1
|
Mikami K, Kozono Y, Masukawa M, Kobayashi S. A fast in situ hybridization chain reaction method in Drosophila embryos and ovaries. Fly (Austin) 2025; 19:2428499. [PMID: 39639000 PMCID: PMC11633216 DOI: 10.1080/19336934.2024.2428499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
The in situ hybridization chain reaction (isHCR) is a powerful method for visualizing mRNA in many species. We present a rapid isHCR method for Drosophila embryos and ovaries. Ethylene carbonate was added to the hybridization buffer to facilitate the hybridization reaction, and a modified short hairpin DNA was used in the amplification reaction; these modifications decreased the RNA staining time from 3 days to 1 day. This method is compatible with immunohistochemistry and can detect multiple mRNAs. The proposed method could significantly reduce staining time for Drosophila researchers using isHCR.
Collapse
Affiliation(s)
- Kyohei Mikami
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yasuhiro Kozono
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masaki Masukawa
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Satoru Kobayashi
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Gustafson KT, Sayar Z, Modestino A, Le HH, Gower A, Civitci F, Esener SC, Heller MJ, Eksi SE. Oligo cyc-DEP: On-chip cyclic immunofluorescence profiling of cell-derived nanoparticles. Electrophoresis 2024; 45:1715-1720. [PMID: 39049673 DOI: 10.1002/elps.202400088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/29/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
We present a follow-on technique for the cyclic-immunofluorescence profiling of suspension particles isolated using dielectrophoresis. The original lab-on-chip technique ("cyc-DEP" [cyclic immunofluorescent imaging on dielectrophoretic chip]) was designed for the multiplex surveillance of circulating biomarkers. Nanoparticles were collected from low-volume liquid biopsies using microfluidic dielectrophoretic chip technology. Subsequent rounds of cyclic immunofluorescent labeling and quenching were imaged and quantified with a custom algorithm to detect multiple proteins. While cyc-DEP improved assay multiplicity, long runtimes threatened its clinical adoption. Here, we modify the original cyc-DEP platform to reduce assay runtimes. Nanoparticles were formulated from human prostate adenocarcinoma cells and collected using dielectrophoresis. Three proteins were labeled on-chip with a mixture of short oligonucleotide-conjugated antibodies. The sample was then incubated with complementary fluorophore-conjugated oligonucleotides, which were dehybridized using an ethylene carbonate buffer after each round of imaging. Oligonucleotide removal exhibited an average quenching efficiency of 98 ± 3% (n = 12 quenching events), matching the original cyc-DEP platform. The presented "oligo cyc-DEP" platform achieved clinically relevant sample-to-answer times, reducing the duration for three rounds of cyclic immunolabeling from approximately 20 to 6.5 h-a 67% decrease attributed to rapid fluorophore removal and the consolidated co-incubation of antibodies.
Collapse
Affiliation(s)
- Kyle T Gustafson
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Zeynep Sayar
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Augusta Modestino
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Hillary H Le
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Austin Gower
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Fehmi Civitci
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Sadik C Esener
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Michael J Heller
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Sebnem Ece Eksi
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
3
|
Huang J, Li H, Shu F, Zhou W, Wu Y, Wang Y, Lv X, Gao M, Song Z, Zhao S. Low-Temperature and High-Efficiency Solid-Phase Amplification Based on Formamide. MICROMACHINES 2024; 15:565. [PMID: 38793138 PMCID: PMC11123353 DOI: 10.3390/mi15050565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024]
Abstract
The thermal stability of DNA immobilized on a solid surface is one of the factors that affects the efficiency of solid-phase amplification (SP-PCR). Although variable temperature amplification ensures high specificity of the reaction by precisely controlling temperature changes, excessively high temperatures during denaturation can negatively affect DNA stability. Formamide (FA) enables DNA denaturation at lower temperatures, showing potential for SP-PCR. Research on FA's impacts on DNA microarrays is still limited, necessitating further optimization in exploring the characteristics of FA in SP-PCR according to particular application needs. We immobilized DNA on a chip using a crosslinker and generated DNA microarrays through bridge amplification based on FA denaturation on our automated reaction device. We optimized the denaturation and hybridization parameters of FA, achieving a maximum cluster density of 2.83 × 104 colonies/mm2. Compared to high-temperature denaturation, FA denaturation required a lower template concentration and milder reaction conditions and produced higher cluster density, demonstrating that FA effectively improves hybridization rates on surfaces. Regarding the immobilized DNA stability, the FA group exhibited a 45% loss of DNA, resulting in a 15% higher DNA retention rate compared to the high-temperature group, indicating that FA can better maintain DNA stability. Our study suggests that using FA improves the immobilized DNA stability and amplification efficiency in SP-PCR.
Collapse
Affiliation(s)
- Jialing Huang
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325035, China
| | - Huan Li
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China
| | - Fengfeng Shu
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China
| | - Wenchao Zhou
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China
| | - Yihui Wu
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325035, China
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China
| | - Yue Wang
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China
| | - Xiao Lv
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China
| | - Ming Gao
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihan Song
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shixun Zhao
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Li W, Zhao P, Sun J, Yu X, Zou L, Li S, Di R, Ruan M, Peng M. Biological function research of Fusarium oxysporum f. sp. cubense inducible banana long noncoding RNA Malnc2310 in Arabidopsis. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01360-6. [PMID: 37507516 DOI: 10.1007/s11103-023-01360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/20/2023] [Indexed: 07/30/2023]
Abstract
Long noncoding RNAs (lncRNAs) participate in plant biological processes under biotic and abiotic stresses. However, little is known about the function and regulation mechanism of lncRNAs related to the pathogen at a molecular level. A banana lncRNA, Malnc2310, is a Fusarium oxysporum f. sp. cubense inducible lncRNA in roots. In this study, we demonstrate the nuclear localization of Malnc2310 by fluorescence in situ hybridization and it can bind to several proteins that are related to flavonoid pathway, pathogen response and programmed cell death. Overexpression of Malnc2310 increases susceptibility to Fusarium crude extract (Fu), salinity, and cold in transgenic Arabidopsis. In addition, Malnc2310 transgenic Arabidopsis accumulated more anthocyanins under Fusarium crude extract and cold treatments that are related to upregulation of these genes involved in anthocyanin biosynthesis. Based on our findings, we propose that Malnc2310 may participate in flavonoid metabolism in plants under stress. Furthermore, phenylalanine ammonia lyase (PAL) protein expression was enhanced in Malnc2310 overexpressed transgenic Arabidopsis, and Malnc2310 may participate in PAL regulation by binding to it. This study provides new insights into the role of Malnc2310 in mediating plant stress adaptation.
Collapse
Affiliation(s)
- Wenbin Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, P.R.China / Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory of Conservation and Utilization of Tropical Agricultural Biological Resources, Hainan Institute for Tropical Agricultural Resources, Haikou, China
| | - Pingjuan Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, P.R.China / Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jianbo Sun
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, P.R.China / Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiaoling Yu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, P.R.China / Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Liangping Zou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, P.R.China / Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shuxia Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, P.R.China / Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory of Conservation and Utilization of Tropical Agricultural Biological Resources, Hainan Institute for Tropical Agricultural Resources, Haikou, China
| | - Rong Di
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, USA
| | - Mengbin Ruan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, P.R.China / Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
- Hainan Key Laboratory of Conservation and Utilization of Tropical Agricultural Biological Resources, Hainan Institute for Tropical Agricultural Resources, Haikou, China.
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China.
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, P.R.China / Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China.
| |
Collapse
|
5
|
Migration of repetitive DNAs during evolution of the permanent translocation heterozygosity in the oyster plant (Tradescantia section Rhoeo). Chromosoma 2022; 131:163-173. [PMID: 35896680 PMCID: PMC9470650 DOI: 10.1007/s00412-022-00776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022]
Abstract
Due to translocation heterozygosity for all chromosomes in the cell complement, the oyster plant (Tradescantia spathacea) forms a complete meiotic ring. It also shows Rabl-arrangement at interphase, featured by polar centromere clustering. We demonstrate that the pericentromeric regions of the oyster plant are homogenized in concert by three subtelomeric sequences: 45S rDNA, (TTTAGGG)n motif, and TSrepI repeat. The Rabl-based clustering of pericentromeric regions may have been an excellent device to combine the subtelomere-pericentromere sequence migration (via inversions) with the pericentromere-pericentromere DNA movement (via whole arm translocations) that altogether led to the concerted homogenization of all the pericentromeric domains by the subtelomeric sequences. We also show that the repetitive sequence landscape of interstitial chromosome regions contains many loci consisting of Arabidopsis-type telomeric sequence or of TSrepI repeat, and it is extensively heterozygous. However, the sequence arrangement on some chromosomal arms suggest segmental inversions that are fully or partially homozygous, a fact that could be explained if the inversions started to create linkages already in a bivalent-forming ancestor. Remarkably, the subterminal TSrepI loci reside exclusively on the longer arms that could be due to sharing sequences between similarly-sized chromosomal arms in the interphase nucleus. Altogether, our study spotlights the supergene system of the oyster plant as an excellent model to link complex chromosome rearrangements, evolution of repetitive sequences, and nuclear architecture.
Collapse
|
6
|
Zand E, Froehling A, Schoenher C, Zunabovic-Pichler M, Schlueter O, Jaeger H. Potential of Flow Cytometric Approaches for Rapid Microbial Detection and Characterization in the Food Industry-A Review. Foods 2021; 10:3112. [PMID: 34945663 PMCID: PMC8701031 DOI: 10.3390/foods10123112] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
As microbial contamination is persistent within the food and bioindustries and foodborne infections are still a significant cause of death, the detection, monitoring, and characterization of pathogens and spoilage microorganisms are of great importance. However, the current methods do not meet all relevant criteria. They either show (i) inadequate sensitivity, rapidity, and effectiveness; (ii) a high workload and time requirement; or (iii) difficulties in differentiating between viable and non-viable cells. Flow cytometry (FCM) represents an approach to overcome such limitations. Thus, this comprehensive literature review focuses on the potential of FCM and fluorescence in situ hybridization (FISH) for food and bioindustry applications. First, the principles of FCM and FISH and basic staining methods are discussed, and critical areas for microbial contamination, including abiotic and biotic surfaces, water, and air, are characterized. State-of-the-art non-specific FCM and specific FISH approaches are described, and their limitations are highlighted. One such limitation is the use of toxic and mutagenic fluorochromes and probes. Alternative staining and hybridization approaches are presented, along with other strategies to overcome the current challenges. Further research needs are outlined in order to make FCM and FISH even more suitable monitoring and detection tools for food quality and safety and environmental and clinical approaches.
Collapse
Affiliation(s)
- Elena Zand
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria;
| | - Antje Froehling
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Quality and Safety of Food and Feed, 14469 Potsdam, Germany; (A.F.); (O.S.)
| | - Christoph Schoenher
- Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (C.S.); (M.Z.-P.)
| | - Marija Zunabovic-Pichler
- Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (C.S.); (M.Z.-P.)
| | - Oliver Schlueter
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Quality and Safety of Food and Feed, 14469 Potsdam, Germany; (A.F.); (O.S.)
| | - Henry Jaeger
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria;
| |
Collapse
|