1
|
Fonseca de Lima CF, Zhu T, Van den Broeck L, Van De Cotte B, Locke AM, Sozzani R, De Smet I. Large-scale comparative wheat phosphoproteome profiling reveals temperature-associated molecular signatures in wheat. PLANT PHYSIOLOGY 2025; 197:kiaf107. [PMID: 40270188 DOI: 10.1093/plphys/kiaf107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 02/07/2025] [Indexed: 04/25/2025]
Abstract
Elevated temperatures resulting from climate change adversely affect natural and crop ecosystems, necessitating the development of heat-tolerant crops. Here, we established a framework to precisely identify protein phosphorylation sites associated with varying temperature sensitivities in wheat (Triticum aestivum). We identified specific kinases primarily associated with particular temperatures, but our results also suggest a striking overlap between cold and heat signaling. Furthermore, we propose that the phosphorylation state of a specific set of proteins may represent a signature for heat stress tolerance. These findings can potentially aid in the identification of targets for breeding or genome editing to enhance the sub- and supra-optimal temperature tolerance of crops.
Collapse
Affiliation(s)
- Cássio Flávio Fonseca de Lima
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Tingting Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Lisa Van den Broeck
- Plant and Microbial Biology Department and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695, USA
| | - Brigitte Van De Cotte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Anna M Locke
- Soybean & Nitrogen Fixation Research Unit, United States Department of Agriculture - Agricultural Research Service, Raleigh, NC 27695, USA
- Department of Crop and Soil Sciences and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695, USA
| | - Rosangela Sozzani
- Plant and Microbial Biology Department and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695, USA
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| |
Collapse
|
2
|
Li X, Wei L, Zhao H, Wang Y, Sun F, Wu M. Ecophysiological, transcriptomic and metabolomic analyses shed light on the response mechanism of Bruguiera gymnorhiza to upwelling stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109074. [PMID: 39213943 DOI: 10.1016/j.plaphy.2024.109074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Mangroves, due to their unique habitats, endure dual stressors from land to ocean and ocean to land directions. While extensive researches have been conducted on land-ocean stressors, studies on ocean-land stressors like upwelling are considerably scarce. In this study, ecophysiological, transcriptome, and metabolome analyses were conducted to determine the responses of mangrove plant (Bruguiera gymnorhiza, B. gymnorhiza) to upwelling stress. The results suggested that upwelling stress in B. gymnorhiza induces oxidative stress and membrane damage, which are mitigated by the synergistic actions of antioxidant enzymes and osmoprotectants. Transcriptomic and metabolomic analyses revealed that upregulated genes related to oxidation-reduction and carbohydrate metabolism, along with accumulated metabolites such as amino acids, lipids, phenols, and organic acids, contribute to enhancing antioxidant capacity and maintaining osmotic balance. Further analysis identified key KEGG pathways involved in the response to upwelling stress, including amino acid metabolism, carbohydrate and energy metabolism, flavonoid biosynthesis, and plant hormone signal transduction. These findings provide vital information into the multi-level response mechanisms of mangrove plants to upwelling stress.
Collapse
Affiliation(s)
- Xiaomei Li
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Guangdong Academy of Forestry, Guangzhou, 510520, China; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, 510520, China; Guangdong Coastal Shelterbelt Forest Ecosystem National Observation and Research Station, Guangzhou, 510520, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Wei
- Guangdong Academy of Forestry, Guangzhou, 510520, China; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, 510520, China; Guangdong Coastal Shelterbelt Forest Ecosystem National Observation and Research Station, Guangzhou, 510520, China
| | - Hui Zhao
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yutu Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Fulin Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Meilin Wu
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
3
|
Sun S, Zhang X, Wang C, Yu Q, Yang H, Xu W, Wang T, Gao L, Meng X, Luo S, Zhang L, Chen Q, Zhang W. Combined application of myo-inositol and corn steep liquor enhances seedling growth and cold tolerance in cucumber and tomato. PHYSIOLOGIA PLANTARUM 2024; 176:e14422. [PMID: 38962815 DOI: 10.1111/ppl.14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
Low temperatures pose a common challenge in the production of cucumbers and tomatoes, hindering plant growth and, in severe cases, leading to plant death. In our investigation, we observed a substantial improvement in the growth of cucumber and tomato seedlings through the application of corn steep liquor (CSL), myo-inositol (MI), and their combinations. When subjected to low-temperature stress, these treatments resulted in heightened levels of photosynthetic pigments, thereby fostering enhanced photosynthesis in both tomato and cucumber plants. Furthermore, it contributed to a decrease in malondialdehyde (MDA) levels and electrolyte leakage (REP). The effectiveness of the treatment was further validated through the analysis of key gene expressions (CBF1, COR, MIOX4, and MIPS1) in cucumber. Particularly, noteworthy positive outcomes were noted in the treatment involving 0.6 mL L-1 CSL combined with 72 mg L-1 MI. This study provides valuable technical insights into leveraging the synergistic effects of inositol and maize leachate to promote early crop growth and bolster resistance to low temperatures.
Collapse
Affiliation(s)
- Shilong Sun
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Xinjun Zhang
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Cuicui Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Qi Yu
- Syngenta Qihe trialing station, Syngenta (China) Investment Co. LTD, China
| | - Hongli Yang
- Syngenta Qihe trialing station, Syngenta (China) Investment Co. LTD, China
| | - Weimin Xu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Tao Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Xiangqing Meng
- Syngenta Qihe trialing station, Syngenta (China) Investment Co. LTD, China
| | - Sha Luo
- Syngenta Qihe trialing station, Syngenta (China) Investment Co. LTD, China
| | - Lianhong Zhang
- Syngenta Qihe trialing station, Syngenta (China) Investment Co. LTD, China
| | - Qing Chen
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Gautam H, Khan S, Nidhi, Sofo A, Khan NA. Appraisal of the Role of Gaseous Signaling Molecules in Thermo-Tolerance Mechanisms in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:791. [PMID: 38592775 PMCID: PMC10975175 DOI: 10.3390/plants13060791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/19/2024] [Accepted: 03/09/2024] [Indexed: 04/11/2024]
Abstract
A significant threat to the ongoing rise in temperature caused by global warming. Plants have many stress-resistance mechanisms, which is responsible for maintaining plant homeostasis. Abiotic stresses largely increase gaseous molecules' synthesis in plants. The study of gaseous signaling molecules has gained attention in recent years. The role of gaseous molecules, such as nitric oxide (NO), hydrogen sulfide (H2S), carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), and ethylene, in plants under temperature high-temperature stress are discussed in the current review. Recent studies revealed the critical function that gaseous molecules play in controlling plant growth and development and their ability to respond to various abiotic stresses. Here, we provide a thorough overview of current advancements that prevent heat stress-related plant damage via gaseous molecules. We also explored and discussed the interaction of gaseous molecules. In addition, we provided an overview of the role played by gaseous molecules in high-temperature stress responses, along with a discussion of the knowledge gaps and how this may affect the development of high-temperature-resistant plant species.
Collapse
Affiliation(s)
- Harsha Gautam
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Sheen Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Nidhi
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Adriano Sofo
- Department of European and Mediterranean Cultures: Architecture, Environment, Cultural Heritage (DiCEM), University of Basilicata, 75100 Matera, Italy
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
5
|
Jacob F, Hamid R, Ghorbanzadeh Z, Valsalan R, Ajinath LS, Mathew D. Genome-wide identification, characterization, and expression analysis of MIPS family genes in legume species. BMC Genomics 2024; 25:95. [PMID: 38262915 PMCID: PMC10804463 DOI: 10.1186/s12864-023-09937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/23/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Evolutionarily conserved in plants, the enzyme D-myo-inositol-3-phosphate synthase (MIPS; EC 5.5.1.4) regulates the initial, rate-limiting reaction in the phytic acid biosynthetic pathway. They are reported to be transcriptional regulators involved in various physiological functions in the plants, growth, and biotic/abiotic stress responses. Even though the genomes of most legumes are fully sequenced and available, an all-inclusive study of the MIPS family members in legumes is still ongoing. RESULTS We found 24 MIPS genes in ten legumes: Arachis hypogea, Cicer arietinum, Cajanus cajan, Glycine max, Lablab purpureus, Medicago truncatula, Pisum sativum, Phaseolus vulgaris, Trifolium pratense and Vigna unguiculata. The total number of MIPS genes found in each species ranged from two to three. The MIPS genes were classified into five clades based on their evolutionary relationships with Arabidopsis genes. The structural patterns of intron/exon and the protein motifs that were conserved in each gene were highly group-specific. In legumes, MIPS genes were inconsistently distributed across their genomes. A comparison of genomes and gene sequences showed that this family was subjected to purifying selection and the gene expansion in MIPS family in legumes was mainly caused by segmental duplication. Through quantitative PCR, expression patterns of MIPS in response to various abiotic stresses, in the vegetative tissues of various legumes were studied. Expression pattern shows that MIPS genes control the development and differentiation of various organs, and have significant responses to salinity and drought stress. CONCLUSION The MIPS genes in the genomes of legumes have been identified, characterized and their expression was analysed. The findings pave way for understanding their molecular functions and evolution, and lead to identify the putative MIPS genes associated with different cell and tissue development.
Collapse
Affiliation(s)
- Feba Jacob
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, India
| | - Rasmieh Hamid
- Department of Plant Breeding, Cotton Research Institute of Iran (CRII), Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
| | - Zahra Ghorbanzadeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ravisankar Valsalan
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, India
| | - Lavale Shivaji Ajinath
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, India
| | - Deepu Mathew
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, India.
| |
Collapse
|
6
|
Butova VV, Bauer TV, Polyakov VA, Minkina TM. Advances in nanoparticle and organic formulations for prolonged controlled release of auxins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107808. [PMID: 37290135 DOI: 10.1016/j.plaphy.2023.107808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Plant hormones have been well known since Charles Darwin as signaling molecules directing plant metabolism. Their action and transport pathways are at the top of scientific interest and were reviewed in many research articles. Modern agriculture applies phytohormones as supplements to achieve desired physiological plant response. Auxins are a class of plant hormones extensively used for crop management. Auxins stimulate the formation of lateral roots and shoots, seed germination, while extensively high concentrations of these chemicals act as herbicides. Natural auxins are unstable; light or enzyme action leads to their degradation. Moreover, the concentration dependant action of phytohormones denier one-shot injection of these chemicals and require constant slow additive of supplement. It obstructs the direct introduction of auxins. On the other hand, delivery systems can protect phytohormones from degradation and provide a slow release of loaded drugs. Moreover, this release can be managed by external stimuli like pH, enzymes, or temperature. The present review is focused on three auxins: indole-3-acetic, indole-3-butyric, and 1-naphthaleneacetic acids. We collected some examples of inorganic (oxides, Ag, layered double hydroxides) and organic (chitosan, organic formulations) delivery systems. The action of carriers can enhance auxin effects via protection and targeted delivery of loaded molecules. Moreover, nanoparticles can act as nano fertilizers, intensifying the phytohormone effect, providing slow controlled release. So delivery systems for auxins are extremely attractive for modern agriculture opening sustainable management of plant metabolism and morphogenesis.
Collapse
Affiliation(s)
- Vera V Butova
- Southern Federal University, ul. Bolshaya Sadovaya 105/42, Rostov-on-Don, 344006, Russian Federation; Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria.
| | - Tatiana V Bauer
- Southern Federal University, ul. Bolshaya Sadovaya 105/42, Rostov-on-Don, 344006, Russian Federation
| | - Vladimir A Polyakov
- Southern Federal University, ul. Bolshaya Sadovaya 105/42, Rostov-on-Don, 344006, Russian Federation
| | - Tatiana M Minkina
- Southern Federal University, ul. Bolshaya Sadovaya 105/42, Rostov-on-Don, 344006, Russian Federation
| |
Collapse
|