1
|
Silva MA, Salgueiro CA. Multistep Signaling in Nature: A Close-Up of Geobacter Chemotaxis Sensing. Int J Mol Sci 2021; 22:ijms22169034. [PMID: 34445739 PMCID: PMC8396549 DOI: 10.3390/ijms22169034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022] Open
Abstract
Environmental changes trigger the continuous adaptation of bacteria to ensure their survival. This is possible through a variety of signal transduction pathways involving chemoreceptors known as methyl-accepting chemotaxis proteins (MCP) that allow the microorganisms to redirect their mobility towards favorable environments. MCP are two-component regulatory (or signal transduction) systems (TCS) formed by a sensor and a response regulator domain. These domains synchronize transient protein phosphorylation and dephosphorylation events to convert the stimuli into an appropriate cellular response. In this review, the variability of TCS domains and the most common signaling mechanisms are highlighted. This is followed by the description of the overall cellular topology, classification and mechanisms of MCP. Finally, the structural and functional properties of a new family of MCP found in Geobacter sulfurreducens are revisited. This bacterium has a diverse repertoire of chemosensory systems, which represents a striking example of a survival mechanism in challenging environments. Two G. sulfurreducens MCP—GSU0582 and GSU0935—are members of a new family of chemotaxis sensor proteins containing a periplasmic PAS-like sensor domain with a c-type heme. Interestingly, the cellular location of this domain opens new routes to the understanding of the redox potential sensing signaling transduction pathways.
Collapse
Affiliation(s)
- Marta A. Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Carlos A. Salgueiro
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Correspondence:
| |
Collapse
|
2
|
Bazurto JV, Nayak DD, Ticak T, Davlieva M, Lee JA, Hellenbrand CN, Lambert LB, Benski OJ, Quates CJ, Johnson JL, Patel JS, Ytreberg FM, Shamoo Y, Marx CJ. EfgA is a conserved formaldehyde sensor that leads to bacterial growth arrest in response to elevated formaldehyde. PLoS Biol 2021; 19:e3001208. [PMID: 34038406 PMCID: PMC8153426 DOI: 10.1371/journal.pbio.3001208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/25/2021] [Indexed: 01/07/2023] Open
Abstract
Normal cellular processes give rise to toxic metabolites that cells must mitigate. Formaldehyde is a universal stressor and potent metabolic toxin that is generated in organisms from bacteria to humans. Methylotrophic bacteria such as Methylorubrum extorquens face an acute challenge due to their production of formaldehyde as an obligate central intermediate of single-carbon metabolism. Mechanisms to sense and respond to formaldehyde were speculated to exist in methylotrophs for decades but had never been discovered. Here, we identify a member of the DUF336 domain family, named efgA for enhanced formaldehyde growth, that plays an important role in endogenous formaldehyde stress response in M. extorquens PA1 and is found almost exclusively in methylotrophic taxa. Our experimental analyses reveal that EfgA is a formaldehyde sensor that rapidly arrests growth in response to elevated levels of formaldehyde. Heterologous expression of EfgA in Escherichia coli increases formaldehyde resistance, indicating that its interaction partners are widespread and conserved. EfgA represents the first example of a formaldehyde stress response system that does not involve enzymatic detoxification. Thus, EfgA comprises a unique stress response mechanism in bacteria, whereby a single protein directly senses elevated levels of a toxic intracellular metabolite and safeguards cells from potential damage.
Collapse
Affiliation(s)
- Jannell V. Bazurto
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
- Department of Plant and Microbial Biology, University of Minnesota, Twin Cities, Minnesota, United States of America
- Microbial and Plant Genomics Institute, University of Minnesota, Twin Cities, Minnesota, United States of America
- Biotechnology Institute, University of Minnesota, Twin Cities, Minnesota, United States of America
| | - Dipti D. Nayak
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
| | - Tomislav Ticak
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
| | - Milya Davlieva
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Jessica A. Lee
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Chandler N. Hellenbrand
- Department of Plant and Microbial Biology, University of Minnesota, Twin Cities, Minnesota, United States of America
| | - Leah B. Lambert
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Olivia J. Benski
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Caleb J. Quates
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
| | - Jill L. Johnson
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
| | - Jagdish Suresh Patel
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
| | - F. Marty Ytreberg
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
- Department of Physics, University of Idaho, Moscow, Idaho, United States of America
| | - Yousif Shamoo
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Christopher J. Marx
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
3
|
Wang L, Pan Y, Yuan ZH, Zhang H, Peng BY, Wang FF, Qian W. Two-Component Signaling System VgrRS Directly Senses Extracytoplasmic and Intracellular Iron to Control Bacterial Adaptation under Iron Depleted Stress. PLoS Pathog 2016; 12:e1006133. [PMID: 28036380 PMCID: PMC5231390 DOI: 10.1371/journal.ppat.1006133] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/12/2017] [Accepted: 12/16/2016] [Indexed: 12/02/2022] Open
Abstract
Both iron starvation and excess are detrimental to cellular life, especially for animal and plant pathogens since they always live in iron-limited environments produced by host immune responses. However, how organisms sense and respond to iron is incompletely understood. Herein, we reveal that in the phytopathogenic bacterium Xanthomonas campestris pv. campestris, VgrS (also named ColS) is a membrane-bound receptor histidine kinase that senses extracytoplasmic iron limitation in the periplasm, while its cognate response regulator, VgrR (ColR), detects intracellular iron excess. Under iron-depleted conditions, dissociation of Fe3+ from the periplasmic sensor region of VgrS activates the VgrS autophosphorylation and subsequent phosphotransfer to VgrR, an OmpR-family transcription factor that regulates bacterial responses to take up iron. VgrR-VgrS regulon and the consensus DNA binding motif of the transcription factor VgrR were dissected by comparative proteomic and ChIP-seq analyses, which revealed that in reacting to iron-depleted environments, VgrR directly or indirectly controls the expressions of hundreds of genes that are involved in various physiological cascades, especially those associated with iron-uptake. Among them, we demonstrated that the phosphorylated VgrR tightly represses the transcription of a special TonB-dependent receptor gene, tdvA. This regulation is a critical prerequisite for efficient iron uptake and bacterial virulence since activation of tdvA transcription is detrimental to these processes. When the intracellular iron accumulates, the VgrR-Fe2+ interaction dissociates not only the binding between VgrR and the tdvA promoter, but also the interaction between VgrR and VgrS. This relieves the repression in tdvA transcription to impede continuous iron uptake and avoids possible toxic effects of excessive iron accumulation. Our results revealed a signaling system that directly senses both extracytoplasmic and intracellular iron to modulate bacterial iron homeostasis. The biological function of iron is like a “double-edge sword” to all cellular life since iron starvation or iron excess leads to cell death. For animal and plant pathogens, they have to compete for iron with their hosts since iron-limitation generally is an immune response against microbial infection. However, how pathogens detect extracellular and intracellular iron concentrations remains unclear. Here we show that a plant bacterial pathogen employs a membrane-bound sensor histidine kinase, VgrS, to directly detect extracytoplasmic iron starvation and activate iron uptake accordingly. As a prerequisite, VgrS phosphorylates cognate VgrR to shut down the transcription of a downstream gene, tdvA, whose expression is harmful to absorb iron and bacterial virulence. However, as intracellular iron concentration increases, the ferrous iron binds to VgrR to release its repression on the tdvA transcription, which results in the block of continuous iron uptake to avoid toxic effect of the metal. Therefore, VgrS and VgrR detect extracytoplasmic and intracellular iron, respectively, and systematically modulate cellular homeostasis to promote bacterial survival in iron-depleted environments, such as in host plant.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yue Pan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Hui Yuan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Huan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bao-Yu Peng
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fang-Fang Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
4
|
Busche T, Winkler A, Wedderhoff I, Rückert C, Kalinowski J, Ortiz de Orué Lucana D. Deciphering the Transcriptional Response Mediated by the Redox-Sensing System HbpS-SenS-SenR from Streptomycetes. PLoS One 2016; 11:e0159873. [PMID: 27541358 PMCID: PMC4991794 DOI: 10.1371/journal.pone.0159873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/08/2016] [Indexed: 12/30/2022] Open
Abstract
The secreted protein HbpS, the membrane-embedded sensor kinase SenS and the cytoplasmic response regulator SenR from streptomycetes have been shown to form a novel type of signaling pathway. Based on structural biology as well as different biochemical and biophysical approaches, redox stress-based post-translational modifications in the three proteins were shown to modulate the activity of this signaling pathway. In this study, we show that the homologous system, named here HbpSc-SenSc-SenRc, from the model species Streptomyces coelicolor A3(2) provides this bacterium with an efficient defense mechanism under conditions of oxidative stress. Comparative analyses of the transcriptomes of the Streptomyces coelicolor A3(2) wild-type and the generated hbpSc-senSc-senRc mutant under native and oxidative-stressing conditions allowed to identify differentially expressed genes, whose products may enhance the anti-oxidative defense of the bacterium. Amongst others, the results show an up-regulated transcription of genes for biosynthesis of cysteine and vitamin B12, transport of methionine and vitamin B12, and DNA synthesis and repair. Simultaneously, transcription of genes for degradation of an anti-oxidant compound is down-regulated in a HbpSc-SenSc-SenRc-dependent manner. It appears that HbpSc-SenSc-SenRc controls the non-enzymatic response of Streptomyces coelicolor A3(2) to counteract the hazardous effects of oxidative stress. Binding of the response regulator SenRc to regulatory regions of some of the studied genes indicates that the regulation is direct. The results additionally suggest that HbpSc-SenSc-SenRc may act in concert with other regulatory modules such as a transcriptional regulator, a two-component system and the Streptomyces B12 riboswitch. The transcriptomics data, together with our previous in vitro results, enable a profound characterization of the HbpS-SenS-SenR system from streptomycetes. Since homologues to HbpS-SenS-SenR are widespread in different actinobacteria with ecological and medical relevance, the data presented here will serve as a basis to elucidate the biological role of these homologues.
Collapse
Affiliation(s)
- Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Anika Winkler
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Ina Wedderhoff
- Applied Genetics of Microorganisms, Department of Biology and Chemistry, University of Osnabrueck, Osnabrueck, Barbarastraße 13, 49076, Osnabrueck, Germany
| | - Christian Rückert
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Darío Ortiz de Orué Lucana
- Applied Genetics of Microorganisms, Department of Biology and Chemistry, University of Osnabrueck, Osnabrueck, Barbarastraße 13, 49076, Osnabrueck, Germany
- * E-mail:
| |
Collapse
|
5
|
Muraki N, Kitatsuji C, Aono S. A new biological function of heme as a signaling molecule. J PORPHYR PHTHALOCYA 2015. [DOI: 10.1142/s1088424614501090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This mini-review presents a recent development of a new function of heme as a signaling molecule especially in the regulation of gene expression. Heme is biosynthesized as a prosthetic group for heme proteins, which play crucial roles for respiration, photosynthesis, and many other metabolic reactions. In some bacteria, exogenous heme molecules are used as a heme or an iron sources to be uptaken into cytoplasm. As free heme molecules are cytotoxic, the intracellular concentrations of biosynthesized or uptaken heme should be strictly controlled. In this mini-review, we summarize the biochemical and biophysical properties of the transcriptional regulators and heme-sensor proteins responsible for these regulatory systems to maintain heme homeostasis.
Collapse
Affiliation(s)
- Norifumi Muraki
- Okazaki Institute for Integrative Bioscience & Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Chihiro Kitatsuji
- Okazaki Institute for Integrative Bioscience & Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Shigetoshi Aono
- Okazaki Institute for Integrative Bioscience & Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| |
Collapse
|
6
|
Ortiz de Orué Lucana D, Fedosov SN, Wedderhoff I, Che EN, Torda AE. The extracellular heme-binding protein HbpS from the soil bacterium Streptomyces reticuli is an aquo-cobalamin binder. J Biol Chem 2014; 289:34214-28. [PMID: 25342754 PMCID: PMC4256353 DOI: 10.1074/jbc.m114.585489] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 10/22/2014] [Indexed: 11/06/2022] Open
Abstract
The extracellular protein HbpS from Streptomyces reticuli interacts with iron ions and heme. It also acts in concert with the two-component sensing system SenS-SenR in response to oxidative stress. Sequence comparisons suggested that the protein may bind a cobalamin. UV-visible spectroscopy confirmed binding (Kd = 34 μm) to aquo-cobalamin (H2OCbl(+)) but not to other cobalamins. Competition experiments with the H2OCbl(+)-coordinating ligand CN(-) and comparison of mutants identified a histidine residue (His-156) that coordinates the cobalt ion of H2OCbl(+) and substitutes for water. HbpS·Cobalamin lacks the Asp-X-His-X-X-Gly motif seen in some cobalamin binding enzymes. Preliminary tests showed that a related HbpS protein from a different species also binds H2OCbl(+). Furthermore, analyses of HbpS-heme binding kinetics are consistent with the role of HbpS as a heme-sensor and suggested a role in heme transport. Given the high occurrence of HbpS-like sequences among Gram-positive and Gram-negative bacteria, our findings suggest a great functional versatility among these proteins.
Collapse
Affiliation(s)
- Darío Ortiz de Orué Lucana
- From the Applied Genetics of Microorganisms, Department of Biology/Chemistry, University of Osnabrueck, 49067 Osnabrueck, Germany,
| | - Sergey N Fedosov
- Department of Engineering, Aarhus University, 8000 Aarhus, Denmark, and
| | - Ina Wedderhoff
- From the Applied Genetics of Microorganisms, Department of Biology/Chemistry, University of Osnabrueck, 49067 Osnabrueck, Germany
| | - Edith N Che
- From the Applied Genetics of Microorganisms, Department of Biology/Chemistry, University of Osnabrueck, 49067 Osnabrueck, Germany
| | - Andrew E Torda
- Centre for Bioinformatics, Hamburg University, 20146 Hamburg, Germany
| |
Collapse
|
7
|
Iron binding at specific sites within the octameric HbpS protects streptomycetes from iron-mediated oxidative stress. PLoS One 2013; 8:e71579. [PMID: 24013686 PMCID: PMC3754957 DOI: 10.1371/journal.pone.0071579] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/08/2013] [Indexed: 12/26/2022] Open
Abstract
The soil bacterium Streptomyces reticuli secretes the octameric protein HbpS that acts as a sensory component of the redox-signalling pathway HbpS-SenS-SenR. This system modulates a genetic response on iron- and haem-mediated oxidative stress. Moreover, HbpS alone provides this bacterium with a defence mechanism to the presence of high concentrations of iron ions and haem. While the protection against haem has been related to its haem-binding and haem-degrading activity, the interaction with iron has not been studied in detail. In this work, we biochemically analyzed the iron-binding activity of a set of generated HbpS mutant proteins and present evidence showing the involvement of one internal and two exposed D/EXXE motifs in binding of high quantities of ferrous iron, with the internal E78XXE81 displaying the tightest binding. We additionally show that HbpS is able to oxidize ferrous to ferric iron ions. Based on the crystal structure of both the wild-type and the mutant HbpS-D78XXD81, we conclude that the local arrangement of the side chains from the glutamates in E78XXE81 within the octameric assembly is a pre-requisite for interaction with iron. The data obtained led us to propose that the exposed and the internal motif build a highly specific route that is involved in the transport of high quantities of iron ions into the core of the HbpS octamer. Furthermore, physiological studies using Streptomyces transformants secreting either wild-type or HbpS mutant proteins and different redox-cycling compounds led us to conclude that the iron-sequestering activity of HbpS protects these soil bacteria from the hazardous side effects of peroxide- and iron-based oxidative stress.
Collapse
|
8
|
Siedenburg G, Groves MR, Ortiz de Orué Lucana D. Novel redox-sensing modules: accessory protein- and nucleic acid-mediated signaling. Antioxid Redox Signal 2012; 16:668-77. [PMID: 22114914 PMCID: PMC3277925 DOI: 10.1089/ars.2011.4290] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SIGNIFICANCE Organisms have evolved both enzymatic and nonenzymatic pathways to prevent oxidative damage to essential macromolecules, including proteins and nucleic acids. Pathways modulated by different protein-based sensory and regulatory modules ensure a rapid and appropriate response. RECENT ADVANCES In contrast to classical two-component systems that possess internal sensory and regulatory modules, an accessory protein-dependent redox-signaling system has been recently characterized in bacteria. This system senses extracellular iron-mediated oxidative stress signals via an extracellularly located protein (HbpS). In vivo and in vitro studies allowed the elucidation of molecular mechanisms governing this system. Moreover, recent studies show that nucleic acids may also participate in redox-signaling during antioxidative stress response. CRITICAL ISSUES Research for novel redox-signaling systems is often focused on known types of sensory and regulatory modules. It is also often considered that the oxidative attack of macromolecules, leading to modification and degradation processes, is the final step during oxidative stress. However, recent studies have demonstrated that oxidatively modified macromolecules can be intermediary states in the process of redox-signaling. FUTURE DIRECTIONS Analyses of adjacent regions of genes encoding for known sensory and regulatory modules can identify potential accessory modules that may increase the complexity of sensing systems. Despite the fact that the involvement of DNA-mediated signaling in the modulation of one bacterial regulator protein has been analyzed in detail, further studies are necessary to identify additional regulators. Given the role of DNA in oxidative-stress response, it is tempting to hypothesize that RNA modules may also mediate redox-signaling.
Collapse
Affiliation(s)
- Gabriele Siedenburg
- Department of Applied Genetics of Microorganisms, University of Osnabrueck, Osnabrueck, Germany
| | | | | |
Collapse
|
9
|
Darbon E, Martel C, Nowacka A, Pegot S, Moreau PL, Virolle MJ. Transcriptional and preliminary functional analysis of the six genes located in divergence of phoR/phoP in Streptomyces lividans. Appl Microbiol Biotechnol 2012; 95:1553-66. [DOI: 10.1007/s00253-012-3995-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 01/14/2023]
|
10
|
Klare JP, Ortiz de Orué Lucana D. Conformational changes in the novel redox sensor protein HbpS studied by site-directed spin labeling and its turnover in dependence on the catalase-peroxidase CpeB. Antioxid Redox Signal 2012; 16:639-48. [PMID: 21846213 PMCID: PMC3277929 DOI: 10.1089/ars.2011.4080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS To establish conditions to study the oligomeric assembly of heme-binding protein (HbpS) in solution by applying the tools of site-directed spin labeling combined with pulse electron paramagnetic resonance (SDSL EPR) spectroscopy, as well as to analyze redox stress-based conformational changes in HbpS subunits within the oligomer in solution. In vivo elucidation of molecular mechanisms that control the downregulation of the novel redox-system HbpS-SenS-SenR. RESULTS Using a set of specifically generated HbpS mutants, and SDSL EPR spectroscopy, we show the octomeric assembly of HbpS in solution, and demonstrate that iron-mediated stress induces conformational changes in HbpS subunits within the octamer. We further demonstrate that the catalase-peroxidase CpeB protects HbpS from hydrogen peroxide (H(2)O(2))-mediated oxidative attack in vivo. Moreover, chromosomal inactivation of cpeB results in an enhanced sensitivity of the mutant to redox-cycling compounds. INNOVATION SDSL EPR has been used in this work for the first time to monitor redox-mediated conformational changes in a redox-sensing protein in solution. This work substantially explains redox-dependent dynamics in HbpS at the atomic level, and presents novel molecular mechanisms supporting downregulation of a signaling cascade. CONCLUSION Iron-mediated stress induces movements of subunits within the HbpS octomeric assembly. We suggest a motion of the C-terminal α-helix toward the preceding helical segment. These events upregulate the activity of the HbpS-SenS-SenR system, in which HbpS acts as an accessory element. The mycelia-associated CpeB, under the control of HbpS-SenS-SenR, protects the extracellular HbpS from oxidation in vivo. Thus, de novo synthesized HbpS proteins downregulate the HbpS-SenS-SenR signaling cascade.
Collapse
Affiliation(s)
- Johann P Klare
- Department of Physics, University of Osnabrueck, Osnabrueck, Germany
| | | |
Collapse
|
11
|
ROS-Mediated Signalling in Bacteria: Zinc-Containing Cys-X-X-Cys Redox Centres and Iron-Based Oxidative Stress. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2012:605905. [PMID: 21977318 PMCID: PMC3184428 DOI: 10.1155/2012/605905] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/15/2011] [Accepted: 07/20/2011] [Indexed: 01/26/2023]
Abstract
Bacteria are permanently in contact with reactive oxygen species (ROS), both over the course of their life cycle as well that present in their environment. These species cause damage to proteins, lipids, and nucleotides, negatively impacting the organism. To detect these ROS molecules and to stimulate the expression of proteins involved in antioxidative stress response, bacteria use a number of different protein-based regulatory and sensory systems. ROS-based stress detection mechanisms induce posttranslational modifications, resulting in overall conformational and structural changes within sensory proteins. The subsequent structural rearrangements result in changes of protein activity, which lead to regulated and appropriate response on the transcriptional level. Many bacterial enzymes and regulatory proteins possess a conserved signature, the zinc-containing redox centre Cys-X-X-Cys in which a disulfide bridge is formed upon oxidative stress. Other metal-dependent oxidative modifications of amino acid side-chains (dityrosines, 2-oxo-histidines, or carbonylation) also modulate the activity of redox-sensitive proteins. Using molecular biology, biochemistry, biophysical, and structure biology tools, molecular mechanisms involved in sensing and response to oxidative stress have been elucidated in detail. In this review, we analyze some examples of bacterial redox-sensing proteins involved in antioxidative stress response and focus further on the currently known molecular mechanism of function.
Collapse
|
12
|
Ortiz de Orué Lucana D, Roscher M, Honigmann A, Schwarz J. Iron-mediated oxidation induces conformational changes within the redox-sensing protein HbpS. J Biol Chem 2010; 285:28086-96. [PMID: 20571030 PMCID: PMC2934673 DOI: 10.1074/jbc.m110.127506] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/04/2010] [Indexed: 12/27/2022] Open
Abstract
HbpS is an extracellular oligomeric protein, which has been shown to act in concert with the two-component system SenS-SenR during the sensing of redox stress. HbpS can bind and degrade heme under oxidative stress conditions, leading to a free iron ion. The liberated iron is subsequently coordinated on the protein surface. Furthermore, HbpS has been shown to modulate the phosphorylation state of the sensor kinase SenS as, in the absence of oxidative stress conditions, HbpS inhibits SenS autophosphorylation whereas the presence of heme or iron ions and redox-stressing agents enhances it. Using HbpS wild type and mutants as well as different biochemical and biophysical approaches, we show that iron-mediated oxidative stress induces both secondary structure and overall intrinsic conformational changes within HbpS. We demonstrate in addition that HbpS is oxidatively modified, leading to the generation of highly reactive carbonyl groups and tyrosine-tyrosine bonds. Further examination of the crystal structure and subsequent mutational analyses allowed the identification of the tyrosine residue participating in dityrosine formation, which occurs between two monomers within the octomeric assembly. Therefore, it is proposed that oxidative modifications causing structural and conformational changes are responsible for the control of SenS and hence of the HbpS-SenS-SenR signaling cascade.
Collapse
Affiliation(s)
- Darío Ortiz de Orué Lucana
- Department of Applied Genetics of Microorganisms, Faculty of Biology/Chemistry, University of Osnabrück, 49069 Osnabrück, Germany.
| | | | | | | |
Collapse
|
13
|
Cheung J, Hendrickson WA. Sensor domains of two-component regulatory systems. Curr Opin Microbiol 2010; 13:116-23. [PMID: 20223701 DOI: 10.1016/j.mib.2010.01.016] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/22/2010] [Accepted: 01/27/2010] [Indexed: 11/26/2022]
Abstract
Two-component systems regulate crucial cellular processes in microorganisms, and each comprises a homodimeric histidine kinase receptor and a cytoplasmic response regulator. Histidine kinases, often membrane associated, detect environmental input at sensor domains and propagate resulting signals to catalytic cytoplasmic transmitter domains. Recent studies on the great diversity of sensor domains reveal patterns of domain organization and biochemical properties that provide insight into mechanisms of signaling. Despite the enormous sequence variability found within sensor input domains, they fall into a relatively small number of discrete structural classes. Subtle rearrangements along a structurally labile dimer interface, in the form of possible sliding or rotational motions, are propagated from the sensor domain to the transmitter domain to modulate activity of the receptor.
Collapse
Affiliation(s)
- Jonah Cheung
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
14
|
Ortiz de Orué Lucana D, Bogel G, Zou P, Groves MR. The oligomeric assembly of the novel haem-degrading protein HbpS is essential for interaction with its cognate two-component sensor kinase. J Mol Biol 2009; 386:1108-22. [PMID: 19244623 DOI: 10.1016/j.jmb.2009.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HbpS, a novel protein of previously unknown function from Streptomyces reticuli, is up-regulated in response to haemin- and peroxide-based oxidative stress and interacts with the SenS/SenR two-component signal transduction system. In this study, we report the high-resolution crystal structures (2.2 and 1.6 A) of octomeric HbpS crystallized in the presence and in the absence of haem and demonstrate that iron binds to surface-exposed lysine residues of an octomeric assembly. Based on an analysis of the crystal structures, we propose that the iron atom originates from the haem group and report subsequent biochemical experiments that demonstrate that HbpS possesses haem-degrading activity in vitro. Further examination of the crystal structures has identified amino acids that are essential for assembly of the octomer. The role of these residues is confirmed by biophysical experiments. Additionally, we show that while the octomeric assembly state of HbpS is not essential for haem-degrading activity, the assembly of HbpS is required for its interaction with the cognate sensor kinase, SenS. Homologs of HbpS and SenS/SenR have been identified in a number of medically and ecologically relevant bacterial species (including Vibrio cholerae, Klebsiella pneumoniae, Corynebacterium diphtheriae, Arthrobacter aurescens and Pseudomonas putida), suggesting the existence of a previously undescribed bacterial oxidative stress-response pathway common to Gram-negative and Gram-positive bacteria. Thus, the data presented provide the first insight into the function of a novel protein family and an example of an iron-mediated interaction between an accessory protein and its cognate two-component sensor kinase.
Collapse
Affiliation(s)
- Darío Ortiz de Orué Lucana
- Universität Osnabrück, FB Biologie/Chemie, Angewandte Genetik der Mikroorganismen, Barbarastrasse 13, 49069 Osnabrück, Germany
| | | | | | | |
Collapse
|
15
|
Ortiz de Orué Lucana D, Groves MR. The three-component signalling system HbpS-SenS-SenR as an example of a redox sensing pathway in bacteria. Amino Acids 2009; 37:479-86. [PMID: 19259771 DOI: 10.1007/s00726-009-0260-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 01/30/2009] [Indexed: 01/06/2023]
Abstract
The two-component system SenS-SenR and the extracellular HbpS protein of the cellulose degrader Streptomyces reticuli have been shown to act in concert as a novel system which detects redox stress. In vivo and in vitro experiments have led to the hypothesis that HbpS binds and degrades heme, communicating the extracellular presence of heme and oxidative stress to the membrane-embedded sensor histidine kinase SenS via a bound iron. The response regulator SenR would then up-regulate downstream signalling cascades, leading to the appropriate gene expression levels for bacterial survival in an oxidative environment. Sequence analysis has shown that homologs of HbpS and SenS-SenR exist in a number of ecologically and medically relevant bacterial species, suggesting the existence of a previously undescribed bacterial oxidative stress-response pathway common to both Gram-negative and Gram-positive bacteria. The presented report reviews the current knowledge of the function of this novel protein family consisting of an accessory protein and its cognate two-component system, which could be more properly described as a three-component system.
Collapse
|