,N΄,N΄-tetraacetic acid (a Ca2+ chelator), La3+ (plasma membrane Ca2+ channel blocker), ruthenium red (a mitochondrial Ca2+ channel blocker), neomycin (vacuole Ca2+ channel blocker), caffeine (an endoplasmic reticulum Ca2+ channel blocker), and calmodulin antagonists (chlorpromazine and trifluoperazine), respectively. Also, MG scavengers (N-acetyl-cysteine, aminoguanidine, and vitamin B6) had no significant effect on Ca2+-triggered thermotolerance (in terms of survival rate, malondialdehyde, and tissue vitality) of maize seedlings. The data illustrated that calcium signaling regulated MG-improved thermotolerance in maize seedlings by mobilizing intracellular and extracellular Ca2+ pools.
Collapse
Affiliation(s)
- Zhong-Guang Li
- School of Life Sciences, Yunnan Normal University, Kunming, P.R. China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, P.R. China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, P.R. China
| |
Collapse
|
4
|
Xu J, Huang B, Tang S, Sun J, Bao E. Co-enzyme Q10 protects primary chicken myocardial cells from heat stress by upregulating autophagy and suppressing the PI3K/AKT/mTOR pathway. Cell Stress Chaperones 2019; 24:1067-1078. [PMID: 31401771 PMCID: PMC6882966 DOI: 10.1007/s12192-019-01029-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 12/26/2022] Open
Abstract
In this study, we investigated the function of co-enzyme Q10 (Q10) in autophagy of primary chicken myocardial cells during heat stress. Cells were treated with Q10 (1 μΜ, 10 μΜ, and 20 μM) before exposure to heat stress. Pretreatment of chicken myocardial cells with Q10 suppressed the decline in cell viability during heat stress and suppressed the increase in apoptosis during heat stress. Treatment with 20 μM Q10 upregulated autophagy-associated genes during heat stress. The expression of LC3-II was highest in cells treated with 20 μM Q10. Pretreatment with Q10 decreased reactive oxygen species (ROS) levels during heat stress. The number of autophagosomes was significantly increased by 20 μM Q10 treatment, as demonstrated by electron microscopy or monodansylcadaverine (MDC) fluorescence. SQSTM1 accumulation was diminished by Q10 treatment during heat stress, and the number of LC3II puncta was increased. Treatment with 20 μM Q10 also decreased the activation of the PI3K/Akt/mTOR pathway. Our results showed that co-enzyme Q10 can protect primary chicken myocardial cells by upregulating autophagy and suppressing the PI3K/Akt/mTOR pathway during heat stress.
Collapse
Affiliation(s)
- Jiao Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Bei Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Jiarui Sun
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Endong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China.
| |
Collapse
|
5
|
Li ZG, Ye XY, Qiu XM. Glutamate signaling enhances the heat tolerance of maize seedlings by plant glutamate receptor-like channels-mediated calcium signaling. PROTOPLASMA 2019; 256:1165-1169. [PMID: 30675652 DOI: 10.1007/s00709-019-01351-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 01/14/2019] [Indexed: 05/22/2023]
Abstract
Glutamate (Glu), a neurotransmitter in animal, is a novel signaling molecule in plants, which takes part in cellular metabolism, seed germination, plant growth, development, and long-distance information transfer. However, whether Glu can enhance the heat tolerance in maize seedlings and its relation to calcium signaling is still elusive. In this study, maize seedlings were pretreated with Glu and then exposed to heat stress. The results showed that Glu pretreatment enhanced the survival percentage of maize seedlings under heat tolerance, indicating that Glu could increase the heat tolerance of maize seedlings. The Glu-induced heat tolerance was weakened by exogenous calcium chloride, plasma membrane Ca2+ channel blocker (LaCl3), Ca2+ chelator (ethylene glycol-bis(b-aminoethylether)-N,N, N΄,N΄-tetraacetic acid), calmodulin antagonists (trifluoperazine and chlopromazine), and plant glutamate receptor-like antagonists (MgCl2 and 6,7-dinitroquinoxaline- 2,3-(1H,4H)- dione). These findings for the first time reported that Glu could increase the heat tolerance of maize seedlings by plant glutamate receptor-like channels-mediated calcium signaling.
Collapse
Affiliation(s)
- Zhong-Guang Li
- School of Life Sciences, Yunnan Normal University, Kunming, 650092, People's Republic of China.
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650092, People's Republic of China.
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, 650092, People's Republic of China.
| | - Xin-Yu Ye
- School of Life Sciences, Yunnan Normal University, Kunming, 650092, People's Republic of China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650092, People's Republic of China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, 650092, People's Republic of China
| | - Xue-Mei Qiu
- School of Life Sciences, Yunnan Normal University, Kunming, 650092, People's Republic of China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650092, People's Republic of China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, 650092, People's Republic of China
| |
Collapse
|