1
|
Singh B, Saxena A, Sharma RA. Fungal elicitors increase cell biomass, pyrroloquinazoline alkaloids production and gene expression levels of biosynthetic pathways in Adhatoda vasica Nees cell cultures. J Biotechnol 2025; 403:40-51. [PMID: 40164412 DOI: 10.1016/j.jbiotec.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Adhatoda vasica Nees (Fam. - Acanthaceae) is used in the treatment of cold, cough, chronic bronchitis, and asthma. The plant species contain vasicine, vasicinone, 2-acetyl benzyl amine, adhatodine, vasicinolone, deoxyvasicinone, and vasicine acetate. To examine the effects of fungal elicitors on the production of pyrroloquinazoline alkaloids, five fungal elicitors (Alternaria alternata, Rhizoctonia solani, Colletotrichum gloeosporioides, Colletotrichum capsica, and Puccinia thwaitesii) were used. Four concentrations (2.5, 5.0, 10, and 20 %) of 5 fungal elicitors were added in the MS culture medium. The concentrations were designed to observe their effects (minimal to maximal) on growth and production of alkaloids in cell cultures. The seedlings of this species were transferred onto Murashige and Skoog medium containing IAA (1.5 mg/L) and BA (1.0 mg/L). The maximum quantity of vasicine (1.25 ± 0.023 %; p < 0.001) was recorded in 6 weeks old callus. The quantity of vasicine was lower in callus (1.25 ± 0.023 %; p < 0.001) than aerial parts (6.64 ± 0.034 %; p < 0.01) and roots (5.97 ± 0.097 %; p < 0.01). Alternaria alternata (10 %) increased the growth of cell biomass as well as anthranilate synthase and anthranilate N-methyl transferase activities. Similarly, Alternaria alternata showed maximum increase in the production of vasicine whereas other elicitors displayed moderate increase in alkaloid production. The expression quantities of 10 genes, involved in pyrroloquinazoline alkaloids biosynthesis, were determined in this study. The maximum expression level (11.38-fold) of anthranilate synthase was observed in elicited cells treated with A. alternata. The study results suggest widespread use of fungal elicitors in increasing the production of secondary metabolites as well as gene expression levels in plant cell cultures.
Collapse
Affiliation(s)
- Bharat Singh
- Institute of Biotechnology, Amity University Rajasthan, Jaipur 303 002, India.
| | - Anuja Saxena
- Institute of Biotechnology, Amity University Rajasthan, Jaipur 303 002, India
| | - Ram Avtar Sharma
- Department of Botany, University of Rajasthan, Jaipur 302 004, India
| |
Collapse
|
2
|
Singh B, Nathawat S, Saxena A, Khangarot K, Sharma RA. Enhancement of production of glycoalkaloids by elicitors along with characterization of gene expression of pathways in Solanum xanthocarpum. J Biotechnol 2024; 391:81-91. [PMID: 38825191 DOI: 10.1016/j.jbiotec.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024]
Abstract
Solanum xanthocarpum fruits are used in the treatment of cough, fever, and heart disorders. It possesses antipyretic, hypotensive, antiasthmatic, aphrodisiac and antianaphylactic properties. In the present study, 24 elicitors (both biotic and abiotic) were used to enhance the production of glycoalkaloids in cell cultures of S. xanthocarpum. Four concentrations of elicitors were added into the MS culture medium. The maximum accumulation (5.56-fold higher than control) of demissidine was induced by sodium nitroprusside at 50 mM concentration whereas the highest growth of cell biomass (4.51-fold higher than control) stimulated by systemin at 30 mM concentration. A total of 17 genes of biosynthetic pathways of glycoalkaloids were characterized from the cells of S. xanthocarpum. The greater accumulation of demissidine was confirmed with the expression analysis of 11 key biosynthetic pathway enzymes e.g., acetoacetic-CoA thiolase, 3- hydroxy 3-methyl glutaryl synthase, β-hydroxy β-methylglutaryl CoA reductase, mevalonate kinase, farnesyl diphosphate synthase, squalene synthase, squalene epoxidase, squalene-2,3- epoxide cyclase, cycloartenol synthase, UDP-glucose: solanidine glucosyltransferase and UDP-rhamnose: solanidine rhamno-galactosyl transferase. The maximum expression levels of UDP-rhamnose: solanidine rhamno-galactosyl transferase gene was recorded in this study.
Collapse
Affiliation(s)
- Bharat Singh
- AIB, Amity University Rajasthan, Jaipur 303002, India.
| | | | - Anuja Saxena
- AIB, Amity University Rajasthan, Jaipur 303002, India
| | - Kiran Khangarot
- Department of Botany, University of Rajasthan, Jaipur 302004, India
| | - Ram A Sharma
- Department of Botany, University of Rajasthan, Jaipur 302004, India
| |
Collapse
|
3
|
Thakur M, Verma R, Kumar D, Das PP, Dhalaria R, Kumar A, Kuca K, Azizov S, Kumar D. Revisiting the ethnomedicinal, ethnopharmacological, phytoconstituents and phytoremediation of the plant Solanum viarum Dunal. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5513-5531. [PMID: 38498057 DOI: 10.1007/s00210-024-03034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
Solanum viarum, a perennial shrub, belongs to the family Solanaceae known for its therapeutic value worldwide. As a beneficial remedial plant, it is used for treating several disorders like dysentery, diabetes, inflammation, and respiratory disorders. Phytochemistry studies of this plant have shown the presence of steroidal glycoside alkaloids, including solasonine, solasodine, and solamargine. It also has flavonoids, saponins, minerals, and other substances. S. viarum extracts and compounds possess a variety of pharmacological effects, including antipyretic, antioxidant, antibacterial, insecticidal, analgesic, and anticancer activity. Most of the heavy metals accumulate in the aerial sections of the plant which is considered a potential phytoremediation, a highly effective method for the treatment of metal-polluted soils. We emphasize the forgoing outline of S. viarum, as well as its ethnomedicinal and ethnopharmacological applications, the chemistry of its secondary metabolites, and heavy metal toxicity. In addition to describing the antitumor activity of compounds and their mechanisms of action isolated from S. viarum, liabilities are also explained and illustrated, including any significant chemical or metabolic stability and toxicity risks. A comprehensive list of information was compiled from Science Direct, PubMed, Google Scholar, and Web of Science using different key phrases (traditional use, ethnomedicinal plants, western Himalaya, Himachal Pradesh, S viarum, and biological activity). According to the findings of this study, we hope that this review will inspire further studies along the drug discovery pathway of the chemicals extracted from the plant of S. viarum. Further, this review shows that ethnopharmacological information from ethnomedicinal plants can be a promising approach to drug discovery for cancer and diabetes.
Collapse
Affiliation(s)
- Mehak Thakur
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India.
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Priyanku Pradip Das
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Ajay Kumar
- ICFRE-Himalayan Forest Research Institute, Shimla, Himachal Pradesh, 171013, India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Shavkatjon Azizov
- Faculty of Life Sciences, Pharmaceutical Technical University, 100084, Tashkent, Uzbekistan
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
4
|
Santonocito D, Delli Carri M, Campisi A, Sposito G, Pellitteri R, Raciti G, Cardullo N, Aquino G, Basilicata MG, Pepe G, Pignatello R, Puglia C. Steroidal Alkaloids from Food Waste of Tomato Processing Inhibit Neuroblastoma Cell Viability. Int J Mol Sci 2023; 24:16915. [PMID: 38069237 PMCID: PMC10706926 DOI: 10.3390/ijms242316915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Nowadays, there is considerable attention toward the use of food waste from food processing as possible sources of compounds with health properties, such as anticancer activity. An example is tomato processing, which is responsible for generating a remarkable amount of waste (leaves, peel, seeds). Therefore, our goal was to evaluate the potential anticancer property of tomato extracts, in particular "Datterino" tomato (DT) and "Piccadilly" tomato (PT), and to study their phytochemical composition. Liquid chromatography with tandem mass spectrometry (LC/MS-MS) results showed that these extracts are rich in alkaloids, flavonoids, fatty acids, lipids, and terpenes. Furthermore, their potential anticancer activity was evaluated in vitro by MTT assay. In particular, the percentage of cell viability was assessed in olfactory ensheathing cells (OECs), a particular glial cell type of the olfactory system, and in SH-SY5Y, a neuroblastoma cell line. All extracts (aqueous and ethanolic) did not lead to any significant change in the percentage of cell viability on OECs when compared with the control. Instead, in SH-SY5Y we observed a significant decrease in the percentage of cell viability, confirming their potential anticancer activity; this was more evident for the ethanolic extracts. In conclusion, tomato leaves extracts could be regarded as a valuable source of bioactive compounds, suitable for various applications in the food, nutraceutical, and pharmaceutical fields.
Collapse
Affiliation(s)
- Debora Santonocito
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (R.P.); (C.P.)
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Matteo Delli Carri
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (M.D.C.); (G.A.); (M.G.B.); (G.P.)
| | - Agatina Campisi
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (R.P.); (C.P.)
| | - Giovanni Sposito
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (R.P.); (C.P.)
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation (IRIB), National Research Council, Via P. Gaifami 18, 95126 Catania, Italy;
| | - Giuseppina Raciti
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (R.P.); (C.P.)
| | - Nunzio Cardullo
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Giovanna Aquino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (M.D.C.); (G.A.); (M.G.B.); (G.P.)
- PhD Program in Drug Discovery and Development, University of Salerno, 84084 Fisciano, Italy
| | | | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (M.D.C.); (G.A.); (M.G.B.); (G.P.)
| | - Rosario Pignatello
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (R.P.); (C.P.)
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Carmelo Puglia
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (R.P.); (C.P.)
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| |
Collapse
|
5
|
Shukla P, Kidwai M, Narayan S, Shirke PA, Pandey KD, Misra P, Chakrabarty D. Phytoremediation potential of Solanum viarum Dunal and functional aspects of their capitate glandular trichomes in lead, cadmium, and zinc detoxification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41878-41899. [PMID: 36640234 DOI: 10.1007/s11356-023-25174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023]
Abstract
In the present scenario, remediation of heavy metals (HMs) contaminated soil has become an important work to be done for the well-being of human and their environment. Phytoremediation can be regarded as an excellent method in environmental technologies. The present contemporary research explores the Solanum viarum Dunal function as a potential accumulator of hazardous HMs viz. lead (Pb), cadmium (Cd), zinc (Zn), and their combination (CHM). On toxic concentrations of Pb, Cd, Zn, and their synergistic exposure, seeds had better germination percentage and their 90d old aerial tissues accumulated Pb, Cd, and Zn concentrations ranging from 44.53, 84.06, and 147.29 mg kg-1 DW, respectively. Pattern of accumulation in roots was as Zn 70.08 > Pb 48.55 > Cd 42.21 mg kg-1DW. Under HMs treatment, positive modulation in physiological performances, antioxidant activities suggested an enhanced tolerance along with higher membrane stability due to increased levels of lignin, proline, and sugar. Phenotypic variations were recorded in prickles and roots of 120 d old HM stressed plants, which are directly correlated with better acclimation. Interestingly, trichomes of the plant also showed HM accumulation. Later, SEM-EDX microanalysis suggested involvement of S. viarum capitate glandular trichomes as excretory organs for Cd and Zn. Thus, the present study provides an understanding of the mechanism that makes S. viarum to function as potent accumulator and provides information to generate plants to be used for phytoremediation.
Collapse
Affiliation(s)
- Pragya Shukla
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Maria Kidwai
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Department of Plant Physiology, Umeå Plant Science Centre, 90187, Umeå, Sweden
| | - Shiv Narayan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Pramod Arvind Shirke
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Kapil Deo Pandey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Pratibha Misra
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
- 291, Eldeco Greens, Gomti Nagar, Lucknow, 226010, India.
| | - Debasis Chakrabarty
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Prasad A, Patel P, Niranjan A, Mishra A, Saxena G, Singh SS, Chakrabarty D. Biotic elicitor-induced changes in growth, antioxidative defense, and metabolites in an improved prickleless Solanum viarum. Appl Microbiol Biotechnol 2022; 106:6455-6469. [PMID: 36069926 DOI: 10.1007/s00253-022-12159-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
Abstract
Solanum viarum serves as a raw material for the steroidal drug industry due to its alkaloid and glycoalkaloid content. Elicitation is well-known for measuring the increase in the yield of bioactive compounds in in vitro cultures. The current study was performed for the accumulation of metabolites viz. solasodine, solanidine, and α-solanine in S. viarum culture using microbial-based elicitors added in 1%, 3%, 5%, and 7% on 25th and 35th day of culture period and harvested on 45th and 50th days of culture cycle. The treatment of 3% Trichoderma reesei and Bacillus tequilensis culture filtrate (CF) significantly increased biomass, alkaloids/glycoalkaloid content, and yield in S. viarum. T. reesei was found to be the best treatment for enhanced growth (GI = 11.65) and glycoalkaloid yield (2.54 mg DW plant-1) after the 50th day of the culture cycle when added on the 25th day. The abundance of gene transcripts involved in the biosynthesis of alkaloids/glycoalkaloids, revealed by quantitative real-time PCR expression analysis correlates with the accumulation of their respective metabolites in elicited plants. Biochemical analysis shows that elicited plants inhibited oxidative damage caused by reactive oxygen species by activating enzymes (superoxide dismutase and ascorbate peroxidase) as well as non-enzymatic antioxidant mechanisms (alkaloids, total phenols, total flavonoids, carotenoids, and proline). The findings of this study clearly demonstrate that the application of T. reesei and B. tequilensis CF at a specific dose and time significantly improve biomass as well as upregulates the metabolite biosynthetic pathway in an important medicinal plant- S. viarum. KEY POINTS: • Biotic elicitors stimulated the alkaloids/glycoalkaloid content in S. viarum plant cultures. • T. reesei was found to be most efficient for enhancing the growth and alkaloids content. • Elicited plants activate ROS based-defense mechanism to overcome oxidative damage.
Collapse
Affiliation(s)
- Archana Prasad
- Molecular Biology and Biotechnology Division, Council of Scientific & Industrial Research- National Botanical Research Institute, Lucknow, 226001, U.P., India
- Department of Botany, University of Lucknow, Lucknow, 226007, U.P., India
| | - Preeti Patel
- Molecular Biology and Biotechnology Division, Council of Scientific & Industrial Research- National Botanical Research Institute, Lucknow, 226001, U.P., India
- Department of Botany, Banaras Hindu University, Varanasi, 221005, U.P., India
| | - Abhishek Niranjan
- Central Instrumentation Facility, Council of Scientific & Industrial Research- National Botanical Research Institute, Lucknow, 226001, U.P., India
| | - Aradhana Mishra
- Division of Plant Microbe Interaction, Council of Scientific and Industrial Research- National Botanical ResearchInstitute, Lucknow, India
| | - Gauri Saxena
- Department of Botany, University of Lucknow, Lucknow, 226007, U.P., India
| | - Satya Shila Singh
- Department of Botany, Banaras Hindu University, Varanasi, 221005, U.P., India
| | - Debasis Chakrabarty
- Molecular Biology and Biotechnology Division, Council of Scientific & Industrial Research- National Botanical Research Institute, Lucknow, 226001, U.P., India.
| |
Collapse
|
7
|
Patel P, Prasad A, Srivastava D, Niranjan A, Saxena G, Singh SS, Misra P, Chakrabarty D. Genotype-dependent and temperature-induced modulation of secondary metabolites, antioxidative defense and gene expression profile in Solanum viarum Dunal. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2022; 194:104686. [DOI: 10.1016/j.envexpbot.2021.104686] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
|
8
|
Patel P, Prasad A, Gupta SC, Niranjan A, Lehri A, Singh SS, Misra P, Chakrabarty D. Growth, phytochemical and gene expression changes related to the secondary metabolite synthesis of Solanum viarum Dunal. INDUSTRIAL CROPS AND PRODUCTS 2021; 166:113464. [DOI: 10.1016/j.indcrop.2021.113464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
|