1
|
Kiuchi S, Otoguro Y, Nitta T, Chung MH, Nakaya T, Matsuzawa Y, Ohbuchi K, Sasaki K, Yamamoto H, Tsugawa H. Using Variable Data-Independent Acquisition for Capillary Electrophoresis-Based Untargeted Metabolomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2118-2127. [PMID: 39136275 DOI: 10.1021/jasms.4c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Capillary electrophoresis coupled with tandem mass spectrometry (CE-MS/MS) offers advantages in peak capacity and sensitivity for metabolic profiling owing to the electroosmotic flow-based separation. However, the utilization of data-independent MS/MS acquisition (DIA) is restricted due to the absence of an optimal procedure for analytical chemistry and its related informatics framework. We assessed the mass spectral quality using two DIA techniques, namely, all-ion fragmentation (AIF) and variable DIA (vDIA), to isolate 60-800 Da precursor ions with respect to annotation rates. Our findings indicate that vDIA, coupled with the updated MS-DIAL chromatogram deconvolution algorithm, yields higher spectral matching scores and annotation rates compared to AIF. Additionally, we evaluated a linear migration time (MT) correction method using internal standards to accurately align chromatographic peaks in a data set. Postcorrection, the data set exhibited less than 0.1 min MT drifts, a difference mostly equivalent to that of conventional reverse-phase liquid chromatography techniques. Moreover, we conducted MT prediction for metabolites recorded in mass spectral libraries and metabolite structure databases containing a total of 469,870 compounds, achieving an accuracy of less than 1.5 min root mean squares. Our platform provides a peak annotation platform utilizing MT information, accurate precursor m/z, and the MS/MS spectrum recommended by the metabolomics standards initiative. Applying this procedure, we investigated metabolic alterations in lipopolysaccharide (LPS)-induced macrophages, characterizing 170 metabolites. Furthermore, we assigned metabolite information to unannotated peaks using an in silico structure elucidation tool, MS-FINDER. The results were integrated into the nodes in the molecular spectrum network based on the MS/MS similarity score. Consequently, we identified significantly altered metabolites in the LPS-administration group, where glycinamide ribonucleotide, not present in any spectral libraries, was newly characterized. Additionally, we retrieved metabolites of false-negative hits during the initial spectral annotation procedure. Overall, our study underscores the potential of CE-MS/MS with DIA and computational mass spectrometry techniques for metabolic profiling.
Collapse
Affiliation(s)
- Saki Kiuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yasuhiro Otoguro
- Human Metabolome Technologies Inc., 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Tomoaki Nitta
- Human Metabolome Technologies Inc., 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Mi Hwa Chung
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | | | - Yuki Matsuzawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | | | - Kazunori Sasaki
- Human Metabolome Technologies Inc., 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Hiroyuki Yamamoto
- Human Metabolome Technologies Inc., 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Hiroshi Tsugawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Molecular and Cellular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
2
|
Martins GP, Espe M, Zhang Z, Guimarães IG, Holen E. Surplus arginine reduced lipopolysaccharide induced transcription of proinflammatory genes in Atlantic salmon head kidney cells. FISH & SHELLFISH IMMUNOLOGY 2019; 86:1130-1138. [PMID: 30590162 DOI: 10.1016/j.fsi.2018.12.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
In aquaculture production, studies of salmon health and interaction between pathogens and nutrition are of high importance. This study aimed to compare genes and pathways involved in salmon head kidney cells and liver cells, isolated from the same fish, towards polyinosinic acid: polycytidylic acid (poly I:C) and lipopolysaccharide (LPS), with and without addition of surplus arginine. Selected transcriptional responses of genes involved in inflammation, polyamine synthesis, oxidation and apoptosis were elucidated. For the genes related to inflammation, viperin, Mx and Toll like receptor 3 (TLR3), transcription were significantly upregulated by poly I:C in head kidney cells, while viperin was upregulated in liver cells. Surplus arginine did not affect poly I:C induced responses with the exception of reducing poly I:C induced Mx transcription in head kidney cells. Gene transcription of Interleukin 1β (IL-1β), Interleukin-8 (IL-8) and cyclooxygenase 2 (Cox2) were elevated during LPS treatment in all liver and head kidney cell cultures. In addition, LPS induced significantly, CD83 transcription in liver cells and TNF-α transcription in head kidney cells. Surplus arginine significantly reduced IL-8, Cox2 and TNF-α transcription in head kidney cells. LPS upregulated arginase in head kidney cells while poly I:C upregulated S-adenosyl methionine decarboxylase (SAMdc) transcription in liver cells. This suggests that LPS and poly I:C modulates genes involved in polyamine synthesis. In addition, in head kidney cells, surplus arginine, when cultured together with LPS, increased the transcription of ornithine decarboxylase (ODC) the limiting enzyme of polyamine synthesis. The genes involved with oxidation and apoptosis were not affect by any of the treatments in liver cells, while LPS decreased caspase 3 transcription in head kidney cells. In liver cells, protein expression of catalase was reduced by surplus arginine alone and when challenged with poly I:C. Both liver cells and head kidney cells isolated from the same individual fish responded to LPS and poly I:C, depending on the gene analyzed. Additionally, arginine could modulate transcription of pro-inflammatory genes induced by LPS in salmon immune cells, thus affecting salmon immunity.
Collapse
Affiliation(s)
- Graciela P Martins
- Aquaculture Research Laboratory, Goiás Federal University, Jataí, GO, 75801-615, Brazil; Institute of Marine Research, P.O. Box 1870, Nordnes, N-5817, Bergen, Norway
| | - Marit Espe
- Institute of Marine Research, P.O. Box 1870, Nordnes, N-5817, Bergen, Norway
| | - Zhihao Zhang
- Institute of Marine Research, P.O. Box 1870, Nordnes, N-5817, Bergen, Norway
| | - Igo G Guimarães
- Aquaculture Research Laboratory, Goiás Federal University, Jataí, GO, 75801-615, Brazil
| | - Elisabeth Holen
- Institute of Marine Research, P.O. Box 1870, Nordnes, N-5817, Bergen, Norway.
| |
Collapse
|
3
|
Tong F, Liu S, Yan B, Li X, Ruan S, Yang S. Endogenous ornithine decarboxylase/polyamine system mediated the antagonist role of insulin/PEG-CMCS preconditioning against heart ischemia/reperfusion injury in diabetes mellitus. Int J Nanomedicine 2018; 13:2507-2520. [PMID: 29719397 PMCID: PMC5922236 DOI: 10.2147/ijn.s160848] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Insulin has shown antioxidation and cytoprotective effects to decrease heart ischemia/reperfusion injury (HI/RI) in diabetes mellitus (DM), but the role of insulin/poly(ethylene glycol)-carboxymethyl chitosan (PEG-CMCS) on HI/RI in DM is not known. This research explored whether insulin/PEG-CMCS revealed a protective effect on HI/RI in DM through ornithine decarboxylase (ODC)/polyamine systems. MATERIALS AND METHODS Diabetes was induced via streptozotocin (STZ) in Sprague Dawley (SD) rats, which suffered from HI via blocking the left circumflex artery for 45 minutes, followed by 2 hours of reperfusion. α-Difluoromethylornithine-ethylglyoxal bis (guanylhydrazone) (DFMO-EGBG) and insulin/PEG-CMCS were administered to diabetic rats to explore their roles on severity of HI/RI. RESULTS Insulin could be fleetly and efficiently loaded via the nanocarrier PEG-CMCS at pH =6, showing efficient loading and stable release. In addition, insulin/PEG-CMCS showed significant hypoglycemic activity in diabetic rats. On the other hand, ischemia/reperfusion obviously augmented the contents of creatine kinase (CK), lactic dehydrogenase (LDH), putrescine (Pu), myocardial infarct size, and NF-κB and spermidine/spermine N'-acetyltransferase (SSAT) expressions and decreased the levels of spermine (Sp), polyamine pools (PAs), heart rate (HR), coronary blood flow (CF), left ventricular developed pressure (LVDP), and ODC expression, compared with Sham. Administration of insulin and insulin/PEG-CMCS both reduced the contents of CK, LDH, Pu, myocardial infarct size, and NF-κB and SSAT expressions and increased the levels of Sp, PAs, HR, CF, LVDP, and ODC expression, while insulin/PEG-CMCS significantly indicated the protective results, and DFMO-EGBG showed the opposite effects. CONCLUSION The research showed that insulin/PEG-CMCS could play a protective effect on HR/RI in diabetic rats via its antioxidative, antiapoptotic, and anti-inflammatory roles and modulating ODC/polyamine systems.
Collapse
Affiliation(s)
- Fei Tong
- Department of Endocrinology and Diabetes, The First Affiliated Hospital, Xiamen University, Xiamen, China
- Department of Pathology and Pathophysiology, Provincial Key Discipline of Pharmacology, Jiaxing University Medical College, Jiaxing, China
| | - Suhuan Liu
- Department of Endocrinology and Diabetes, The First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Bing Yan
- Department of Endocrinology and Diabetes, The First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Xuejun Li
- Department of Endocrinology and Diabetes, The First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Shiwei Ruan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shuyu Yang
- Department of Endocrinology and Diabetes, The First Affiliated Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Jeong JW, Cha HJ, Han MH, Hwang SJ, Lee DS, Yoo JS, Choi IW, Kim S, Kim HS, Kim GY, Hong SH, Park C, Lee HJ, Choi YH. Spermidine Protects against Oxidative Stress in Inflammation Models Using Macrophages and Zebrafish. Biomol Ther (Seoul) 2018; 26:146-156. [PMID: 28365977 PMCID: PMC5839493 DOI: 10.4062/biomolther.2016.272] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 12/25/2016] [Accepted: 01/18/2017] [Indexed: 01/10/2023] Open
Abstract
Spermidine is a naturally occurring polyamine compound that has recently emerged with anti-aging properties and suppresses inflammation and oxidation. However, its mechanisms of action on anti-inflammatory and antioxidant effects have not been fully elucidated. In this study, the potential of spermidine for reducing pro-inflammatory and oxidative effects in lipopolysaccharide (LPS)-stimulated macrophages and zebrafish was explored. Our data indicate that spermidine significantly inhibited the production of pro-inflammatory mediators such as nitric oxide (NO) and prostaglandin E2 (PGE2), and cytokines including tumor necrosis factor-α and interleukin-1β in RAW 264.7 macrophages without any significant cytotoxicity. The protective effects of spermidine accompanied by a marked suppression in their regulatory gene expression at the transcription levels. Spermidine also attenuated the nuclear translocation of NF-κB p65 subunit and reduced LPS-induced intracellular accumulation of reactive oxygen species (ROS) in RAW 264.7 macrophages. Moreover, spermidine prevented the LPS-induced NO production and ROS accumulation in zebrafish larvae and was found to be associated with a diminished recruitment of neutrophils and macrophages. Although more work is needed to fully understand the critical role of spermidine on the inhibition of inflammation-associated migration of immune cells, our findings clearly demonstrate that spermidine may be a potential therapeutic intervention for the treatment of inflammatory and oxidative disorders.
Collapse
Affiliation(s)
- Jin-Woo Jeong
- Anti-Aging Research Center and Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Hee-Jae Cha
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Min Ho Han
- Natural products Research Team, Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Su Jung Hwang
- Department of Pharmacy, College of Pharmacy, Inje University, Gimhae 50834, Republic of Korea
| | - Dae-Sung Lee
- Natural products Research Team, Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Jong Su Yoo
- Natural products Research Team, Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Su Hyun Hong
- Anti-Aging Research Center and Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences & Human Ecology, Dongeui University, Busan 47340, Republic of Korea
| | - Hyo-Jong Lee
- Department of Pharmacy, College of Pharmacy, Inje University, Gimhae 50834, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center and Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea
| |
Collapse
|
5
|
Li C, Brazill JM, Liu S, Bello C, Zhu Y, Morimoto M, Cascio L, Pauly R, Diaz-Perez Z, Malicdan MCV, Wang H, Boccuto L, Schwartz CE, Gahl WA, Boerkoel CF, Zhai RG. Spermine synthase deficiency causes lysosomal dysfunction and oxidative stress in models of Snyder-Robinson syndrome. Nat Commun 2017; 8:1257. [PMID: 29097652 PMCID: PMC5668419 DOI: 10.1038/s41467-017-01289-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 09/06/2017] [Indexed: 02/07/2023] Open
Abstract
Polyamines are tightly regulated polycations that are essential for life. Loss-of-function mutations in spermine synthase (SMS), a polyamine biosynthesis enzyme, cause Snyder-Robinson syndrome (SRS), an X-linked intellectual disability syndrome; however, little is known about the neuropathogenesis of the disease. Here we show that loss of dSms in Drosophila recapitulates the pathological polyamine imbalance of SRS and causes survival defects and synaptic degeneration. SMS deficiency leads to excessive spermidine catabolism, which generates toxic metabolites that cause lysosomal defects and oxidative stress. Consequently, autophagy-lysosome flux and mitochondrial function are compromised in the Drosophila nervous system and SRS patient cells. Importantly, oxidative stress caused by loss of SMS is suppressed by genetically or pharmacologically enhanced antioxidant activity. Our findings uncover some of the mechanisms underlying the pathological consequences of abnormal polyamine metabolism in the nervous system and may provide potential therapeutic targets for treating SRS and other polyamine-associated neurological disorders.
Collapse
Affiliation(s)
- Chong Li
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Jennifer M Brazill
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Sha Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, China
| | - Christofer Bello
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Marie Morimoto
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Lauren Cascio
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | - Rini Pauly
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | - Zoraida Diaz-Perez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - May Christine V Malicdan
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
- Office of the Clinical Director, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, China
| | - Luigi Boccuto
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | - Charles E Schwartz
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | - William A Gahl
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
- Office of the Clinical Director, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Cornelius F Boerkoel
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, China.
| |
Collapse
|
6
|
Spermidine alleviates experimental autoimmune encephalomyelitis through inducing inhibitory macrophages. Cell Death Differ 2016; 23:1850-1861. [PMID: 27447115 PMCID: PMC5071574 DOI: 10.1038/cdd.2016.71] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/31/2016] [Accepted: 06/22/2016] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic and debilitating autoimmune disease, characterized by chronic inflammatory demyelination in the nervous tissue and subsequent neurological dysfunction. Spermidine, a natural polyamine, has been shown to affect inflammation in some experimental models. We show here that spermidine could alleviate experimental autoimmune encephalomyelitis (EAE), a model for MS, through regulating the infiltration of CD4+ T cells and macrophages in central nervous system. Unexpectedly, we found that spermidine treatment of MOG-specific T cells did not affect their pathogenic potency upon adaptive transfer; however, spermidine diminished the ability of macrophages in activating MOG-specific T cells ex vivo. Depletion of macrophages in diseased mice completely abolished the therapeutic effect of spermidine, indicating a critical role of spermidine-activated macrophages. Mechanistically, spermidine was found to specifically suppress the expression of interleukin-1beta (IL-1β), IL-12 and CD80 while enhance the expression of arginase 1 in macrophages. Interestingly, macrophages from spermidine-treated mice could also reverse EAE progression, while pretreatment of those macrophages with the arginase 1 inhibitor abrogated the therapeutic effect. Therefore, our studies revealed a critical role of macrophages in spermidine-mediated treatment on EAE and provided novel information for better management of MS.
Collapse
|
7
|
Nowotarski SL, Feith DJ, Shantz LM. Skin Carcinogenesis Studies Using Mouse Models with Altered Polyamines. CANCER GROWTH AND METASTASIS 2015; 8:17-27. [PMID: 26380554 PMCID: PMC4558889 DOI: 10.4137/cgm.s21219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 12/16/2022]
Abstract
Nonmelanoma skin cancer (NMSC) is a major health concern worldwide. With increasing numbers in high-risk groups such as organ transplant recipients and patients taking photosensitizing medications, the incidence of NMSC continues to rise. Mouse models of NMSC allow us to better understand the molecular signaling cascades involved in skin tumor development in order to identify novel therapeutic strategies. Here we review the models designed to determine the role of the polyamines in NMSC development and maintenance. Elevated polyamines are absolutely required for tumor growth, and dysregulation of their biosynthetic and catabolic enzymes has been observed in NMSC. Studies using mice with genetic alterations in epidermal polyamines suggest that they play key roles in tumor promotion and epithelial cell survival pathways, and recent clinical trials indicate that pharmacological inhibitors of polyamine metabolism show promise in individuals at high risk for NMSC.
Collapse
Affiliation(s)
- Shannon L Nowotarski
- Department of Biochemistry, The Pennsylvania State University Berks College, Reading, PA, USA
| | - David J Feith
- University of Virginia Cancer Center and Department of Medicine, Hematology and Oncology, University of Virginia, Charlottesville, VA, USA
| | - Lisa M Shantz
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
8
|
Exercise training preserves ischemic preconditioning in aged rat hearts by restoring the myocardial polyamine pool. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:457429. [PMID: 25404991 PMCID: PMC4227379 DOI: 10.1155/2014/457429] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/06/2014] [Accepted: 09/21/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Ischemic preconditioning (IPC) strongly protects against myocardial ischemia reperfusion (IR) injury. However, IPC protection is ineffective in aged hearts. Exercise training reduces the incidence of age-related cardiovascular disease and upregulates the ornithine decarboxylase (ODC)/polyamine pathway. The aim of this study was to investigate whether exercise can reestablish IPC protection in aged hearts and whether IPC protection is linked to restoration of the cardiac polyamine pool. METHODS Rats aging 3 or 18 months perform treadmill exercises with or without gradient respectively for 6 weeks. Isolated hearts and isolated cardiomyocytes were exposed to an IR and IPC protocol. RESULTS IPC induced an increase in myocardial polyamines by regulating ODC and spermidine/spermine acetyltransferase (SSAT) in young rat hearts, but IPC did not affect polyamine metabolism in aged hearts. Exercise training inhibited the loss of preconditioning protection and restored the polyamine pool by activating ODC and inhibiting SSAT in aged hearts. An ODC inhibitor, α-difluoromethylornithine, abolished the recovery of preconditioning protection mediated by exercise. Moreover, polyamines improved age-associated mitochondrial dysfunction in vitro. CONCLUSION Exercise appears to restore preconditioning protection in aged rat hearts, possibly due to an increase in intracellular polyamines and an improvement in mitochondrial function in response to a preconditioning stimulus.
Collapse
|
9
|
Battaglia V, Shields CD, Murray-Stewart T, Casero RA. Polyamine catabolism in carcinogenesis: potential targets for chemotherapy and chemoprevention. Amino Acids 2014; 46:511-9. [PMID: 23771789 PMCID: PMC3795954 DOI: 10.1007/s00726-013-1529-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/30/2013] [Indexed: 01/01/2023]
Abstract
Polyamines, including spermine, spermidine, and the precursor diamine, putrescine, are naturally occurring polycationic alkylamines that are required for eukaryotic cell growth, differentiation, and survival. This absolute requirement for polyamines and the need to maintain intracellular levels within specific ranges require a highly regulated metabolic pathway primed for rapid changes in response to cellular growth signals, environmental changes, and stress. Although the polyamine metabolic pathway is strictly regulated in normal cells, dysregulation of polyamine metabolism is a frequent event in cancer. Recent studies suggest that the polyamine catabolic pathway may be involved in the etiology of some epithelial cancers. The catabolism of spermine to spermidine utilizes either the one-step enzymatic reaction of spermine oxidase (SMO) or the two-step process of spermidine/spermine N (1)-acetyltransferase (SSAT) coupled with the peroxisomal enzyme N (1)-acetylpolyamine oxidase. Both catabolic pathways produce hydrogen peroxide and a reactive aldehyde that are capable of damaging DNA and other critical cellular components. The catabolic pathway also depletes the intracellular concentrations of spermidine and spermine, which are free radical scavengers. Consequently, the polyamine catabolic pathway in general and specifically SMO and SSAT provide exciting new targets for chemoprevention and/or chemotherapy.
Collapse
Affiliation(s)
- Valentina Battaglia
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Christina DeStefano Shields
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Program in Molecular and Translational Toxicology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21231, USA
| | - Tracy Murray-Stewart
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert A. Casero
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
10
|
Keinänen TA, Hyvönen MT, Alhonen L, Vepsäläinen J, Khomutov AR. Selective regulation of polyamine metabolism with methylated polyamine analogues. Amino Acids 2013; 46:605-20. [PMID: 24022706 DOI: 10.1007/s00726-013-1587-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/27/2013] [Indexed: 12/18/2022]
Abstract
Polyamine metabolism is intimately linked to the physiological state of the cell. Low polyamines levels promote growth cessation, while increased concentrations are often associated with rapid proliferation or cancer. Delicately balanced biosynthesis, catabolism, uptake and excretion are very important for maintaining the intracellular polyamine homeostasis, and deregulated polyamine metabolism is associated with imbalanced metabolic red/ox state. Although many cellular targets of polyamines have been described, the precise molecular mechanisms in these interactions are largely unknown. Polyamines are readily interconvertible which complicate studies on the functions of the individual polyamines. Thus, non-metabolizable polyamine analogues, like carbon-methylated analogues, are needed to circumvent that problem. This review focuses on methylated putrescine, spermidine and spermine analogues in which at least one hydrogen atom attached to polyamine carbon backbone has been replaced by a methyl group. These analogues allow the regulation of both metabolic and catabolic fates of the parent molecule. Substituting the natural polyamines with methylated analogue(s) offers means to study either the functions of an individual polyamine or the effects of altered polyamine metabolism on cell physiology. In general, gem-dimethylated analogues are considered to be non-metabolizable by polyamine catabolizing enzymes spermidine/spermine-N¹-acetyltransferase and acetylpolyamine oxidase and they support short-term cellular proliferation in many experimental models. Monomethylation renders the analogues chiral, offering some advantage over gem-dimethylated analogues in the specific regulation of polyamine metabolism. Thus, methylated polyamine analogues are practical tools to meet existing biological challenges in solving the physiological functions of polyamines.
Collapse
|
11
|
Smirnova OA, Isaguliants MG, Hyvonen MT, Keinanen TA, Tunitskaya VL, Vepsalainen J, Alhonen L, Kochetkov SN, Ivanov AV. Chemically induced oxidative stress increases polyamine levels by activating the transcription of ornithine decarboxylase and spermidine/spermine-N1-acetyltransferase in human hepatoma HUH7 cells. Biochimie 2012; 94:1876-1883. [PMID: 22579641 DOI: 10.1016/j.biochi.2012.04.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 04/26/2012] [Indexed: 01/23/2023]
Abstract
Biogenic polyamines spermine and spermidine participate in numerous cellular processes including transcription, RNA processing and translation. Specifically, they counteract oxidative stress, an alteration of cell redox balance involved in generation and progression of various pathological states including cancer. Here, we investigated how chemically induced oxidative stress affects polyamine metabolism, specifically the expression and activities of enzymes catalyzing polyamine synthesis (ornithine decarboxylase; ODC) and degradation (spermidine/spermine-N(1)-acetyltransferase; SSAT), in human hepatoma cells. Oxidative stress induced the up-regulation of ODC and SSAT gene transcription mediated by Nrf2, and in case of SSAT, also by NF-κB transcription factors. Activation of transcription led to the elevated intracellular activities of both enzymes. The balance in antagonistic activities of ODC and SSAT in the stressed hepatoma cells was shifted towards polyamine biosynthesis, which resulted in increased intracellular levels of putrescine, spermidine, and spermine. Accumulation of putrescine is indicating for accelerated degradation of polyamines by SSAT - acetylpolyamine oxidase (APAO) pathway generating toxic products that promote carcinogenesis, whereas accelerated polyamine synthesis via activation of ODC is favorable for proliferation of cells including those sub-lethally damaged by oxidative stress.
Collapse
Affiliation(s)
- Olga A Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, 119991 Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Choi YH, Park HY. Anti-inflammatory effects of spermidine in lipopolysaccharide-stimulated BV2 microglial cells. J Biomed Sci 2012; 19:31. [PMID: 22433014 PMCID: PMC3320531 DOI: 10.1186/1423-0127-19-31] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/20/2012] [Indexed: 01/27/2023] Open
Abstract
Background Spermidine, a naturally occurring polyamine, displays a wide variety of internal biological activities including cell growth and proliferation. However, the molecular mechanisms responsible for its anti-inflammatory activity have not yet been elucidated. Methods The anti-inflammatory properties of spermidine were studied using lipopolysaccharide (LPS)-stimulated murine BV2 microglia model. As inflammatory parameters, the production of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin (IL)-6 and tumor necrosis factor (TNF)-α were evaluated. We also examined the spermidine's effect on the activity of nuclear factor-kappaB (NF-κB), and the phosphoinositide 3-kinase (PI3K)/Akt and mitogen-activated protein kinases (MAPKs) pathways. Results Pretreatment with spermidine prior to LPS treatment significantly inhibited excessive production of NO and PGE2 in a dose-dependent manner, and was associated with down-regulation of expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Spermidine treatment also attenuated the production of pro-inflammatory cytokines, including IL-6 and TNF-α, by suppressing their mRNA expressions. The mechanism underlying spermidine-mediated attenuation of inflammation in BV2 cells appeared to involve the suppression of translocation of NF-κB p65 subunit into the nucleus, and the phosphorylation of Akt and MAPKs. Conclusions The results indicate that spermidine appears to inhibit inflammation stimulated by LPS by blocking the NF-κB, PI3K/Akt and MAPKs signaling pathways in microglia.
Collapse
Affiliation(s)
- Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan, Republic of Korea.
| | | |
Collapse
|
13
|
Cerrada-Gimenez M, Häkkinen MR, Vepsäläinen J, Auriola S, Alhonen L, Keinänen TA. Polyamine flux analysis by determination of heavy isotope incorporation from 13C, 15N-enriched amino acids into polyamines by LC–MS/MS. Amino Acids 2011; 42:451-60. [DOI: 10.1007/s00726-011-1024-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 05/24/2011] [Indexed: 11/29/2022]
|
14
|
Jin HT, Lämsä T, Nordback PH, Hyvönen MT, Räty S, Nordback I, Herzig KH, Alhonen L, Sand J. Polyamine catabolism in relation to trypsin activation and apoptosis in experimental acute pancreatitis. Pancreatology 2011; 11:83-91. [PMID: 21525776 DOI: 10.1159/000327260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 03/01/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND Overinduced polyamine catabolism (PC) in a transgenic rat model has been suggested to be a mediator of trypsin activation which is important in acinar cell necrosis. PC has also been observed in experimental taurodeoxycholate pancreatitis. We hypothesized that PC may be a mediator of trypsin activation in taurodeoxycholate pancreatitis. METHODS Pancreatitis was induced in wild-type rats by 2 or 6% taurodeoxycholate infusion or in transgenic rats by overexpressing spermidine/spermine N(1)-acetyltransferase (SSAT). The time courses of necrosis, caspase-3 immunostaining, SSAT, polyamine levels, and trypsinogen activation peptide (TAP) were monitored. The effect of the polyamine analogue bismethylspermine (Me(2)Spm) was investigated. RESULTS In a transgenic pancreatitis model, TAP and acinar necrosis increased simultaneously after the activation of SSAT, depletion of spermidine, and development of apoptosis. In taurodeoxycholate pancreatitis, necrosis developed along with the accumulation of TAP. SSAT was activated simultaneously or after TAP accumulation and less than in the transgenic model, with less depletion of spermidine than in the transgenic model. Supplementation with Me(2)Spm ameliorated the extent of acinar necrosis at 24 h, but contrary to previous findings in the transgenic model, in the taurodeoxycholate model it did not affect trypsin activation. Compared with the transgenic model, no extensive apoptosis was found in taurodeoxycholate pancreatitis. CONCLUSIONS Contrary to transgenic SSAT-overinduced pancreatitis, PC may not be a mediator of trypsin activation in taurodeoxycholate pancreatitis. The beneficial effect of polyamine supplementation on necrosis in taurodeoxycholate pancreatitis may rather be mediated by other mechanisms than amelioration of trypsin activation. and IAP.
Collapse
Affiliation(s)
- Hai-Tao Jin
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
This chapter provides an overview of the polyamine field and introduces the 32 other chapters that make up this volume. These chapters provide a wide range of methods, advice, and background relevant to studies of the function of polyamines, the regulation of their content, their role in disease, and the therapeutic potential of drugs targeting polyamine content and function. The methodology provided in this new volume will enable laboratories already working in this area to expand their experimental techniques and facilitate the entry of additional workers into this rapidly expanding field.
Collapse
Affiliation(s)
- Anthony E Pegg
- College of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, PA, USA
| | | |
Collapse
|
16
|
Hyvönen MT, Sinervirta R, Keinänen TA, Fashe T, Grigorenko N, Khomutov AR, Vepsäläinen J, Alhonen L. Acute pancreatitis induced by activated polyamine catabolism is associated with coagulopathy: effects of alpha-methylated polyamine analogs on hemostasis. Pancreatology 2010; 10:208-21. [PMID: 20453551 DOI: 10.1159/000243730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 09/21/2009] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS Polyamines are ubiquitous organic cations essential for cellular proliferation and tissue integrity. We have previously shown that pancreatic polyamine depletion in rats overexpressing the catabolic enzyme, spermidine/spermine N(1)-acetyltransferase (SSAT), results in the development of severe acute pancreatitis, and that therapeutic administration of metabolically stable alpha-methylated polyamine analogs protects the animals from pancreatitis-associated mortality. Our aim was to elucidate the therapeutic mechanism(s) of alpha-methylspermidine (MeSpd). METHODS The effect of MeSpd on hemostasis and the extent of organ failure were studied in SSAT transgenic rats with either induced pancreatitis or lipopolysaccharide (LPS)-induced coagulopathy. The effect of polyamines on fibrinolysis and coagulation was also studied in vitro. RESULTS Pancreatitis caused a rapid development of intravascular coagulopathy, as assessed by prolonged coagulation times, decreased plasma fibrinogen level and antithrombin activity, enhanced fibrinolysis, reduced platelet count and presence of schistocytes. Therapeutic administration of MeSpd restored these parameters to almost control levels within 24 h. In vitro, polyamines dose-dependently inhibited fibrinolysis and intrinsic coagulation pathway. In LPS-induced coagulopathy, SSAT transgenic rats were more sensitive to the drug than their syngeneic littermates, and MeSpd-ameliorated LPS-induced coagulation disorders. CONCLUSION Pancreatitis-associated mortality in SSAT rats is due to coagulopathy that is alleviated by treatment with MeSpd.
Collapse
Affiliation(s)
- M T Hyvönen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Jin HT, Räty S, Minkkinen M, Järvinen S, Sand J, Alhonen L, Nordback I. Changes in blood polyamine levels in human acute pancreatitis. Scand J Gastroenterol 2010; 44:1004-11. [PMID: 19444716 DOI: 10.1080/00365520902964713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Experimental studies have shown that pancreatic activation of polyamine catabolism occurs during the early stage of acute pancreatitis. Changes in pancreatic polyamines are reflected in the red blood cell (RBC) polyamine contents, correlating with the extent of pancreatic necrosis. The aim of this human study was to examine the changes in polyamine levels in the RBCs of patients with acute pancreatitis. MATERIAL AND METHODS Twenty-four patients with acute pancreatitis (7 alcoholic, 10 gallstone and 7 of unknown etiology) were recruited in the study. Eighteen patients with non-pancreatic acute abdominal diseases were included as controls, and 6 volunteers were studied as references. Blood samples were collected on admission and during hospitalization to assess polyamine levels. After clinical recovery, the patients revisited the clinic, and RBC polyamine levels were measured again. For comparison, plasma interleukin-6 (IL-6), IL-10 and C-reactive protein (CRP) were measured. RESULTS In acute pancreatitis patients, there was no difference in RBC polyamine levels on admission compared with those in controls or in volunteers. Putrescine levels on admission were higher in patients with pancreatic necrosis than in patients without necrosis, but there was no difference in spermidine and spermine levels. Patients with pancreatitis of unknown etiology had significantly higher levels of polyamines on admission and throughout hospitalization, but they also had more necrosis, which explained the difference in multivariate analysis. Spermidine and spermine levels increased after clinical recovery. RBC putrescine correlated with IL-6 and IL-10, and spermine correlated with CRP. CONCLUSIONS The results of this study suggest that RBC polyamines change in human acute pancreatitis in several respects, as has been previously observed in experimental pancreatitis.
Collapse
Affiliation(s)
- Hai-Tao Jin
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland.
| | | | | | | | | | | | | |
Collapse
|
18
|
Cerrada-Gimenez M, Häyrinen J, Juutinen S, Reponen T, Jänne J, Alhonen L. Proteomic analysis of livers from a transgenic mouse line with activated polyamine catabolism. Amino Acids 2009; 38:613-22. [PMID: 20012117 DOI: 10.1007/s00726-009-0420-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 09/08/2009] [Indexed: 01/19/2023]
Abstract
We have generated a transgenic mouse line that over expresses the rate-controlling enzyme of the polyamine catabolism, spermidine/spermine N (1)-acetyltransferase, under the control of a heavy metal inducible promoter. This line is characterized by a notable increase in SSAT activity in liver, pancreas and kidneys and a moderate increase in the rest of the tissues. SSAT induction results in an enhanced polyamine catabolism manifested as a depletion of spermidine and spermine and an overaccumulation of putrescine in all tissues. To study how the activation of polyamine catabolism affects other metabolic pathways, protein expression pattern of the livers of transgenic animals was analyzed by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. A total of 23 proteins were shown to be differentially expressed in the transgenic from the wild-type animals. Many of the identified proteins showed expression patterns associated with polyamine catabolism activation. However, the expression pattern of other proteins, such as repression of GST pi and selenium-binding protein 2 and 60 kDa heat-shock protein, could be explained by the overexpression of peroxisome proliferator-activated receptor gamma co-activator 1alpha in response to depleted ATP pools. The activation of the latter proteins is thought to lead to the improved insulin sensitivity seen in the MT-SSAT animals.
Collapse
Affiliation(s)
- Marc Cerrada-Gimenez
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, P.O.Box 1627, 70211 Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
19
|
Cutaneous application of alpha-methylspermidine activates the growth of resting hair follicles in mice. Amino Acids 2009; 38:583-90. [PMID: 19956989 DOI: 10.1007/s00726-009-0421-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 09/24/2009] [Indexed: 01/29/2023]
Abstract
Recent studies using transgenic animals have revealed a crucial role for polyamines in the development and the growth of skin and hair follicles. In mammals, the growth of hair is characterized by three main cyclic phases of transformation, including a rapid growth phase (anagen), an apoptosis-driven regression phase (catagen) and a relatively quiescent resting phase (telogen). The polyamine pool during the anagen phase is higher than in telogen and catagen phases. In this study, we used alpha-methylspermidine, a metabolically stable polyamine analog, to artificially elevate the polyamine pool during telogen. This manipulation was sufficient to induce hair growth in telogen phase mice after 2 weeks of daily topical application. The application site was characterized by typical features of anagen, such as pigmentation, growing hair follicles, proliferation of follicular keratinocytes and upregulation of beta-catenin. The analog penetrated the protective epidermal layer of the skin and could be detected in dermis. The natural polyamines were partially replaced by the analog in the application site. However, the combined pool of natural spermidine and alpha-methylspermidine exceeded the physiological spermidine pool in telogen phase skin. These results highlight the role of polyamines in hair cycle regulation and show that it is possible to control the process of hair growth using physiologically stable polyamine analogs.
Collapse
|
20
|
alpha-Methylspermidine protects against carbon tetrachloride-induced hepatic and pancreatic damage. Amino Acids 2009; 38:575-81. [PMID: 19956991 DOI: 10.1007/s00726-009-0418-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 09/06/2009] [Indexed: 01/08/2023]
Abstract
The role of polyamines in carbon tetrachloride (CCl(4))-induced organ injury was studied in syngenic rats and transgenic rats with activated polyamine catabolism. In syngenic rats, administration of CCl(4) resulted in the induction of hepatic spermidine/spermine N(1)-acetyltransferase (SSAT), accumulation of putrescine, reduction in spermine level and appearance of moderate hepatic injury within 24 h. Upon treatment with CCl(4), transgenic rats overexpressing SSAT displayed induction of both hepatic and pancreatic SSAT, with subsequent accumulation of putrescine and decrease of both spermidine and spermine pools. Administration of CCl(4) in SSAT transgenic rats induced not only massive hepatic injury, but also severe acute necrotizing pancreatitis. Pretreatment of the animals with catabolically stable functional polyamine mimetic, alpha-methylspermidine (MeSpd) prevented pancreatic and hepatic injury in SSAT rats and markedly reduced liver damage in syngenic animals. As assessed by immunostaining of proliferating cell nuclear antigen, MeSpd increased the amount of regenerating hepatocytes in both genotypes. These results show that CCl(4) induces hepatic and pancreatic polyamine catabolism, and the extent of organ damage correlates with the degree of polyamine depletion. Furthermore, MeSpd protects against CCl(4)-induced hepatic and pancreatic damage and promotes tissue regeneration.
Collapse
|
21
|
Abstract
In addition to polyamine homoeostasis, it has become increasingly clear that polyamine catabolism can play a dominant role in drug response, apoptosis and the response to stressful stimuli, and contribute to the aetiology of several pathological states, including cancer. The highly inducible enzymes SSAT (spermidine/spermine N1-acetyltransferase) and SMO (spermine oxidase) and the generally constitutively expressed APAO (N1-acetylpolyamine oxidase) appear to play critical roles in many normal and disease processes. The dysregulation of polyamine catabolism frequently accompanies several disease states and suggests that such dysregulation may both provide useful insight into disease mechanism and provide unique druggable targets that can be exploited for therapeutic benefit. Each of these enzymes has the potential to alter polyamine homoeostasis in response to multiple cell signals and the two oxidases produce the reactive oxygen species H2O2 and aldehydes, each with the potential to produce pathological states. The activity of SSAT provides substrates for APAO or substrates for the polyamine exporter, thus reducing the intracellular polyamine concentration, the net effect of which depends on the magnitude and rate of any increase in SSAT. SSAT may also influence cellular metabolism via interaction with other proteins and by perturbing the content of acetyl-CoA and ATP. The goal of the present review is to cover those aspects of polyamine catabolism that have an impact on disease aetiology or treatment and to provide a solid background in this ever more exciting aspect of polyamine biology.
Collapse
Affiliation(s)
- Robert A Casero
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA.
| | | |
Collapse
|
22
|
Involvement of the ornithine decarboxylase/polyamine system in precondition-induced cardioprotection through an interaction with PKC in rat hearts. Mol Cell Biochem 2009; 332:135-44. [DOI: 10.1007/s11010-009-0183-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 06/09/2009] [Indexed: 12/13/2022]
|
23
|
Khomutov AR, Keinanen TA, Grigorenko NA, Hyvonen MT, Uimari A, Pietila M, Cerrada-Gimenez M, Simonian AR, Khomutov MA, Vepsalainen J, Alhonen L, Janne J. Methylated analogs of spermine and spermidine as tools to investigate cellular functions of polyamines and enzymes of their metabolism. Mol Biol 2009. [DOI: 10.1134/s0026893309020083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
24
|
A polyamine analog bismethylspermine ameliorates severe pancreatitis induced by intraductal infusion of taurodeoxycholate. Surgery 2008; 144:49-56. [PMID: 18571584 DOI: 10.1016/j.surg.2008.03.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 03/30/2008] [Indexed: 01/26/2023]
Abstract
BACKGROUND Stable polyamine homeostasis is important for cell survival and regeneration. Our experimental studies have shown that catabolism of spermidine and spermine to putrescine is associated with the development of pancreatitis. We investigated the pathogenetic role of polyamine catabolism by studying the effect of a methylated polyamine analog on taurodeoxycholate-induced acute experimental pancreatitis. METHODS Acute pancreatitis was induced by infusion of sodium taurodeoxycholate (2%) into the pancreatic duct. Bismethylspermine (Me(2)Spm) was administered as a pretreatment before the induction of pancreatitis or as a treatment after the induction of pancreatitis. The sham operation included laparotomy only. Pancreas tissue and blood were sampled at 24 h and 72 h after the infusion of taurodeoxycholate and studied for pancreatitis severity (serum amylase activity, pancreatic water content, and histology) and polyamine catabolism, which includes spermidine/spermine N(1)-acetyltransferase (SSAT) activity as well as spermidine, spermine, and putrescine concentrations in the pancreas. RESULTS Sodium taurodeoxycholate-induced acute pancreatitis manifests as increases in serum amylase and pancreatic water content, leukocytosis, and acinar cell necrosis in the pancreas. The activity of SSAT increased significantly together with an increase in the ratios of pancreatic putrescine/spermidine and putrescine/spermine at 24 h, which indicates SSAT-induced polyamine catabolism. Pancreatic water content and necrosis were reduced significantly by the treatment with Me(2)Spm at 24 h but not at 72 h when the polyamine homeostasis had recovered, and the pancreatitis had progressed. CONCLUSIONS Taurodeoxycholate-induced acute pancreatitis was associated with activation of polyamine catabolism in the pancreas. The polyamine analog Me(2)Spm ameliorated the injury in the early stage, but it did not ameliorate the late progression of the pancreatic necrosis at 72 h. Thus, besides proteolytic enzyme activation and the cascades of inflammation, polyamine catabolism may be an important pathogenetic mediator of the early stages of acute pancreatitis.
Collapse
|
25
|
Abstract
Spermidine/spermine-N(1)-acetyltransferase (SSAT) regulates cellular polyamine content. Its acetylated products are either excreted from the cell or oxidized by acetylpolyamine oxidase. Since polyamines play critical roles in normal and neoplastic growth and in ion channel regulation, SSAT is a key enzyme in these processes. SSAT is very highly regulated. Its content is adjusted in response to alterations in polyamine content to maintain polyamine homeostasis. Certain polyamine analogs can mimic the induction of SSAT and cause a loss of normal polyamines. This may have utility in cancer chemotherapy. SSAT activity is also induced via a variety of other stimuli, including toxins, hormones, cytokines, nonsteroidal anti-inflammatory agents, natural products, and stress pathways, and by ischemia-reperfusion injury. These increases are initiated by alterations in Sat1 gene transcription reinforced by alterations at the other regulatory steps, including protein turnover, mRNA processing, and translation. Transgenic manipulation of SSAT activity has revealed that SSAT activity links polyamine metabolism to lipid and carbohydrate metabolism by means of alterations in the content of acetyl-CoA and ATP. A high level of SSAT stimulates flux through the polyamine biosynthetic pathway, since biosynthetic enzymes are induced in response to the fall in polyamines. This sets up a futile cycle in which ATP is used to generate S-adenosylmethionine for polyamine biosynthesis and acetyl-CoA is consumed in the acetylation reaction. A variety of other effects of increased SSAT activity include death of pancreatic cells, blockage of regenerative tissue growth, behavioral changes, keratosis follicularis spinulosa decalvans, and hair loss. These are very likely due to changes in polyamine and putrescine levels, although increased oxidative stress via the oxidation of acetylated polyamines may also contribute. Recently, it was found that the SSAT protein and/or a related protein, thialysine acetyltransferase, interacts with a number of other important proteins, including the hypoxia-inducible factor-1 alpha-subunit, the p65 subunit of NF-kappaB, and alpha9beta1-integrin, altering the function of these proteins. It is not yet clear whether this functional alteration involves protein acetylation, local polyamine concentration changes, or other effects. It has been suggested that SSAT may also be a useful target in diseases other than cancer, but the wide-ranging physiological and pathophysiological effects of altered SSAT expression will require very careful limitation of such strategies to the relevant cells to avoid toxic effects.
Collapse
Affiliation(s)
- Anthony E Pegg
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|