1
|
Navickaite A, Pupkis V, Kalnaityte-Vengeliene A, Lapeikaite I, Kisnieriene V, Bagdonas S. Combining Nitellopsis obtusaautofluorescence intensity and F680/F750 ratio to discriminate responses to environmental stressors. Methods Appl Fluoresc 2024; 12:045003. [PMID: 39111331 DOI: 10.1088/2050-6120/ad6ca2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
Detection of autofluorescence parameters is a useful approach to gain insight into the physiological state of plants and algae, but the effect of reabsorption hinders unambiguous interpretation ofin vivodata. The exceptional morphological features ofNitellopsis obtusamade it possible to measure autofluorescence spectra along single internodal cells and estimate relative changes in autofluorescence intensity in selected spectral regions at room temperatures, avoiding the problems associated with thick or optically dense samples. The response of algal cells to controlled white light and DCMU herbicide was analyzed by monitoring changes in peak FL intensity at 680 nm and in F680/F750 ratio. Determining the association between the selected spectral FL parameters revealed an exponential relationship, which provides a quantitative description of photoinduced changes. The ability to discern the effect of DCMU not only in the autofluorescence spectra of dark-adapted cells, but also in the case of light-adapted cells, and even after certain doses of excess light, suggests that the proposed autofluorescence analysis ofN. obtusamay be useful for detecting external stressors in the field.
Collapse
Affiliation(s)
- Ausrine Navickaite
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Vilmantas Pupkis
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Agne Kalnaityte-Vengeliene
- Laser Research Center, Faculty of Physics, Vilnius University, Sauletekio av. 9, LT-10222, Vilnius, Lithuania
| | - Indre Lapeikaite
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Vilma Kisnieriene
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Saulius Bagdonas
- Laser Research Center, Faculty of Physics, Vilnius University, Sauletekio av. 9, LT-10222, Vilnius, Lithuania
| |
Collapse
|
2
|
Kurtović K, Schmidt V, Nehasilová M, Vosolsobě S, Petrášek J. Rediscovering Chara as a model organism for molecular and evo-devo studies. PROTOPLASMA 2024; 261:183-196. [PMID: 37880545 DOI: 10.1007/s00709-023-01900-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/06/2023] [Indexed: 10/27/2023]
Abstract
Chara has been used as a model for decades in the field of plant physiology, enabling the investigation of fundamental physiological processes. In electrophysiological studies, Chara has been utilized thanks to its large internodal cells that can be easily manipulated. Additionally, Chara played a pioneering role in elucidating the presence and function of the cytoskeleton in cytoplasmic streaming, predating similar findings in terrestrial plants. Its representation considerably declined following the establishment and routine application of genetic transformation techniques in Arabidopsis. Nevertheless, the recent surge in evo-devo studies can be attributed to the whole genome sequencing of the Chara braunii, which has shed light on ancestral traits prevalent in land plants. Surprisingly, the Chara braunii genome encompasses numerous genes that were previously regarded as exclusive to land plants, suggesting their acquisition prior to the colonization of terrestrial habitats. This review summarizes the established methods used to study Chara, while incorporating recent molecular data, to showcase its renewed importance as a model organism in advancing plant evolutionary developmental biology.
Collapse
Affiliation(s)
- Katarina Kurtović
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Vojtěch Schmidt
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Nehasilová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Stanislav Vosolsobě
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Petrášek
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
3
|
Nick P. Steering diversity - cellular aspects of gene flow. PROTOPLASMA 2024; 261:181-182. [PMID: 38329541 PMCID: PMC10866787 DOI: 10.1007/s00709-024-01934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Affiliation(s)
- Peter Nick
- Joseph Gottlieb Kölreuter Institute Für Plant Sciences, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
4
|
Heß D, Heise CM, Schubert H, Hess WR, Hagemann M. The impact of salt stress on the physiology and the transcriptome of the model streptophyte green alga Chara braunii. PHYSIOLOGIA PLANTARUM 2023; 175:e14123. [PMID: 38148211 DOI: 10.1111/ppl.14123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/28/2023]
Abstract
Chara braunii is a model for early land plant evolution and terrestrialization. Salt stress has a profound effect on water and ion transport activities, thereby interacting with many other processes, including inorganic carbon acquisition for photosynthesis. In this study, we analyzed the impact of salt stress (5 practical salt units, PSU) on the physiology and gene expression in C. braunii. Photosynthesis was only slightly affected 6 h after salt addition and returned to control levels after 48 h. Several organic compounds such as proline, glutamate, sucrose, and 2-aminobutyrate accumulated in salt-treated thalli and might contribute to osmotic potential acclimation, whereas the amount of K+ decreased. We quantified transcript levels for 17,387 genes, of which 95 were up-regulated and 44 down-regulated after salt addition. Genes encoding proteins of the functional groups ion/solute transport and cell wall synthesis/modulation were enriched among the up-regulated genes 24-48 h after salt stress, indicating their role in osmotic acclimation. However, a homolog to land plant ERD4 osmosensors was transiently upregulated after 6 h, and phylogenetic analyses suggested that these sensors evolved in Charophyceae. Down-regulated genes were mainly related to photosynthesis and carbon metabolism/fixation, consistent with the observed lowered growth after extended cultivation. The changed expression of genes encoding proteins for inorganic carbon acquisition might be related to the impact of salt on ionic relations and inorganic carbon uptake. The results indicate that C. braunii can tolerate enhanced salt concentrations in a defined acclimation process, including distinct gene expression changes to achieve new metabolic homeostasis.
Collapse
Affiliation(s)
- Daniel Heß
- Genetics and Experimental Bioinformatics Group, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Carolin M Heise
- Plant Physiology Department, Faculty of Mathematics and Natural Sciences, University of Rostock, Rostock, Germany
- Aquatic Ecology Department, Faculty of Mathematics and Natural Sciences, University of Rostock, Rostock, Germany
| | - Hendrik Schubert
- Aquatic Ecology Department, Faculty of Mathematics and Natural Sciences, University of Rostock, Rostock, Germany
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics Group, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Martin Hagemann
- Plant Physiology Department, Faculty of Mathematics and Natural Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
5
|
Bulychev AA, Krupenina NA, Shapiguzov SY, Alova AV. Plasma membrane-chloroplast interactions activated by the hyperpolarizing response in characean cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107836. [PMID: 37329688 DOI: 10.1016/j.plaphy.2023.107836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/26/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Signaling pathways in plant cells often comprise electrical phenomena developing at the plasma membrane. The action potentials in excitable plants like characean algae have a marked influence on photosynthetic electron transport and CO2 assimilation. The internodal cells of Characeae can also generate active electrical signals of a different type. The so called hyperpolarizing response develops under the passage of electric current whose strength is comparable to physiological currents circulating between nonuniform cell regions. The plasma membrane hyperpolarization is involved in multiple physiological events in aquatic and terrestrial plants. The hyperpolarizing response may represent an unexplored tool for studying the plasma membrane-chloroplast interactions in vivo. This study shows that the hyperpolarizing response of Chara australis internodes whose plasmalemma was preliminary converted into the K+-conductive state induces transient changes in maximal (Fm') and actual (F') fluorescence yields of chloroplasts in vivo. These fluorescence transients were light dependent, suggesting their relation to photosynthetic electron and H+ transport. The cell hyperpolarization promoted H+ influx that was inactivated after a single electric stimulus. The results indicate that the plasma membrane hyperpolarization drives transmembrane ion fluxes and modifies the ionic composition of cytoplasm, which indirectly (via envelope transporters) affects the pH of chloroplast stroma and chlorophyll fluorescence. Remarkably, the functioning of envelope ion transporters can be revealed in short-term experiments in vivo, without growing plants on solutions with various mineral compositions.
Collapse
Affiliation(s)
| | | | | | - Anna V Alova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
6
|
Bulychev AA, Eremin A, von Rüling F, Alova AV. Effects of cell excitation on photosynthetic electron flow and intercellular transport in Chara. PROTOPLASMA 2023; 260:131-143. [PMID: 35482255 DOI: 10.1007/s00709-022-01747-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Impact of membrane excitability on fluidic transport of photometabolites and their cell-to-cell passage via plasmodesmata was examined by pulse-modulated chlorophyll (Chl) microfluorometry in Chara australis internodes exposed to dim background light. The cells were subjected to a series of local light (LL) pulses with a 3-min period and a 30-s pulse width, which induced Chl fluorescence transients propagating in the direction of cytoplasmic streaming along the photostimulated and the neighboring internodes. By comparing Chl fluorescence changes induced in the LL-irradiated and the adjoining internodes, the permeability of the nodal complex for the photometabolites was assessed in the resting state and after the action potential (AP) generation. The electrically induced AP had no influence on Chl fluorescence in noncalcified cell regions but disturbed temporarily the metabolite transport along the internode and caused a disproportionally strong inhibition of intercellular metabolite transmission. In chloroplasts located close to calcified zones, Chl fluorescence increased transiently after cell excitation, which indicated the deceleration of photosynthetic electron flow on the acceptor side of photosystem I. Functional distinctions of chloroplasts located in noncalcified and calcified cell areas were also manifested in different modes of LL-induced changes of Chl fluorescence, which were accompanied by dissimilar changes in efficiency of PSII-driven electron flow. We conclude that chloroplasts located near the encrusted areas and in the incrustation-free cell regions are functionally distinct even in the absence of large-scale variations of cell surface pH. The inhibition of transnodal transport after AP generation is probably due to Ca2+-regulated changes in plasmodesmal aperture.
Collapse
Affiliation(s)
| | - Alexey Eremin
- Institute of Physics, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Anna V Alova
- Faculty of Biology, Moscow State University, Moscow, Russia.
| |
Collapse
|
7
|
Domozych DS, Bagdan K. The cell biology of charophytes: Exploring the past and models for the future. PLANT PHYSIOLOGY 2022; 190:1588-1608. [PMID: 35993883 PMCID: PMC9614468 DOI: 10.1093/plphys/kiac390] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Charophytes (Streptophyta) represent a diverse assemblage of extant green algae that are the sister lineage to land plants. About 500-600+ million years ago, a charophyte progenitor successfully colonized land and subsequently gave rise to land plants. Charophytes have diverse but relatively simple body plans that make them highly attractive organisms for many areas of biological research. At the cellular level, many charophytes have been used for deciphering cytoskeletal networks and their dynamics, membrane trafficking, extracellular matrix secretion, and cell division mechanisms. Some charophytes live in challenging habitats and have become excellent models for elucidating the cellular and molecular effects of various abiotic stressors on plant cells. Recent sequencing of several charophyte genomes has also opened doors for the dissection of biosynthetic and signaling pathways. While we are only in an infancy stage of elucidating the cell biology of charophytes, the future application of novel analytical methodologies in charophyte studies that include a broader survey of inclusive taxa will enhance our understanding of plant evolution and cell dynamics.
Collapse
Affiliation(s)
| | - Kaylee Bagdan
- Department of Biology, Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York 12866, USA
| |
Collapse
|
8
|
Kisnieriene V, Trębacz K, Pupkis V, Koselski M, Lapeikaite I. Evolution of long-distance signalling upon plant terrestrialization: comparison of action potentials in Characean algae and liverworts. ANNALS OF BOTANY 2022; 130:457-475. [PMID: 35913486 PMCID: PMC9510943 DOI: 10.1093/aob/mcac098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In this review, we summarize data concerning action potentials (APs) - long-distance electrical signals in Characean algae and liverworts. These lineages are key in understanding the mechanisms of plant terrestrialization. Liverworts are postulated to be pioneer land plants, whereas aquatic charophytes are considered the closest relatives to land plants. The drastic change of the habitat was coupled with the adaptation of signalling systems to the new environment. SCOPE APs fulfil the 'all-or-nothing' law, exhibit refractory periods and propagate with a uniform velocity. Their ion mechanism in the algae and liverworts consists of a Ca2+ influx (from external and internal stores) followed by/coincident with a Cl- efflux, which both evoke the membrane potential depolarization, and a K+ efflux leading to repolarization. The molecular identity of ion channels responsible for these fluxes remains unknown. Publication of the Chara braunii and Marchantia polymorpha genomes opened up new possibilities for studying the molecular basis of APs. Here we present the list of genes which can participate in AP electrogenesis. We also point out the differences between these plant species, e.g. the absence of Ca2+-permeable glutamate receptors (GLRs) and Cl--permeable SLAC1 channel homologues in the Chara genome. Both these channels play a vital role in long-distance signalling in liverworts and vascular plants. Among the common properties of APs in liverworts and higher plants is their duration (dozens of seconds) and the speed of propagation (mm s-1), which are much slower than in the algae (seconds, and dozens of mm s-1, respectively). CONCLUSIONS Future studies with combined application of electrophysiological and molecular techniques should unravel the ion channel proteins responsible for AP generation, their regulation and transduction of those signals to physiological responses. This should also help to understand the adaptation of the signalling systems to the land environment and further evolution of APs in vascular plants.
Collapse
Affiliation(s)
| | | | - Vilmantas Pupkis
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio Ave, Vilnius, Lithuania
| | - Mateusz Koselski
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka, Lublin, Poland
| | - Indre Lapeikaite
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio Ave, Vilnius, Lithuania
| |
Collapse
|
9
|
Bonanno JA, Shyam R, Choi M, Ogando DG. The H + Transporter SLC4A11: Roles in Metabolism, Oxidative Stress and Mitochondrial Uncoupling. Cells 2022; 11:197. [PMID: 35053313 PMCID: PMC8773465 DOI: 10.3390/cells11020197] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/23/2022] Open
Abstract
Solute-linked cotransporter, SLC4A11, a member of the bicarbonate transporter family, is an electrogenic H+ transporter activated by NH3 and alkaline pH. Although SLC4A11 does not transport bicarbonate, it shares many properties with other members of the SLC4 family. SLC4A11 mutations can lead to corneal endothelial dystrophy and hearing deficits that are recapitulated in SLC4A11 knock-out mice. SLC4A11, at the inner mitochondrial membrane, facilitates glutamine catabolism and suppresses the production of mitochondrial superoxide by providing ammonia-sensitive H+ uncoupling that reduces glutamine-driven mitochondrial membrane potential hyperpolarization. Mitochondrial oxidative stress in SLC4A11 KO also triggers dysfunctional autophagy and lysosomes, as well as ER stress. SLC4A11 expression is induced by oxidative stress through the transcription factor NRF2, the master regulator of antioxidant genes. Outside of the corneal endothelium, SLC4A11's function has been demonstrated in cochlear fibrocytes, salivary glands, and kidneys, but is largely unexplored overall. Increased SLC4A11 expression is a component of some "glutamine-addicted" cancers, and is possibly linked to cells and tissues that rely on glutamine catabolism.
Collapse
Affiliation(s)
- Joseph A. Bonanno
- Vision Science Program, School of Optometry, Indiana University, Bloomington, IN 47405, USA; (R.S.); (M.C.).; (D.G.O.)
| | | | | | | |
Collapse
|