1
|
Ali F, Kumar H, Alghamdi W, Kateb FA, Alarfaj FK. Recent Advances in Machine Learning-Based Models for Prediction of Antiviral Peptides. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2023; 30:1-12. [PMID: 37359746 PMCID: PMC10148704 DOI: 10.1007/s11831-023-09933-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/19/2023] [Indexed: 06/28/2023]
Abstract
Viruses have killed and infected millions of people across the world. It causes several chronic diseases like COVID-19, HIV, and hepatitis. To cope with such diseases and virus infections, antiviral peptides (AVPs) have been applied in the design of drugs. Keeping in view the significant role in pharmaceutical industry and other research fields, identification of AVPs is highly indispensable. In this connection, experimental and computational methods were proposed to identify AVPs. However, more accurate predictors for boosting AVPs identification are highly desirable. This work presents a thorough study and reports the available predictors of AVPs. We explained applied datasets, feature representation approaches, classification algorithms, and evaluation parameters of performance. In this study, the limitations of the existing studies and the best methods were emphasized. Provided the pros and cons of the applied classifiers. The future insights demonstrate efficient feature encoding approaches, best feature optimization schemes, and effective classification techniques that can improve the performance of novel method for accurate prediction of AVPs.
Collapse
Affiliation(s)
- Farman Ali
- Sarhad University of Science and Information Technology Peshawar, Mardan Campus, Khyber Pakhtunkhwa, Pakistan
| | - Harish Kumar
- Department of Computer Science, College of Computer Science, King Khalid University, Abha, Saudi Arabia
| | - Wajdi Alghamdi
- Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Faris A. Kateb
- Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Fawaz Khaled Alarfaj
- Department of Management Information Systems, King Faisal University, Hufof, Saudi Arabia
| |
Collapse
|
2
|
Cegarra L, Aguirre P, Nuñez MT, Gerdtzen ZP, Salgado JC. Calcium is a noncompetitive inhibitor of DMT1 on the intestinal iron absorption process: empirical evidence and mathematical modeling analysis. Am J Physiol Cell Physiol 2022; 323:C1791-C1806. [PMID: 36342159 DOI: 10.1152/ajpcell.00411.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Iron absorption is a complex and highly controlled process where DMT1 transports nonheme iron through the brush-border membrane of enterocytes to the cytoplasm but does not transport alkaline-earth metals such as calcium. However, it has been proposed that high concentrations of calcium in the diet could reduce iron bioavailability. In this work, we investigate the effect of intracellular and extracellular calcium on iron uptake by Caco-2 cells, as determined by calcein fluorescence quenching. We found that extracellular calcium inhibits iron uptake by Caco-2 cells in a concentration-dependent manner. Chelation of intracellular calcium with BAPTA did not affect iron uptake, which indicates that the inhibitory effect of calcium is not exerted through intracellular calcium signaling. Kinetic studies performed, provided evidence that calcium acts as a reversible noncompetitive inhibitor of the iron transport activity of DMT1. Based on these experimental results, a mathematical model was developed that considers the dynamics of noncompetitive inhibition using a four-state mechanism to describe the inhibitory effect of calcium on the DMT1 iron transport process in intestinal cells. The model accurately predicts the calcein fluorescence quenching dynamics observed experimentally after an iron challenge. Therefore, the proposed model structure is capable of representing the inhibitory effect of extracellular calcium on DMT1-mediated iron entry into the cLIP of Caco-2 cells. Considering the range of calcium concentrations that can inhibit iron uptake, the possible inhibition of dietary calcium on intestinal iron uptake is discussed.
Collapse
Affiliation(s)
- Layimar Cegarra
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile.,Mammalian Cell Culture Laboratory, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile.,Centre for Biotechnology and Bioengineering, University of Chile, Santiago, Chile
| | - Pabla Aguirre
- Iron and Biology of Aging Laboratory, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Marco T Nuñez
- Iron and Biology of Aging Laboratory, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Ziomara P Gerdtzen
- Mammalian Cell Culture Laboratory, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile.,Centre for Biotechnology and Bioengineering, University of Chile, Santiago, Chile.,Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.,Millennium Nucleus Marine Agronomy of Seaweed Holobionts, Puerto Mont, Chile
| | - J Cristian Salgado
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile.,Centre for Biotechnology and Bioengineering, University of Chile, Santiago, Chile
| |
Collapse
|
3
|
Asim MN, Ibrahim MA, Imran Malik M, Dengel A, Ahmed S. Circ-LocNet: A Computational Framework for Circular RNA Sub-Cellular Localization Prediction. Int J Mol Sci 2022; 23:ijms23158221. [PMID: 35897818 PMCID: PMC9329987 DOI: 10.3390/ijms23158221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Circular ribonucleic acids (circRNAs) are novel non-coding RNAs that emanate from alternative splicing of precursor mRNA in reversed order across exons. Despite the abundant presence of circRNAs in human genes and their involvement in diverse physiological processes, the functionality of most circRNAs remains a mystery. Like other non-coding RNAs, sub-cellular localization knowledge of circRNAs has the aptitude to demystify the influence of circRNAs on protein synthesis, degradation, destination, their association with different diseases, and potential for drug development. To date, wet experimental approaches are being used to detect sub-cellular locations of circular RNAs. These approaches help to elucidate the role of circRNAs as protein scaffolds, RNA-binding protein (RBP) sponges, micro-RNA (miRNA) sponges, parental gene expression modifiers, alternative splicing regulators, and transcription regulators. To complement wet-lab experiments, considering the progress made by machine learning approaches for the determination of sub-cellular localization of other non-coding RNAs, the paper in hand develops a computational framework, Circ-LocNet, to precisely detect circRNA sub-cellular localization. Circ-LocNet performs comprehensive extrinsic evaluation of 7 residue frequency-based, residue order and frequency-based, and physio-chemical property-based sequence descriptors using the five most widely used machine learning classifiers. Further, it explores the performance impact of K-order sequence descriptor fusion where it ensembles similar as well dissimilar genres of statistical representation learning approaches to reap the combined benefits. Considering the diversity of statistical representation learning schemes, it assesses the performance of second-order, third-order, and going all the way up to seventh-order sequence descriptor fusion. A comprehensive empirical evaluation of Circ-LocNet over a newly developed benchmark dataset using different settings reveals that standalone residue frequency-based sequence descriptors and tree-based classifiers are more suitable to predict sub-cellular localization of circular RNAs. Further, K-order heterogeneous sequence descriptors fusion in combination with tree-based classifiers most accurately predict sub-cellular localization of circular RNAs. We anticipate this study will act as a rich baseline and push the development of robust computational methodologies for the accurate sub-cellular localization determination of novel circRNAs.
Collapse
Affiliation(s)
- Muhammad Nabeel Asim
- German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany; (M.A.I.); (A.D.); (S.A.)
- Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
- Correspondence:
| | - Muhammad Ali Ibrahim
- German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany; (M.A.I.); (A.D.); (S.A.)
- Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Muhammad Imran Malik
- School of Computer Science & Electrical Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan;
| | - Andreas Dengel
- German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany; (M.A.I.); (A.D.); (S.A.)
- Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Sheraz Ahmed
- German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany; (M.A.I.); (A.D.); (S.A.)
- DeepReader GmbH, Trippstadter Str. 122, 67663 Kaiserslautern, Germany
| |
Collapse
|
4
|
Zhang ZM, Guan ZX, Wang F, Zhang D, Ding H. Application of Machine Learning Methods in Predicting Nuclear Receptors and their Families. Med Chem 2021; 16:594-604. [PMID: 31584374 DOI: 10.2174/1573406415666191004125551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/18/2019] [Accepted: 08/23/2019] [Indexed: 11/22/2022]
Abstract
Nuclear receptors (NRs) are a superfamily of ligand-dependent transcription factors that are closely related to cell development, differentiation, reproduction, homeostasis, and metabolism. According to the alignments of the conserved domains, NRs are classified and assigned the following seven subfamilies or eight subfamilies: (1) NR1: thyroid hormone like (thyroid hormone, retinoic acid, RAR-related orphan receptor, peroxisome proliferator activated, vitamin D3- like), (2) NR2: HNF4-like (hepatocyte nuclear factor 4, retinoic acid X, tailless-like, COUP-TFlike, USP), (3) NR3: estrogen-like (estrogen, estrogen-related, glucocorticoid-like), (4) NR4: nerve growth factor IB-like (NGFI-B-like), (5) NR5: fushi tarazu-F1 like (fushi tarazu-F1 like), (6) NR6: germ cell nuclear factor like (germ cell nuclear factor), and (7) NR0: knirps like (knirps, knirpsrelated, embryonic gonad protein, ODR7, trithorax) and DAX like (DAX, SHP), or dividing NR0 into (7) NR7: knirps like and (8) NR8: DAX like. Different NRs families have different structural features and functions. Since the function of a NR is closely correlated with which subfamily it belongs to, it is highly desirable to identify NRs and their subfamilies rapidly and effectively. The knowledge acquired is essential for a proper understanding of normal and abnormal cellular mechanisms. With the advent of the post-genomics era, huge amounts of sequence-known proteins have increased explosively. Conventional methods for accurately classifying the family of NRs are experimental means with high cost and low efficiency. Therefore, it has created a greater need for bioinformatics tools to effectively recognize NRs and their subfamilies for the purpose of understanding their biological function. In this review, we summarized the application of machine learning methods in the prediction of NRs from different aspects. We hope that this review will provide a reference for further research on the classification of NRs and their families.
Collapse
Affiliation(s)
- Zi-Mei Zhang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zheng-Xing Guan
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Fang Wang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dan Zhang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hui Ding
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
5
|
Large-scale prediction and analysis of protein sub-mitochondrial localization with DeepMito. BMC Bioinformatics 2020; 21:266. [PMID: 32938368 PMCID: PMC7493403 DOI: 10.1186/s12859-020-03617-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022] Open
Abstract
Background The prediction of protein subcellular localization is a key step of the big effort towards protein functional annotation. Many computational methods exist to identify high-level protein subcellular compartments such as nucleus, cytoplasm or organelles. However, many organelles, like mitochondria, have their own internal compartmentalization. Knowing the precise location of a protein inside mitochondria is crucial for its accurate functional characterization. We recently developed DeepMito, a new method based on a 1-Dimensional Convolutional Neural Network (1D-CNN) architecture outperforming other similar approaches available in literature. Results Here, we explore the adoption of DeepMito for the large-scale annotation of four sub-mitochondrial localizations on mitochondrial proteomes of five different species, including human, mouse, fly, yeast and Arabidopsis thaliana. A significant fraction of the proteins from these organisms lacked experimental information about sub-mitochondrial localization. We adopted DeepMito to fill the gap, providing complete characterization of protein localization at sub-mitochondrial level for each protein of the five proteomes. Moreover, we identified novel mitochondrial proteins fishing on the set of proteins lacking any subcellular localization annotation using available state-of-the-art subcellular localization predictors. We finally performed additional functional characterization of proteins predicted by DeepMito as localized into the four different sub-mitochondrial compartments using both available experimental and predicted GO terms. All data generated in this study were collected into a database called DeepMitoDB (available at http://busca.biocomp.unibo.it/deepmitodb), providing complete functional characterization of 4307 mitochondrial proteins from the five species. Conclusions DeepMitoDB offers a comprehensive view of mitochondrial proteins, including experimental and predicted fine-grain sub-cellular localization and annotated and predicted functional annotations. The database complements other similar resources providing characterization of new proteins. Furthermore, it is also unique in including localization information at the sub-mitochondrial level. For this reason, we believe that DeepMitoDB can be a valuable resource for mitochondrial research.
Collapse
|
6
|
Savojardo C, Bruciaferri N, Tartari G, Martelli PL, Casadio R. DeepMito: accurate prediction of protein sub-mitochondrial localization using convolutional neural networks. Bioinformatics 2020; 36:56-64. [PMID: 31218353 PMCID: PMC6956790 DOI: 10.1093/bioinformatics/btz512] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/31/2019] [Accepted: 06/17/2019] [Indexed: 11/18/2022] Open
Abstract
Motivation The correct localization of proteins in cell compartments is a key issue for their function. Particularly, mitochondrial proteins are physiologically active in different compartments and their aberrant localization contributes to the pathogenesis of human mitochondrial pathologies. Many computational methods exist to assign protein sequences to subcellular compartments such as nucleus, cytoplasm and organelles. However, a substantial lack of experimental evidence in public sequence databases hampered so far a finer grain discrimination, including also intra-organelle compartments. Results We describe DeepMito, a novel method for predicting protein sub-mitochondrial cellular localization. Taking advantage of powerful deep-learning approaches, such as convolutional neural networks, our method is able to achieve very high prediction performances when discriminating among four different mitochondrial compartments (matrix, outer, inner and intermembrane regions). The method is trained and tested in cross-validation on a newly generated, high-quality dataset comprising 424 mitochondrial proteins with experimental evidence for sub-organelle localizations. We benchmark DeepMito towards the only one recent approach developed for the same task. Results indicate that DeepMito performances are superior. Finally, genomic-scale prediction on a highly-curated dataset of human mitochondrial proteins further confirms the effectiveness of our approach and suggests that DeepMito is a good candidate for genome-scale annotation of mitochondrial protein subcellular localization. Availability and implementation The DeepMito web server as well as all datasets used in this study are available at http://busca.biocomp.unibo.it/deepmito. A standalone version of DeepMito is available on DockerHub at https://hub.docker.com/r/bolognabiocomp/deepmito. DeepMito source code is available on GitHub at https://github.com/BolognaBiocomp/deepmito Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Castrense Savojardo
- Biocomputing Group, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Niccolò Bruciaferri
- Biocomputing Group, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Giacomo Tartari
- Biocomputing Group, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Italian National Research Council (CNR), Bari, Italy
| | - Pier Luigi Martelli
- Biocomputing Group, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Rita Casadio
- Biocomputing Group, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Italian National Research Council (CNR), Bari, Italy
| |
Collapse
|
7
|
Chou KC. An Insightful 10-year Recollection Since the Emergence of the 5-steps Rule. Curr Pharm Des 2020; 25:4223-4234. [PMID: 31782354 DOI: 10.2174/1381612825666191129164042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE One of the most challenging and also the most difficult problems is how to formulate a biological sequence with a vector but considerably keep its sequence order information. METHODS To address such a problem, the approach of Pseudo Amino Acid Components or PseAAC has been developed. RESULTS AND CONCLUSION It has become increasingly clear via the 10-year recollection that the aforementioned proposal has been indeed very powerful.
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Gordon Life Science Institute, Boston, Massachusetts 02478, United States.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
8
|
Tan JX, Lv H, Wang F, Dao FY, Chen W, Ding H. A Survey for Predicting Enzyme Family Classes Using Machine Learning Methods. Curr Drug Targets 2020; 20:540-550. [PMID: 30277150 DOI: 10.2174/1389450119666181002143355] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/17/2018] [Accepted: 09/04/2018] [Indexed: 12/13/2022]
Abstract
Enzymes are proteins that act as biological catalysts to speed up cellular biochemical processes. According to their main Enzyme Commission (EC) numbers, enzymes are divided into six categories: EC-1: oxidoreductase; EC-2: transferase; EC-3: hydrolase; EC-4: lyase; EC-5: isomerase and EC-6: synthetase. Different enzymes have different biological functions and acting objects. Therefore, knowing which family an enzyme belongs to can help infer its catalytic mechanism and provide information about the relevant biological function. With the large amount of protein sequences influxing into databanks in the post-genomics age, the annotation of the family for an enzyme is very important. Since the experimental methods are cost ineffective, bioinformatics tool will be a great help for accurately classifying the family of the enzymes. In this review, we summarized the application of machine learning methods in the prediction of enzyme family from different aspects. We hope that this review will provide insights and inspirations for the researches on enzyme family classification.
Collapse
Affiliation(s)
- Jiu-Xin Tan
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hao Lv
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Fang Wang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Fu-Ying Dao
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wei Chen
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.,Department of Physics, School of Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan 063000, China.,Gordon Life Science Institute, Boston, MA 02478, United States
| | - Hui Ding
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
9
|
|
10
|
Some illuminating remarks on molecular genetics and genomics as well as drug development. Mol Genet Genomics 2020; 295:261-274. [PMID: 31894399 DOI: 10.1007/s00438-019-01634-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Facing the explosive growth of biological sequences unearthed in the post-genomic age, one of the most important but also most difficult problems in computational biology is how to express a biological sequence with a discrete model or a vector, but still keep it with considerable sequence-order information or its special pattern. To deal with such a challenging problem, the ideas of "pseudo amino acid components" and "pseudo K-tuple nucleotide composition" have been proposed. The ideas and their approaches have further stimulated the birth for "distorted key theory", "wenxing diagram", and substantially strengthening the power in treating the multi-label systems, as well as the establishment of the famous "5-steps rule". All these logic developments are quite natural that are very useful not only for theoretical scientists but also for experimental scientists in conducting genetics/genomics analysis and drug development. Presented in this review paper are also their future perspectives; i.e., their impacts will become even more significant and propounding.
Collapse
|
11
|
Shao YT, Liu XX, Lu Z, Chou KC. pLoc_Deep-mHum: Predict Subcellular Localization of Human Proteins by Deep Learning. ACTA ACUST UNITED AC 2020. [DOI: 10.4236/ns.2020.127042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Shao Y, Chou KC. pLoc_Deep-mEuk: Predict Subcellular Localization of Eukaryotic Proteins by Deep Learning. ACTA ACUST UNITED AC 2020. [DOI: 10.4236/ns.2020.126034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Nithya V. SubmitoLoc: Identification of mitochondrial sub cellular locations of proteins using support vector machine. Bioinformation 2019; 15:863-868. [PMID: 32256006 PMCID: PMC7088428 DOI: 10.6026/97320630015863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 11/23/2022] Open
Abstract
Mitochondria are important sub-cellular organelles in eukaryotes. Defects in mitochondrial system lead to a variety of disease. Therefore, detailed knowledge of mitochondrial proteome is vital to understand mitochondrial system and their function. Sequence databases contain large number of mitochondrial proteins but they are mostly not annotated. In this study, we developed a support vector machine approach, SubmitoLoc, to predict mitochondrial sub cellular locations of proteins based on various sequence derived properties. We evaluated the predictor using 10-fold cross validation. Our method achieved 88.56 % accuracy using all features. Average sensitivity and specificity for four-subclass prediction is 85.37% and 87.25% respectively. High prediction accuracy suggests that SubmitoLoc will be useful for researchers studying mitochondrial biology and drug discovery.
Collapse
Affiliation(s)
- Varadharaju Nithya
- Department of Animal Health Management, Alagappa University, Karaikudi-630003, India
| |
Collapse
|
14
|
pLoc_bal-mHum: Predict subcellular localization of human proteins by PseAAC and quasi-balancing training dataset. Genomics 2019; 111:1274-1282. [DOI: 10.1016/j.ygeno.2018.08.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 12/17/2022]
|
15
|
Chou KC. Advances in Predicting Subcellular Localization of Multi-label Proteins and its Implication for Developing Multi-target Drugs. Curr Med Chem 2019; 26:4918-4943. [PMID: 31060481 DOI: 10.2174/0929867326666190507082559] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/16/2022]
Abstract
The smallest unit of life is a cell, which contains numerous protein molecules. Most
of the functions critical to the cell’s survival are performed by these proteins located in its different
organelles, usually called ‘‘subcellular locations”. Information of subcellular localization
for a protein can provide useful clues about its function. To reveal the intricate pathways at the
cellular level, knowledge of the subcellular localization of proteins in a cell is prerequisite.
Therefore, one of the fundamental goals in molecular cell biology and proteomics is to determine
the subcellular locations of proteins in an entire cell. It is also indispensable for prioritizing
and selecting the right targets for drug development. Unfortunately, it is both timeconsuming
and costly to determine the subcellular locations of proteins purely based on experiments.
With the avalanche of protein sequences generated in the post-genomic age, it is highly
desired to develop computational methods for rapidly and effectively identifying the subcellular
locations of uncharacterized proteins based on their sequences information alone. Actually,
considerable progresses have been achieved in this regard. This review is focused on those
methods, which have the capacity to deal with multi-label proteins that may simultaneously
exist in two or more subcellular location sites. Protein molecules with this kind of characteristic
are vitally important for finding multi-target drugs, a current hot trend in drug development.
Focused in this review are also those methods that have use-friendly web-servers established so
that the majority of experimental scientists can use them to get the desired results without the
need to go through the detailed mathematics involved.
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Gordon Life Science Institute, Boston, MA 02478, United States
| |
Collapse
|
16
|
Abstract
The smallest unit of life is a cell, which contains numerous protein molecules. Most
of the functions critical to the cell’s survival are performed by these proteins located in its different
organelles, usually called ‘‘subcellular locations”. Information of subcellular localization
for a protein can provide useful clues about its function. To reveal the intricate pathways at the
cellular level, knowledge of the subcellular localization of proteins in a cell is prerequisite.
Therefore, one of the fundamental goals in molecular cell biology and proteomics is to determine
the subcellular locations of proteins in an entire cell. It is also indispensable for prioritizing
and selecting the right targets for drug development. Unfortunately, it is both timeconsuming
and costly to determine the subcellular locations of proteins purely based on experiments.
With the avalanche of protein sequences generated in the post-genomic age, it is highly
desired to develop computational methods for rapidly and effectively identifying the subcellular
locations of uncharacterized proteins based on their sequences information alone. Actually,
considerable progresses have been achieved in this regard. This review is focused on those
methods, which have the capacity to deal with multi-label proteins that may simultaneously
exist in two or more subcellular location sites. Protein molecules with this kind of characteristic
are vitally important for finding multi-target drugs, a current hot trend in drug development.
Focused in this review are also those methods that have use-friendly web-servers established so
that the majority of experimental scientists can use them to get the desired results without the
need to go through the detailed mathematics involved.
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Gordon Life Science Institute, Boston, MA 02478, United States
| |
Collapse
|
17
|
Yu B, Qiu W, Chen C, Ma A, Jiang J, Zhou H, Ma Q. SubMito-XGBoost: predicting protein submitochondrial localization by fusing multiple feature information and eXtreme gradient boosting. Bioinformatics 2019; 36:1074-1081. [DOI: 10.1093/bioinformatics/btz734] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 09/04/2019] [Accepted: 09/25/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
Motivation
Mitochondria are an essential organelle in most eukaryotes. They not only play an important role in energy metabolism but also take part in many critical cytopathological processes. Abnormal mitochondria can trigger a series of human diseases, such as Parkinson's disease, multifactor disorder and Type-II diabetes. Protein submitochondrial localization enables the understanding of protein function in studying disease pathogenesis and drug design.
Results
We proposed a new method, SubMito-XGBoost, for protein submitochondrial localization prediction. Three steps are included: (i) the g-gap dipeptide composition (g-gap DC), pseudo-amino acid composition (PseAAC), auto-correlation function (ACF) and Bi-gram position-specific scoring matrix (Bi-gram PSSM) are employed to extract protein sequence features, (ii) Synthetic Minority Oversampling Technique (SMOTE) is used to balance samples, and the ReliefF algorithm is applied for feature selection and (iii) the obtained feature vectors are fed into XGBoost to predict protein submitochondrial locations. SubMito-XGBoost has obtained satisfactory prediction results by the leave-one-out-cross-validation (LOOCV) compared with existing methods. The prediction accuracies of the SubMito-XGBoost method on the two training datasets M317 and M983 were 97.7% and 98.9%, which are 2.8–12.5% and 3.8–9.9% higher than other methods, respectively. The prediction accuracy of the independent test set M495 was 94.8%, which is significantly better than the existing studies. The proposed method also achieves satisfactory predictive performance on plant and non-plant protein submitochondrial datasets. SubMito-XGBoost also plays an important role in new drug design for the treatment of related diseases.
Availability and implementation
The source codes and data are publicly available at https://github.com/QUST-AIBBDRC/SubMito-XGBoost/.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Bin Yu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao 266061, China
- School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha 410114, China
| | - Wenying Qiu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
- Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Cheng Chen
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
- Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jing Jiang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- School of Aerospace Engineering, Xiamen University, Xiamen 361001, China
| | - Hongyan Zhou
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
- Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
18
|
|
19
|
Xiao X, Cheng X, Chen G, Mao Q, Chou KC. pLoc_bal-mVirus: Predict Subcellular Localization of Multi-Label Virus Proteins by Chou's General PseAAC and IHTS Treatment to Balance Training Dataset. Med Chem 2019; 15:496-509. [DOI: 10.2174/1573406415666181217114710] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/23/2018] [Accepted: 12/12/2018] [Indexed: 12/17/2022]
Abstract
Background/Objective:Knowledge of protein subcellular localization is vitally important for both basic research and drug development. Facing the avalanche of protein sequences emerging in the post-genomic age, it is urgent to develop computational tools for timely and effectively identifying their subcellular localization based on the sequence information alone. Recently, a predictor called “pLoc-mVirus” was developed for identifying the subcellular localization of virus proteins. Its performance is overwhelmingly better than that of the other predictors for the same purpose, particularly in dealing with multi-label systems in which some proteins, known as “multiplex proteins”, may simultaneously occur in, or move between two or more subcellular location sites. Despite the fact that it is indeed a very powerful predictor, more efforts are definitely needed to further improve it. This is because pLoc-mVirus was trained by an extremely skewed dataset in which some subset was over 10 times the size of the other subsets. Accordingly, it cannot avoid the biased consequence caused by such an uneven training dataset.Methods:Using the Chou's general PseAAC (Pseudo Amino Acid Composition) approach and the IHTS (Inserting Hypothetical Training Samples) treatment to balance out the training dataset, we have developed a new predictor called “pLoc_bal-mVirus” for predicting the subcellular localization of multi-label virus proteins.Results:Cross-validation tests on exactly the same experiment-confirmed dataset have indicated that the proposed new predictor is remarkably superior to pLoc-mVirus, the existing state-of-theart predictor for the same purpose.Conclusion:Its user-friendly web-server is available at http://www.jci-bioinfo.cn/pLoc_balmVirus/, by which the majority of experimental scientists can easily get their desired results without the need to go through the detailed complicated mathematics. Accordingly, pLoc_bal-mVirus will become a very useful tool for designing multi-target drugs and in-depth understanding of the biological process in a cell.
Collapse
Affiliation(s)
- Xuan Xiao
- Gordon Life Science Institute, Boston, MA 02478, United States
| | - Xiang Cheng
- Gordon Life Science Institute, Boston, MA 02478, United States
| | - Genqiang Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Qi Mao
- College of Information Science and Technology, Donghua University, Shanghai, China
| | - Kuo-Chen Chou
- Gordon Life Science Institute, Boston, MA 02478, United States
| |
Collapse
|
20
|
Chou KC, Cheng X, Xiao X. pLoc_bal-mEuk: Predict Subcellular Localization of Eukaryotic Proteins by General PseAAC and Quasi-balancing Training Dataset. Med Chem 2019; 15:472-485. [DOI: 10.2174/1573406415666181218102517] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/23/2018] [Accepted: 12/12/2018] [Indexed: 12/24/2022]
Abstract
<P>Background/Objective: Information of protein subcellular localization is crucially important for both basic research and drug development. With the explosive growth of protein sequences discovered in the post-genomic age, it is highly demanded to develop powerful bioinformatics tools for timely and effectively identifying their subcellular localization purely based on the sequence information alone. Recently, a predictor called “pLoc-mEuk” was developed for identifying the subcellular localization of eukaryotic proteins. Its performance is overwhelmingly better than that of the other predictors for the same purpose, particularly in dealing with multi-label systems where many proteins, called “multiplex proteins”, may simultaneously occur in two or more subcellular locations. Although it is indeed a very powerful predictor, more efforts are definitely needed to further improve it. This is because pLoc-mEuk was trained by an extremely skewed dataset where some subset was about 200 times the size of the other subsets. Accordingly, it cannot avoid the biased consequence caused by such an uneven training dataset. </P><P> Methods: To alleviate such bias, we have developed a new predictor called pLoc_bal-mEuk by quasi-balancing the training dataset. Cross-validation tests on exactly the same experimentconfirmed dataset have indicated that the proposed new predictor is remarkably superior to pLocmEuk, the existing state-of-the-art predictor in identifying the subcellular localization of eukaryotic proteins. It has not escaped our notice that the quasi-balancing treatment can also be used to deal with many other biological systems. </P><P> Results: To maximize the convenience for most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/pLoc_bal-mEuk/. </P><P> Conclusion: It is anticipated that the pLoc_bal-Euk predictor holds very high potential to become a useful high throughput tool in identifying the subcellular localization of eukaryotic proteins, particularly for finding multi-target drugs that is currently a very hot trend trend in drug development.</P>
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Gordon Life Science Institute, Boston, MA 02478, United States
| | - Xiang Cheng
- Gordon Life Science Institute, Boston, MA 02478, United States
| | - Xuan Xiao
- Gordon Life Science Institute, Boston, MA 02478, United States
| |
Collapse
|
21
|
Niu B, Liang C, Lu Y, Zhao M, Chen Q, Zhang Y, Zheng L, Chou KC. Glioma stages prediction based on machine learning algorithm combined with protein-protein interaction networks. Genomics 2019; 112:837-847. [PMID: 31150762 DOI: 10.1016/j.ygeno.2019.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/25/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Glioma is the most lethal nervous system cancer. Recent studies have made great efforts to study the occurrence and development of glioma, but the molecular mechanisms are still unclear. This study was designed to reveal the molecular mechanisms of glioma based on protein-protein interaction network combined with machine learning methods. Key differentially expressed genes (DEGs) were screened and selected by using the protein-protein interaction (PPI) networks. RESULTS As a result, 19 genes between grade I and grade II, 21 genes between grade II and grade III, and 20 genes between grade III and grade IV. Then, five machine learning methods were employed to predict the gliomas stages based on the selected key genes. After comparison, Complement Naive Bayes classifier was employed to build the prediction model for grade II-III with accuracy 72.8%. And Random forest was employed to build the prediction model for grade I-II and grade III-VI with accuracy 97.1% and 83.2%, respectively. Finally, the selected genes were analyzed by PPI networks, Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and the results improve our understanding of the biological functions of select DEGs involved in glioma growth. We expect that the key genes expressed have a guiding significance for the occurrence of gliomas or, at the very least, that they are useful for tumor researchers. CONCLUSION Machine learning combined with PPI networks, GO and KEGG analyses of selected DEGs improve our understanding of the biological functions involved in glioma growth.
Collapse
Affiliation(s)
- Bing Niu
- School of Life Sciences, Shanghai University, Shanghai 200444, China; Gordon Life Science Institute, Boston, MA 02478, USA.
| | - Chaofeng Liang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yi Lu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Manman Zhao
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Yuhui Zhang
- Renji Hospital, Medical School, Shanghai Jiaotong University, 160 Pujian Rd, New Pudong District, Shanghai 200127, China; Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| | - Linfeng Zheng
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Radiology, Shanghai First People's Hospital, Baoshan Branch, Shanghai 200940, China.
| | - Kuo-Chen Chou
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; Gordon Life Science Institute, Boston, MA 02478, USA.
| |
Collapse
|
22
|
Yang W, Zhu XJ, Huang J, Ding H, Lin H. A Brief Survey of Machine Learning Methods in Protein Sub-Golgi Localization. Curr Bioinform 2019. [DOI: 10.2174/1574893613666181113131415] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background:The location of proteins in a cell can provide important clues to their functions in various biological processes. Thus, the application of machine learning method in the prediction of protein subcellular localization has become a hotspot in bioinformatics. As one of key organelles, the Golgi apparatus is in charge of protein storage, package, and distribution.Objective:The identification of protein location in Golgi apparatus will provide in-depth insights into their functions. Thus, the machine learning-based method of predicting protein location in Golgi apparatus has been extensively explored. The development of protein sub-Golgi apparatus localization prediction should be reviewed for providing a whole background for the fields.Method:The benchmark dataset, feature extraction, machine learning method and published results were summarized.Results:We briefly introduced the recent progresses in protein sub-Golgi apparatus localization prediction using machine learning methods and discussed their advantages and disadvantages.Conclusion:We pointed out the perspective of machine learning methods in protein sub-Golgi localization prediction.
Collapse
Affiliation(s)
- Wuritu Yang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Xiao-Juan Zhu
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Jian Huang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Hui Ding
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| |
Collapse
|
23
|
Jia J, Li X, Qiu W, Xiao X, Chou KC. iPPI-PseAAC(CGR): Identify protein-protein interactions by incorporating chaos game representation into PseAAC. J Theor Biol 2019; 460:195-203. [DOI: 10.1016/j.jtbi.2018.10.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/16/2018] [Accepted: 10/08/2018] [Indexed: 01/11/2023]
|
24
|
Xiao X, Xu ZC, Qiu WR, Wang P, Ge HT, Chou KC. iPSW(2L)-PseKNC: A two-layer predictor for identifying promoters and their strength by hybrid features via pseudo K-tuple nucleotide composition. Genomics 2018; 111:1785-1793. [PMID: 30529532 DOI: 10.1016/j.ygeno.2018.12.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/20/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022]
Abstract
The promoter is a regulatory DNA region about 81-1000 base pairs long, usually located near the transcription start site (TSS) along upstream of a given gene. By combining a certain protein called transcription factor, the promoter provides the starting point for regulated gene transcription, and hence plays a vitally important role in gene transcriptional regulation. With explosive growth of DNA sequences in the post-genomic age, it has become an urgent challenge to develop computational method for effectively identifying promoters because the information thus obtained is very useful for both basic research and drug development. Although some prediction methods were developed in this regard, most of them were limited at merely identifying whether a query DNA sequence being of a promoter or not. However, based on their strength-distinct levels for transcriptional activation and expression, promoter should be divided into two categories: strong and weak types. Here a new two-layer predictor, called "iPSW(2L)-PseKNC", was developed by fusing the physicochemical properties of nucleotides and their nucleotide density into PseKNC (pseudo K-tuple nucleotide composition). Its 1st-layer serves to predict whether a query DNA sequence sample is of promoter or not, while its 2nd-layer is able to predict the strength of promoters. It has been observed through rigorous cross-validations that the 1st-layer sub-predictor is remarkably superior to the existing state-of-the-art predictors in identifying the promoters and non-promoters, and that the 2nd-layer sub-predictor can do what is beyond the reach of the existing predictors. Moreover, the web-server for iPSW(2L)-PseKNC has been established at http://www.jci-bioinfo.cn/iPSW(2L)-PseKNC, by which the majority of experimental scientists can easily get the results they need.
Collapse
Affiliation(s)
- Xuan Xiao
- Computer Department, Jingdezhen Ceramic Institute, Jingdezhen, China; The Gordon Life Science Institute, Boston, MA 02478, USA.
| | - Zhao-Chun Xu
- Computer Department, Jingdezhen Ceramic Institute, Jingdezhen, China.
| | - Wang-Ren Qiu
- Computer Department, Jingdezhen Ceramic Institute, Jingdezhen, China; The Gordon Life Science Institute, Boston, MA 02478, USA
| | - Peng Wang
- Computer Department, Jingdezhen Ceramic Institute, Jingdezhen, China
| | - Hui-Ting Ge
- Computer Department, Jingdezhen Ceramic Institute, Jingdezhen, China
| | - Kuo-Chen Chou
- The Gordon Life Science Institute, Boston, MA 02478, USA; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
25
|
Cheng X, Xiao X, Chou KC. pLoc_bal-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC. J Theor Biol 2018; 458:92-102. [DOI: 10.1016/j.jtbi.2018.09.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 01/03/2023]
|
26
|
Chen W, Ding H, Zhou X, Lin H, Chou KC. iRNA(m6A)-PseDNC: Identifying N 6-methyladenosine sites using pseudo dinucleotide composition. Anal Biochem 2018; 561-562:59-65. [PMID: 30201554 DOI: 10.1016/j.ab.2018.09.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 01/28/2023]
Abstract
As a prevalent post-transcriptional modification, N6-methyladenosine (m6A) plays key roles in a series of biological processes. Although experimental technologies have been developed and applied to identify m6A sites, they are still cost-ineffective for transcriptome-wide detections of m6A. As good complements to the experimental techniques, some computational methods have been proposed to identify m6A sites. However, their performance remains unsatisfactory. In this study, we firstly proposed an Euclidean distance based method to construct a high quality benchmark dataset. By encoding the RNA sequences using pseudo nucleotide composition, a new predictor called iRNA(m6A)-PseDNC was developed to identify m6A sites in the Saccharomyces cerevisiae genome. It has been demonstrated by the 10-fold cross validation test that the performance of iRNA(m6A)-PseDNC is superior to the existing methods. Meanwhile, for the convenience of most experimental scientists, established at the site http://lin-group.cn/server/iRNA(m6A)-PseDNC.php is its web-server, by which users can easily get their desired results without need to go through the detailed mathematics. It is anticipated that iRNA(m6A)-PseDNC will become a useful high throughput tool for identifying m6A sites in the S. cerevisiae genome.
Collapse
Affiliation(s)
- Wei Chen
- School of Sciences, Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611730, China; Gordon Life Science Institute, Boston, MA, 02478, USA.
| | - Hui Ding
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Xu Zhou
- School of Sciences, Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, China.
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Gordon Life Science Institute, Boston, MA, 02478, USA.
| | - Kuo-Chen Chou
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Gordon Life Science Institute, Boston, MA, 02478, USA.
| |
Collapse
|
27
|
Qiu WR, Sun BQ, Xiao X, Xu ZC, Jia JH, Chou KC. iKcr-PseEns: Identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier. Genomics 2018; 110:239-246. [DOI: 10.1016/j.ygeno.2017.10.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 01/23/2023]
|
28
|
Genome-wide analysis of H3K36me3 and its regulations to cancer-related genes expression in human cell lines. Biosystems 2018; 171:59-65. [DOI: 10.1016/j.biosystems.2018.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/01/2018] [Accepted: 07/09/2018] [Indexed: 01/11/2023]
|
29
|
Kumar R, Kumari B, Kumar M. Proteome-wide prediction and annotation of mitochondrial and sub-mitochondrial proteins by incorporating domain information. Mitochondrion 2018; 42:11-22. [PMID: 29032233 DOI: 10.1016/j.mito.2017.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/21/2017] [Accepted: 10/06/2017] [Indexed: 12/22/2022]
|
30
|
Hoseini ASH, Mirzarezaee M. Prediction of Protein Sub-Mitochondria Locations Using Protein Interaction Networks. IRANIAN JOURNAL OF BIOTECHNOLOGY 2018; 16:e1933. [PMID: 31457027 PMCID: PMC6697825 DOI: 10.15171/ijb.1933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 01/11/2018] [Accepted: 01/13/2018] [Indexed: 01/09/2023]
Abstract
Background Prediction of the protein localization is among the most important issues in the bioinformatics that is used for the prediction of the proteins in the cells and organelles such as mitochondria. In this study, several machine learning algorithms are applied for the prediction of the intracellular protein locations. These algorithms use the features extracted from protein sequences. In contrast, protein interactions have been less investigated. Objectives As protein interactions usually occur in the same or adjacent places, using this feature to find the location would be efficient and impressive. This study did not aim at increasing the total accuracy of the conducted research. The study has focused on the features of the proteins’ interaction and their employment which lead to a higher accuracy. Materials and Methods In this study, we have examined the protein interaction network as one of the features for prediction of the protein localization and its effects on the prediction results. In this regards, we have gathered some of the most common features including Amino Acid Composition, Dipeptide Compositions, Pseudo Amino Acid Compositions (PseAAC), Position Specific Scoring Matrix (PSSM), Functional Domain, Gene Ontology information, and the Pair-wise sequence alignment. The results of the classification are compared to the ones using protein interactions. For achieving this goal different machine learning algorithms were tested. Results The best-obtained results of using single feature set obtained using SVM classifier for PseAAC feature. The accuracy of combining all features with PPI data, using the Decision Tree and Random Forest classifiers, was 82.49% and 83.35%, respectively. In another experiment, using just protein interaction data with the different cutting points resulted in obtaining an accuracy of 93.035% for the protein location prediction. Conclusion In total, it was shown that protein(s) interaction has a significant impact on the prediction of the mitochondrial proteins’ location. This feature can separately distinguish the locations well. Using this feature the accuracy of the results is raised up to 5%.
Collapse
Affiliation(s)
| | - Mitra Mirzarezaee
- Department of Computer Engineering, Science and Research branch, Islamic Azad University, Tehran, Iran.,School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
31
|
Predicting protein submitochondrial locations by incorporating the pseudo-position specific scoring matrix into the general Chou's pseudo-amino acid composition. J Theor Biol 2018; 450:86-103. [DOI: 10.1016/j.jtbi.2018.04.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/10/2018] [Accepted: 04/16/2018] [Indexed: 01/16/2023]
|
32
|
Zhang Q, Wang S, Pan Y, Su D, Lu Q, Zuo Y, Yang L. Characterization of proteins in different subcellular localizations for Escherichia coli K12. Genomics 2018; 111:1134-1141. [PMID: 30026105 DOI: 10.1016/j.ygeno.2018.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/07/2018] [Accepted: 07/11/2018] [Indexed: 10/28/2022]
Abstract
Knowing the comprehensive knowledge about the protein subcellular localization is an important step to understand the function of the proteins. Recent advances in system biology have allowed us to develop more accurate methods for characterizing the proteins at subcellular localization level. In this study, the analysis method was developed to characterize the topological properties and biological properties of the cytoplasmic proteins, inner membrane proteins, outer membrane proteins and periplasmic proteins in Escherichia coli (E. coli). Statistical significant differences were found in all topological properties and biological properties among proteins in different subcellular localizations. In addition, investigation was carried out to analyze the differences in 20 amino acid compositions for four protein categories. We also found that there were significant differences in all of the 20 amino acid compositions. These findings may be helpful for understanding the comprehensive relationship between protein subcellular localization and biological function.
Collapse
Affiliation(s)
- Qi Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shiyuan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yi Pan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Dongqing Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Qianzi Lu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yongchun Zuo
- The State key Laboratory of Reproductive Regulation, Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| | - Lei Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
33
|
Uddin MR, Sharma A, Farid DM, Rahman MM, Dehzangi A, Shatabda S. EvoStruct-Sub: An accurate Gram-positive protein subcellular localization predictor using evolutionary and structural features. J Theor Biol 2018; 443:138-146. [DOI: 10.1016/j.jtbi.2018.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/18/2018] [Accepted: 02/03/2018] [Indexed: 12/21/2022]
|
34
|
Feng P, Yang H, Ding H, Lin H, Chen W, Chou KC. iDNA6mA-PseKNC: Identifying DNA N 6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC. Genomics 2018; 111:96-102. [PMID: 29360500 DOI: 10.1016/j.ygeno.2018.01.005] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/24/2017] [Accepted: 01/07/2018] [Indexed: 11/29/2022]
Abstract
N6-methyladenine (6mA) is one kind of post-replication modification (PTM or PTRM) occurring in a wide range of DNA sequences. Accurate identification of its sites will be very helpful for revealing the biological functions of 6mA, but it is time-consuming and expensive to determine them by experiments alone. Unfortunately, so far, no bioinformatics tool is available to do so. To fill in such an empty area, we have proposed a novel predictor called iDNA6mA-PseKNC that is established by incorporating nucleotide physicochemical properties into Pseudo K-tuple Nucleotide Composition (PseKNC). It has been observed via rigorous cross-validations that the predictor's sensitivity (Sn), specificity (Sp), accuracy (Acc), and stability (MCC) are 93%, 100%, 96%, and 0.93, respectively. For the convenience of most experimental scientists, a user-friendly web server for iDNA6mA-PseKNC has been established at http://lin-group.cn/server/iDNA6mA-PseKNC, by which users can easily obtain their desired results without the need to go through the complicated mathematical equations involved.
Collapse
Affiliation(s)
- Pengmian Feng
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Hui Yang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hui Ding
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; Gordon Life Science Institute, Boston, MA 02478, USA.
| | - Wei Chen
- Department of Physics, School of Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Tangshan 063000, China; Gordon Life Science Institute, Boston, MA 02478, USA.
| | - Kuo-Chen Chou
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; Gordon Life Science Institute, Boston, MA 02478, USA.
| |
Collapse
|
35
|
Shatabda S, Saha S, Sharma A, Dehzangi A. iPHLoc-ES: Identification of bacteriophage protein locations using evolutionary and structural features. J Theor Biol 2017; 435:229-237. [DOI: 10.1016/j.jtbi.2017.09.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 10/18/2022]
|
36
|
Cheng X, Xiao X, Chou KC. pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information. Bioinformatics 2017; 34:1448-1456. [DOI: 10.1093/bioinformatics/btx711] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/31/2017] [Indexed: 01/19/2023] Open
Affiliation(s)
- Xiang Cheng
- Computer Science, Jingdezhen Ceramic Institute, Jingdezhen, China
- Computational Biology, Gordon Life Science Institute, Boston, MA, USA
| | - Xuan Xiao
- Computer Science, Jingdezhen Ceramic Institute, Jingdezhen, China
- Computational Biology, Gordon Life Science Institute, Boston, MA, USA
| | - Kuo-Chen Chou
- Computer Science, Jingdezhen Ceramic Institute, Jingdezhen, China
- Computational Biology, Gordon Life Science Institute, Boston, MA, USA
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
37
|
Cheng X, Xiao X, Chou KC. pLoc-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC. Genomics 2017; 110:S0888-7543(17)30102-7. [PMID: 28989035 DOI: 10.1016/j.ygeno.2017.10.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 09/28/2017] [Accepted: 10/04/2017] [Indexed: 01/21/2023]
Abstract
Information of the proteins' subcellular localization is crucially important for revealing their biological functions in a cell, the basic unit of life. With the avalanche of protein sequences generated in the postgenomic age, it is highly desired to develop computational tools for timely identifying their subcellular locations based on the sequence information alone. The current study is focused on the Gram-negative bacterial proteins. Although considerable efforts have been made in protein subcellular prediction, the problem is far from being solved yet. This is because mounting evidences have indicated that many Gram-negative bacterial proteins exist in two or more location sites. Unfortunately, most existing methods can be used to deal with single-location proteins only. Actually, proteins with multi-locations may have some special biological functions important for both basic research and drug design. In this study, by using the multi-label theory, we developed a new predictor called "pLoc-mGneg" for predicting the subcellular localization of Gram-negative bacterial proteins with both single and multiple locations. Rigorous cross-validation on a high quality benchmark dataset indicated that the proposed predictor is remarkably superior to "iLoc-Gneg", the state-of-the-art predictor for the same purpose. For the convenience of most experimental scientists, a user-friendly web-server for the novel predictor has been established at http://www.jci-bioinfo.cn/pLoc-mGneg/, by which users can easily get their desired results without the need to go through the complicated mathematics involved.
Collapse
Affiliation(s)
- Xiang Cheng
- Computer Department, Jingdezhen Ceramic Institute, Jingdezhen, China; The Gordon Life Science Institute, Boston, MA 02478, USA.
| | - Xuan Xiao
- Computer Department, Jingdezhen Ceramic Institute, Jingdezhen, China; The Gordon Life Science Institute, Boston, MA 02478, USA.
| | - Kuo-Chen Chou
- The Gordon Life Science Institute, Boston, MA 02478, USA; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; Faculty of Computing and Information Technology in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
38
|
Liu B, Yang F, Huang DS, Chou KC. iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC. Bioinformatics 2017; 34:33-40. [DOI: 10.1093/bioinformatics/btx579] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/13/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Bin Liu
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong, China
- The Gordon Life Science Institute, Boston, MA, USA
| | - Fan Yang
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - De-Shuang Huang
- Institute of Machine Learning and Systems Biology, School of Electronics and Information Engineering, Tongji University, Shanghai, China
| | - Kuo-Chen Chou
- The Gordon Life Science Institute, Boston, MA, USA
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
- Faculty of Computing and Information Technology in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
39
|
Du PF. Predicting Protein Submitochondrial Locations: The 10th Anniversary. Curr Genomics 2017; 18:316-321. [PMID: 29081687 PMCID: PMC5635615 DOI: 10.2174/1389202918666170228143256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/16/2016] [Accepted: 11/02/2016] [Indexed: 12/16/2022] Open
Abstract
Predicting protein submitochondrial location has been studied for about ten years. A number of methods have been developed. The prediction performances have been improved to an almost perfect level. In this review, we introduce the background of this research topic. We also compare the methods, the performances and the datasets that have been used by these studies. Towards the end, we provide hints for the future directions of this research topic.
Collapse
Affiliation(s)
- Pu-Feng Du
- School of Computer Science and Technology, Tianjin University, Tianjin300350, China
| |
Collapse
|
40
|
Jiao YS, Du PF. Predicting protein submitochondrial locations by incorporating the positional-specific physicochemical properties into Chou's general pseudo-amino acid compositions. J Theor Biol 2017; 416:81-87. [DOI: 10.1016/j.jtbi.2016.12.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/06/2016] [Accepted: 12/30/2016] [Indexed: 11/26/2022]
|
41
|
Colins A, Gerdtzen ZP, Nuñez MT, Salgado JC. Mathematical Modeling of Intestinal Iron Absorption Using Genetic Programming. PLoS One 2017; 12:e0169601. [PMID: 28072870 PMCID: PMC5225013 DOI: 10.1371/journal.pone.0169601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 12/18/2016] [Indexed: 01/08/2023] Open
Abstract
Iron is a trace metal, key for the development of living organisms. Its absorption process is complex and highly regulated at the transcriptional, translational and systemic levels. Recently, the internalization of the DMT1 transporter has been proposed as an additional regulatory mechanism at the intestinal level, associated to the mucosal block phenomenon. The short-term effect of iron exposure in apical uptake and initial absorption rates was studied in Caco-2 cells at different apical iron concentrations, using both an experimental approach and a mathematical modeling framework. This is the first report of short-term studies for this system. A non-linear behavior in the apical uptake dynamics was observed, which does not follow the classic saturation dynamics of traditional biochemical models. We propose a method for developing mathematical models for complex systems, based on a genetic programming algorithm. The algorithm is aimed at obtaining models with a high predictive capacity, and considers an additional parameter fitting stage and an additional Jackknife stage for estimating the generalization error. We developed a model for the iron uptake system with a higher predictive capacity than classic biochemical models. This was observed both with the apical uptake dataset used for generating the model and with an independent initial rates dataset used to test the predictive capacity of the model. The model obtained is a function of time and the initial apical iron concentration, with a linear component that captures the global tendency of the system, and a non-linear component that can be associated to the movement of DMT1 transporters. The model presented in this paper allows the detailed analysis, interpretation of experimental data, and identification of key relevant components for this complex biological process. This general method holds great potential for application to the elucidation of biological mechanisms and their key components in other complex systems.
Collapse
Affiliation(s)
- Andrea Colins
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering and Biotechnology, University of Chile, Santiago, Chile
| | - Ziomara P. Gerdtzen
- Centre for Biotechnology and Bioengineering, Department of Chemical Engineering and Biotechnology, University of Chile, Santiago, Chile
| | - Marco T. Nuñez
- Iron and Biology of Aging Laboratory, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - J. Cristian Salgado
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering and Biotechnology, University of Chile, Santiago, Chile
- Centre for Biotechnology and Bioengineering, Department of Chemical Engineering and Biotechnology, University of Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
42
|
Xiao X, Cheng X, Su S, Mao Q, Chou KC. pLoc-mGpos: Incorporate Key Gene Ontology Information into General PseAAC for Predicting Subcellular Localization of Gram-Positive Bacterial Proteins. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ns.2017.99032] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Liu B, Wu H, Chou KC. Pse-in-One 2.0: An Improved Package of Web Servers for Generating Various Modes of Pseudo Components of DNA, RNA, and Protein Sequences. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ns.2017.94007] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Ali F, Hayat M. Machine learning approaches for discrimination of Extracellular Matrix proteins using hybrid feature space. J Theor Biol 2016; 403:30-37. [DOI: 10.1016/j.jtbi.2016.05.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 01/12/2023]
|
45
|
Qiu WR, Sun BQ, Xiao X, Xu D, Chou KC. iPhos-PseEvo: Identifying Human Phosphorylated Proteins by Incorporating Evolutionary Information into General PseAAC via Grey System Theory. Mol Inform 2016; 36. [DOI: 10.1002/minf.201600010] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/05/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Wang-Ren Qiu
- Computer Department; Jingdezhen Ceramic Institute; Jingdezhen 333403 China
- Department of Computer Science and Bond Life Science Center; University of Missouri; Columbia, MO USA
| | - Bi-Qian Sun
- Computer Department; Jingdezhen Ceramic Institute; Jingdezhen 333403 China
| | - Xuan Xiao
- Computer Department; Jingdezhen Ceramic Institute; Jingdezhen 333403 China
- Gordon Life Science Institute, Boston; Massachusetts 02478 USA
| | - Dong Xu
- Department of Computer Science and Bond Life Science Center; University of Missouri; Columbia, MO USA
| | - Kuo-Chen Chou
- Gordon Life Science Institute, Boston; Massachusetts 02478 USA
- Center of Excellence in Genomic Medicine Research (CEGMR); King Abdulaziz University; Jeddah 21589 Saudi Arabia
| |
Collapse
|
46
|
Wang R, Xu Y, Liu B. Recombination spot identification Based on gapped k-mers. Sci Rep 2016; 6:23934. [PMID: 27030570 PMCID: PMC4814916 DOI: 10.1038/srep23934] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 03/16/2016] [Indexed: 12/14/2022] Open
Abstract
Recombination is crucial for biological evolution, which provides many new combinations of genetic diversity. Accurate identification of recombination spots is useful for DNA function study. To improve the prediction accuracy, researchers have proposed several computational methods for recombination spot identification. The k-mer feature is one of the most useful features for modeling the properties and function of DNA sequences. However, it suffers from the inherent limitation. If the value of word length k is large, the occurrences of k-mers are closed to a binary variable, with a few k-mers present once and most k-mers are absent. This usually causes the sparse problem and reduces the classification accuracy. To solve this problem, we add gaps into k-mer and introduce a new feature called gapped k-mer (GKM) for identification of recombination spots. By using this feature, we present a new predictor called SVM-GKM, which combines the gapped k-mers and Support Vector Machine (SVM) for recombination spot identification. Experimental results on a widely used benchmark dataset show that SVM-GKM outperforms other highly related predictors. Therefore, SVM-GKM would be a powerful predictor for computational genomics.
Collapse
Affiliation(s)
- Rong Wang
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Yong Xu
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Bin Liu
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| |
Collapse
|
47
|
Ahmad K, Waris M, Hayat M. Prediction of Protein Submitochondrial Locations by Incorporating Dipeptide Composition into Chou's General Pseudo Amino Acid Composition. J Membr Biol 2016; 249:293-304. [PMID: 26746980 DOI: 10.1007/s00232-015-9868-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/30/2015] [Indexed: 12/15/2022]
Abstract
Mitochondrion is the key organelle of eukaryotic cell, which provides energy for cellular activities. Submitochondrial locations of proteins play crucial role in understanding different biological processes such as energy metabolism, program cell death, and ionic homeostasis. Prediction of submitochondrial locations through conventional methods are expensive and time consuming because of the large number of protein sequences generated in the last few decades. Therefore, it is intensively desired to establish an automated model for identification of submitochondrial locations of proteins. In this regard, the current study is initiated to develop a fast, reliable, and accurate computational model. Various feature extraction methods such as dipeptide composition (DPC), Split Amino Acid Composition, and Composition and Translation were utilized. In order to overcome the issue of biasness, oversampling technique SMOTE was applied to balance the datasets. Several classification learners including K-Nearest Neighbor, Probabilistic Neural Network, and support vector machine (SVM) are used. Jackknife test is applied to assess the performance of classification algorithms using two benchmark datasets. Among various classification algorithms, SVM achieved the highest success rates in conjunction with the condensed feature space of DPC, which are 95.20 % accuracy on dataset SML3-317 and 95.11 % on dataset SML3-983. The empirical results revealed that our proposed model obtained the highest results so far in the literatures. It is anticipated that our proposed model might be useful for future studies.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Waris
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Maqsood Hayat
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, Pakistan.
| |
Collapse
|
48
|
Jia J, Liu Z, Xiao X, Liu B, Chou KC. Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition. J Biomol Struct Dyn 2015; 34:1946-61. [PMID: 26375780 DOI: 10.1080/07391102.2015.1095116] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
With the explosive growth of protein sequences entering into protein data banks in the post-genomic era, it is highly demanded to develop automated methods for rapidly and effectively identifying the protein-protein binding sites (PPBSs) based on the sequence information alone. To address this problem, we proposed a predictor called iPPBS-PseAAC, in which each amino acid residue site of the proteins concerned was treated as a 15-tuple peptide segment generated by sliding a window along the protein chains with its center aligned with the target residue. The working peptide segment is further formulated by a general form of pseudo amino acid composition via the following procedures: (1) it is converted into a numerical series via the physicochemical properties of amino acids; (2) the numerical series is subsequently converted into a 20-D feature vector by means of the stationary wavelet transform technique. Formed by many individual "Random Forest" classifiers, the operation engine to run prediction is a two-layer ensemble classifier, with the 1st-layer voting out the best training data-set from many bootstrap systems and the 2nd-layer voting out the most relevant one from seven physicochemical properties. Cross-validation tests indicate that the new predictor is very promising, meaning that many important key features, which are deeply hidden in complicated protein sequences, can be extracted via the wavelets transform approach, quite consistent with the facts that many important biological functions of proteins can be elucidated with their low-frequency internal motions. The web server of iPPBS-PseAAC is accessible at http://www.jci-bioinfo.cn/iPPBS-PseAAC , by which users can easily acquire their desired results without the need to follow the complicated mathematical equations involved.
Collapse
Affiliation(s)
- Jianhua Jia
- a Computer Department , Jing-De-Zhen Ceramic Institute , Jing-De-Zhen 333403 , China
| | - Zi Liu
- a Computer Department , Jing-De-Zhen Ceramic Institute , Jing-De-Zhen 333403 , China
| | - Xuan Xiao
- a Computer Department , Jing-De-Zhen Ceramic Institute , Jing-De-Zhen 333403 , China.,c Gordon Life Science Institute , Boston , MA 02478 , USA
| | - Bingxiang Liu
- a Computer Department , Jing-De-Zhen Ceramic Institute , Jing-De-Zhen 333403 , China
| | - Kuo-Chen Chou
- b Center of Excellence in Genomic Medicine Research (CEGMR) , King Abdulaziz University , Jeddah 21589 , Saudi Arabia.,c Gordon Life Science Institute , Boston , MA 02478 , USA
| |
Collapse
|
49
|
Fan GL, Zhang XY, Liu YL, Nang Y, Wang H. DSPMP: Discriminating secretory proteins of malaria parasite by hybridizing different descriptors of Chou's pseudo amino acid patterns. J Comput Chem 2015; 36:2317-27. [PMID: 26484844 DOI: 10.1002/jcc.24210] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/20/2015] [Accepted: 08/23/2015] [Indexed: 12/28/2022]
Abstract
Identification of the proteins secreted by the malaria parasite is important for developing effective drugs and vaccines against infection. Therefore, we developed an improved predictor called "DSPMP" (Discriminating Secretory Proteins of Malaria Parasite) to identify the secretory proteins of the malaria parasite by integrating several vector features using support vector machine-based methods. DSPMP achieved an overall predictive accuracy of 98.61%, which is superior to that of the existing predictors in this field. We show that our method is capable of identifying the secretory proteins of the malaria parasite and found that the amino acid composition for buried and exposed sequences, denoted by AAC(b/e), was the most important feature for constructing the predictor. This article not only introduces a novel method for detecting the important features of sample proteins related to the malaria parasite but also provides a useful tool for tackling general protein-related problems. The DSPMP webserver is freely available at http://202.207.14.87:8032/fuwu/DSPMP/index.asp.
Collapse
Affiliation(s)
- Guo-Liang Fan
- Department of Physics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Xiao-Yan Zhang
- Department of Physics, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Yan-Ling Liu
- Department of Physics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Yi Nang
- Department of Physics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Hui Wang
- Department of Physics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
50
|
Ali F, Hayat M. Classification of membrane protein types using Voting Feature Interval in combination with Chou's Pseudo Amino Acid Composition. J Theor Biol 2015; 384:78-83. [PMID: 26297889 DOI: 10.1016/j.jtbi.2015.07.034] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/15/2015] [Accepted: 07/29/2015] [Indexed: 12/11/2022]
Abstract
Membrane protein is a major constituent of cell, performing numerous crucial functions in the cell. These functions are mostly concerned with membrane protein's types. Initially, membrane proteins types are classified through traditional methods and reasonable results were obtained using these methods. However, due to large exploration of protein sequences in databases, it is very difficult or sometimes impossible to classify through conventional methods, because it is laborious and wasting of time. Therefore, a new powerful discriminating model is indispensable for classification of membrane protein's types with high precision. In this work, a quite promising classification model is developed having effective discriminating power of membrane protein's types. In our classification model, silent features of protein sequences are extracted via Pseudo Amino Acid Composition. Five classification algorithms were utilized. Among these classification algorithms Voting Feature Interval has obtained outstanding performance in all the three datasets. The accuracy of proposed model is 93.9% on dataset S1, 89.33% on S2 and 86.9% on dataset S3, respectively, applying 10-fold cross validation test. The success rates revealed that our proposed model has obtained the utmost outcomes than other existing models in literatures so far and will be played a substantial role in the fields of drug design and pharmaceutical industry.
Collapse
Affiliation(s)
- Farman Ali
- Department of Computer Science, Abdul Wali Khan University Mardan, Pakistan
| | - Maqsood Hayat
- Department of Computer Science, Abdul Wali Khan University Mardan, Pakistan.
| |
Collapse
|