1
|
Royet K, Kergoat L, Lutz S, Oriol C, Parisot N, Schori C, Ahrens CH, Rodrigue A, Gueguen E. High-Throughput Tn-Seq Screens Identify Both Known and Novel Pseudomonas putida KT2440 Genes Involved in Metal Tolerance. Environ Microbiol 2025; 27:e70095. [PMID: 40302248 PMCID: PMC12041740 DOI: 10.1111/1462-2920.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/17/2025] [Accepted: 03/24/2025] [Indexed: 05/02/2025]
Abstract
Industrial and urban activities release toxic chemical waste into the environment. Pseudomonas putida, a soil bacterium, is known to degrade hydrocarbons and xenobiotics, and possesses numerous genes associated with heavy metal tolerance. Most studies on metal tolerance in P. putida focus solely on over- or underexpressed genes, potentially overlooking important genes with unchanged expression. This study employed a Tn-seq approach to identify the essential genes required for P. putida growth under metal stress. This method enables the identification of mutants with altered fitness in the presence of excess metals. The screen successfully identified a number of known genes implicated in metal resistance, including czcA-1, cadA-3, cadR, and pcoA2, thereby validating the approach. Further analyses using targeted mutagenesis and complementation assays revealed PP_5337 as a putative transcriptional regulator involved in copper tolerance and the two-component system RoxSR (PP_0887/PP_0888) as a key determinant of cadmium tolerance. Additionally, PP_1663 and PP_5002 were identified as contributing to cadmium and cobalt tolerance, respectively. This study provides the first evidence linking these genes to metal tolerance, highlighting gaps in our understanding of metal tolerance mechanisms in P. putida and demonstrating the utility of Tn-seq for identifying novel tolerance determinants.
Collapse
Affiliation(s)
- Kevin Royet
- INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieUniversité Lyon 1VilleurbanneFrance
| | - Laura Kergoat
- INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieUniversité Lyon 1VilleurbanneFrance
| | - Stefanie Lutz
- Agroscope, Competence Division Method Development and AnalyticsMolecular EcologyZurichSwitzerland
| | - Charlotte Oriol
- INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieUniversité Lyon 1VilleurbanneFrance
| | | | - Christian Schori
- Agroscope, Competence Division Method Development and AnalyticsMolecular EcologyZurichSwitzerland
| | - Christian H. Ahrens
- Agroscope, Competence Division Method Development and AnalyticsMolecular EcologyZurichSwitzerland
- SIB, Swiss Institute of BioinformaticsZürichSwitzerland
| | - Agnes Rodrigue
- INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieUniversité Lyon 1VilleurbanneFrance
| | - Erwan Gueguen
- INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieUniversité Lyon 1VilleurbanneFrance
| |
Collapse
|
2
|
Kumar R, Singh A, Srivastava A. Xenosiderophores: bridging the gap in microbial iron acquisition strategies. World J Microbiol Biotechnol 2025; 41:69. [PMID: 39939429 DOI: 10.1007/s11274-025-04287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Microorganisms acquire iron from surrounding environment through specific iron chelators known as siderophores that can be of self-origin or synthesized by neighboring microbes. The latter are termed as xenosiderophores. The acquired iron supports their growth, survival, and pathogenesis. Various microorganisms possess the ability to utilize xenosiderophores, a mechanism popularly termed as 'siderophore piracy' besides synthesizing their own siderophores. This adaptability allows microorganisms to conserve energy by reducing the load of siderogenesis. Owing to the presence of xenosiderophore transport machinery, these microbial systems can be used for targeting antibiotics-siderophore conjugates to control pathogenesis and combat antimicrobial resistance. This review outlines the significance of xenosiderophore utilization for growth, stress management and virulence. Siderogenesis and the molecular mechanism of its uptake by related organisms have been discussed vividly. It focuses on potential applications like disease diagnostics, drug delivery, and combating antibiotic resistance. In brief, this review highlights the importance of xenosiderophores projecting them beyond their role as mere iron chelators.
Collapse
Affiliation(s)
- Ravinsh Kumar
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Ashutosh Singh
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Amrita Srivastava
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India.
| |
Collapse
|
3
|
Schalk IJ. Bacterial siderophores: diversity, uptake pathways and applications. Nat Rev Microbiol 2025; 23:24-40. [PMID: 39251840 DOI: 10.1038/s41579-024-01090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 09/11/2024]
Abstract
Iron is an essential nutrient for the growth, survival and virulence of almost all bacteria. To access iron, many bacteria produce siderophores, molecules with a high affinity for iron. Research has highlighted substantial diversity in the chemical structure of siderophores produced by bacteria, as well as remarkable variety in the molecular mechanisms involved in strategies for acquiring iron through these molecules. The metal-chelating properties of siderophores, characterized by their high affinity for iron and ability to chelate numerous other metals (albeit with lower affinity compared with iron), have also generated interest in diverse fields. Siderophores find applications in the environment, such as in bioremediation and agriculture, in which emerging and innovative strategies are being developed to address pollution and enhance nutrient availability for plants. Moreover, in medicine, siderophores could be used as a tool for novel antimicrobial therapies and medical imaging, as well as in haemochromatosis, thalassemia or cancer treatments. This Review offers insights into the diversity of siderophores, highlighting their potential applications in environmental and medical contexts.
Collapse
|
4
|
Tian K, Gu J, Wang Y, Zhang F, Zhou D, Qiu Q, Yu Y, Sun X, Chang M, Zhang X, Huo H. Removal of BPA by Pseudomonas asiatica P1: Synergistic response mechanism of toxicity resistance and biodegradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117410. [PMID: 39608155 DOI: 10.1016/j.ecoenv.2024.117410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/23/2024] [Accepted: 11/23/2024] [Indexed: 11/30/2024]
Abstract
Bisphenol A (BPA) is a globally concerning toxic pollutant, and microbial degradation is considered an effective method to treat BPA contamination. However, the inherent microbial toxicity of BPA is often overlooked, particularly the microbial mechanisms of resistance and detoxification against BPA. This study found that under the toxic stress of BPA, cbb3-type cytochrome c oxidase (cbb3-Cox) in the cells of Pseudomonas asiatica P1 (P. asiatica P1) was the first to resist the toxicity. Genes such as ccoNOQPG showed significant upregulation with an average log2FC value of 3.56. Subsequently, genes that are related to metal ion binding, transport, and DNA repair were upregulated in the middle to later phase, which enhanced the metabolic functions of the strains and induced strain mutations to assist P. asiatica P1 in resisting the BPA toxicity. Meanwhile, three potential BPA degradation genes were identified, among which sdrP1 was crucial to the BPA degradation and detoxification. After genetic recombination, sdrP1 achieved a degradation rate of 92.52 % for BPA. Furthermore, through various methods such as alkyl interactions, sdrP1 exhibited oxidation and demethylation to form lower toxic intermediate products and complete the biological detoxification of BPA. This study provides a systematic analysis of the toxicity resistance, biodegradation, and detoxification processes in bacterial BPA removal, refines the mechanism of BPA biodegradation and contributes to a more comprehensive and systematic understanding of the overall process of microbial removal of toxic pollutants.
Collapse
Affiliation(s)
- Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China; Ministry of Education, Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, China
| | - Jinming Gu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Yibing Wang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Fenglin Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Dandan Zhou
- Ministry of Education, Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, China; Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, Changchun 130117, China
| | - Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Yue Yu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Menghan Chang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Xinwen Zhang
- College of Pharmacy, Hainan Vocational University of Science and Technology, Haikou 571126, China
| | - Hongliang Huo
- Ministry of Education, Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, China; Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, Changchun 130117, China.
| |
Collapse
|
5
|
Moreno-Fenoll C, Ardré M, Rainey PB. Polar accumulation of pyoverdin and exit from stationary phase. MICROLIFE 2024; 5:uqae001. [PMID: 38370141 PMCID: PMC10873284 DOI: 10.1093/femsml/uqae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Pyoverdin is a water-soluble metal-chelator synthesized by members of the genus Pseudomonas and used for the acquisition of insoluble ferric iron. Although freely diffusible in aqueous environments, preferential dissemination of pyoverdin among adjacent cells, fine-tuning of intracellular siderophore concentrations, and fitness advantages to pyoverdin-producing versus nonproducing cells, indicate control of location and release. Here, using time-lapse fluorescence microscopy to track single cells in growing microcolonies of Pseudomonas fluorescens SBW25, we show accumulation of pyoverdin at cell poles. Accumulation occurs on cessation of cell growth, is achieved by cross-feeding in pyoverdin-nonproducing mutants and is reversible. Moreover, accumulation coincides with localization of a fluorescent periplasmic reporter, suggesting that pyoverdin accumulation at cell poles is part of the general cellular response to starvation. Compatible with this conclusion is absence of non-accumulating phenotypes in a range of pyoverdin mutants. Analysis of the performance of pyoverdin-producing and nonproducing cells under conditions promoting polar accumulation shows an advantage to accumulation on resumption of growth after stress. Examination of pyoverdin polar accumulation in a multispecies community and in a range of laboratory and natural species of Pseudomonas, including P. aeruginosa PAO1 and P. putida KT2440, confirms that the phenotype is characteristic of Pseudomonas.
Collapse
Affiliation(s)
- Clara Moreno-Fenoll
- Laboratory of Biophysics and Evolution, CBI, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Maxime Ardré
- Laboratory of Biophysics and Evolution, CBI, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
| | - Paul B Rainey
- Laboratory of Biophysics and Evolution, CBI, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| |
Collapse
|
6
|
Stein NV, Eder M, Burr F, Stoss S, Holzner L, Kunz HH, Jung H. The RND efflux system ParXY affects siderophore secretion in Pseudomonas putida KT2440. Microbiol Spectr 2023; 11:e0230023. [PMID: 37800935 PMCID: PMC10715066 DOI: 10.1128/spectrum.02300-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/28/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Gram-negative bacteria from the Pseudomonas group are survivors in various environmental niches. For example, the bacteria secrete siderophores to capture ferric ions under deficiency conditions. Tripartite efflux systems are involved in the secretion of siderophores, which are also important for antibiotic resistance. For one of these efflux systems, the resistance-nodulation-cell division transporter ParXY from the model organism Pseudomonas putida KT2440, we show that it influences the secretion of the siderophore pyoverdine in addition to its already known involvement in antibiotic resistance. Phenotypically, its role in pyoverdine secretion is only apparent when other pyoverdine secretion systems are inactive. The results confirm that the different tripartite efflux systems have overlapping substrate specificities and can at least partially functionally substitute for each other, especially in important physiological activities such as supplying the cell with iron ions. This fact must be taken into account when developing specific inhibitors for tripartite efflux systems.
Collapse
Affiliation(s)
- Nicola Victoria Stein
- Microbiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Michelle Eder
- Microbiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Fabienne Burr
- Microbiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Sarah Stoss
- Microbiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Lorenz Holzner
- Plant Biochemistry and Physiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Hans-Henning Kunz
- Plant Biochemistry and Physiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Heinrich Jung
- Microbiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| |
Collapse
|
7
|
Stein NV, Eder M, Brameyer S, Schwenkert S, Jung H. The ABC transporter family efflux pump PvdRT-OpmQ of Pseudomonas putida KT2440: purification and initial characterization. FEBS Lett 2023; 597:1403-1414. [PMID: 36807028 DOI: 10.1002/1873-3468.14601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/20/2023]
Abstract
Tripartite efflux systems of the ABC-type family transport a variety of substrates and contribute to the antimicrobial resistance of Gram-negative bacteria. PvdRT-OpmQ, a member of this family, is thought to be involved in the secretion of the newly synthesized and recycled siderophore pyoverdine in Pseudomonas species. Here, we purified and characterized the inner membrane component PvdT and the periplasmic adapter protein PvdR of the plant growth-promoting soil bacterium Pseudomonas putida KT2440. We show that PvdT possesses an ATPase activity that is stimulated by the addition of PvdR. In addition, we provide the first biochemical evidence for direct interactions between pyoverdine and PvdRT.
Collapse
Affiliation(s)
- Nicola Victoria Stein
- Microbiology, Faculty of Biology, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Michelle Eder
- Microbiology, Faculty of Biology, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Sophie Brameyer
- Microbiology, Faculty of Biology, Ludwig Maximilians University Munich, Martinsried, Germany.,Service Unit Bioanalytics, Faculty of Biology, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Serena Schwenkert
- Service Unit Mass Spectrometry of Biomolecules, Faculty of Biology, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Heinrich Jung
- Microbiology, Faculty of Biology, Ludwig Maximilians University Munich, Martinsried, Germany
| |
Collapse
|
8
|
A Review of Pseudomonas aeruginosa Metallophores: Pyoverdine, Pyochelin and Pseudopaline. BIOLOGY 2022; 11:biology11121711. [PMID: 36552220 PMCID: PMC9774294 DOI: 10.3390/biology11121711] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
P. aeruginosa is a common Gram-negative bacterium found in nature that causes severe infections in humans. As a result of its natural resistance to antibiotics and the ability of biofilm formation, the infection with this pathogen can be therapeutic challenging. During infection, P. aeruginosa produces secondary metabolites such as metallophores that play an important role in their virulence. Metallophores are metal ions chelating molecules secreted by bacteria, thus allowing them to survive in the host under metal scarce conditions. Pyoverdine, pyochelin and pseudopaline are the three metallophores secreted by P. aeruginosa. Pyoverdines are the primary siderophores that acquire iron from the surrounding medium. These molecules scavenge and transport iron to the bacterium intracellular compartment. Pyochelin is another siderophore produced by this bacterium, but in lower quantities and its affinity for iron is less than that of pyoverdine. The third metallophore, pseudopaline, is an opine narrow spectrum ion chelator that enables P. aeruginosa to uptake zinc in particular but can transport nickel and cobalt as well. This review describes all the aspects related to these three metallophore, including their main features, biosynthesis process, secretion and uptake when loaded by metals, in addition to the genetic regulation responsible for their synthesis and secretion.
Collapse
|
9
|
Qiao Y, Li Y, Ye Y, Yu Y, Wang W, Yao K, Zhou M. Gallium-Based Nanoplatform for Combating Multidrug-Resistant Pseudomonas aeruginosa and Postoperative Inflammation in Endophthalmitis Secondary to Cataract Surgery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51763-51775. [PMID: 36373472 DOI: 10.1021/acsami.2c15834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Postcataract endophthalmitis (PCE), a devastating complication following cataract surgeries, is one of the most crucial diseases causing irreversible eye blindness. Pseudomonas aeruginosa (PA), a multiple-drug-resistance (MDR) pathogen, always leads to uncontrolled infection and severe inflammation in PCE that can be difficult to treat by antibiotics. Therefore, it is urgent to develop new feasible strategies composed of both antibacterial and anti-inflammatory capabilities. Here, we report a multifunctional non-antibiotic nanoplatform (Ga-mSiO2-BFN) comprised of clinically approved gallium, mesoporous silica, and bromfenac (BFN) as a co-modified release system to simultaneously eradicate MDR-PA infection and cure inflammation for PCE. The released gallium ions can disrupt bacterial iron metabolism. Meanwhile, the simultaneously released BFN can suppresses the inflammation both postoperation and postinfection of PCE. In the PCE rabbit model, the slit-lamp dispersion and retro-illumination micrograph, ophthalmic clinical grading, and etiological histopathology analysis demonstrated that Ga-mSiO2-BFN could eradicate the MDR infection and alleviate the secondary inflammation from MDR-PA infection. Moreover, both cellular biocompatibility and in vivo animal model application verified the biocompatibility. A potential antibacterial mechanism implicated in the antibacterial action was demonstrated by comprehensive assays of iron antagonism evolutionary curve, colony autofluorescence, polymerase chain reaction, and electron microscopy, showing a repressing siderophore peptide pyoverdine, pyoverdine synthetase D, and interfering with bacterial DNA synthesis. All composites of our nanoplatform were FDA approved, making the Ga-mSiO2-BFN as a potentially promising therapeutic approach for treating MDR-PA in PCE accompanying satisfactory prognosis and prospects for clinical translations.
Collapse
Affiliation(s)
- Yue Qiao
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou 310009, China
| | - Yangyang Li
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
- Key Laboratory of Women's Reproductive Health Research of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yang Ye
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou 310009, China
| | - Yinhui Yu
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou 310009, China
| | - Wei Wang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou 310009, China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou 310009, China
| | - Min Zhou
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou 310009, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| |
Collapse
|
10
|
Yang J, Wencewicz TA. In Vitro Reconstitution of Fimsbactin Biosynthesis from Acinetobacter baumannii. ACS Chem Biol 2022; 17:2923-2935. [PMID: 36122366 DOI: 10.1021/acschembio.2c00573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Siderophores produced via nonribosomal peptide synthetase (NRPS) pathways serve as critical virulence factors for many pathogenic bacteria. Improved knowledge of siderophore biosynthesis guides the development of inhibitors, vaccines, and other therapeutic strategies. Fimsbactin A is a mixed ligand siderophore derived from human pathogenic Acinetobacter baumannii that contains phenolate-oxazoline, catechol, and hydroxamate metal chelating groups branching from a central l-Ser tetrahedral unit via amide and ester linkages. Fimsbactin A is derived from two molecules of l-Ser, two molecules of 2,3-dihydroxybenzoic acid (DHB), and one molecule of l-Orn and is a product of the fbs biosynthetic operon. Here, we report the complete in vitro reconstitution of fimsbactin A biosynthesis in a cell-free system using purified enzymes. We demonstrate the conversion of l-Orn to N1-acetyl-N1-hydroxy-putrescine (ahPutr) via ordered action of FbsJ (decarboxylase), FbsI (flavin N-monooxygenase), and FbsK (N-acetyltransferase). We achieve conversion of l-Ser, DHB, and l-Orn to fimsbactin A using FbsIJK in combination with the NRPS modules FbsEFGH. We also demonstrate chemoenzymatic conversion of synthetic ahPutr to fimsbactin A using FbsEFGH and establish the substrate selectivity for the NRPS adenylation domains in FbsH (DHB) and FbsF (l-Ser). We assign a role for the type II thioesterase FbsM in producing the shunt metabolite 2-(2,3-dihydroxyphenyl)-4,5-dihydrooxazole-4-carboxylic acid (DHB-oxa) via cleavage of the corresponding thioester intermediate that is tethered to NRPS peptidyl carrier domains during biosynthetic assembly. We propose a mechanism for branching NRPS-derived peptides via amide and ester linkages via the dynamic equilibration of N-DHB-Ser and O-DHB-Ser thioester intermediates via hydrolysis of DHB-oxa thioester intermediates. We also propose a genetic signature for NRPS "branching" in the presence of a terminating C-T-C motif (FbsG).
Collapse
Affiliation(s)
- Jinping Yang
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
11
|
Jin T, Ren J, Li Y, Bai B, Liu R, Wang Y. Plant growth-promoting effect and genomic analysis of the P. putida LWPZF isolated from C. japonicum rhizosphere. AMB Express 2022; 12:101. [PMID: 35917000 PMCID: PMC9346032 DOI: 10.1186/s13568-022-01445-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Plant growth-promoting rhizobacteria are a type of beneficial bacteria which inhabit in the rhizosphere and possess the abilities to promote plant growth. Pseudomonas putida LWPZF is a plant growth-promoting bacterium isolated from the rhizosphere soil of Cercidiphyllum japonicum. Inoculation treatment with LWPZF could significantly promote the growth of C. japonicum seedlings. P. putida LWPZF has a variety of plant growth-promoting properties, including the ability to solubilize phosphate, synthesize ACC deaminase and IAA. The P. putida LWPZF genome contained a circular chromosome (6,259,530 bp) and a circular plasmid (160,969 bp) with G+C contents of 61.75% and 58.25%, respectively. There were 5632 and 169 predicted protein-coding sequences (CDSs) on the chromosome and the plasmid respectively. Genome sequence analysis revealed lots of genes associated with biosynthesis of IAA, pyoverdine, ACC deaminase, trehalose, volatiles acetoin and 2,3-butanediol, 4-hydroxybenzoate, as well as gluconic acid contributing phosphate solubilization. Additionally, we identified many heavy metal resistance genes, including arsenate, copper, chromate, cobalt-zinc-cadmium, and mercury. These results suggest that P. putida LWPZF shows strong potential in the fields of biofertilizer, biocontrol and heavy metal contamination soil remediation. The data presented in this study will allow us to better understand the mechanisms of plant growth promotion, biocontrol, and anti-heavy metal of P. putida LWPZF.
Collapse
Affiliation(s)
- Tingting Jin
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China
| | - Jiahong Ren
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China.
| | - Yunling Li
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China
| | - Bianxia Bai
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China
| | - Ruixiang Liu
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China
| | - Ying Wang
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China
| |
Collapse
|
12
|
Vogel JGT, Wibowo JP, Fan H, Setroikromo R, Wang K, Dömling A, Dekker FJ, Quax WJ. Discovery of chromene compounds as inhibitors of PvdQ acylase of Pseudomonas aeruginosa. Microbes Infect 2022; 24:105017. [PMID: 35709935 DOI: 10.1016/j.micinf.2022.105017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022]
Abstract
The acquisition of iron is a crucial mechanism for the survival of pathogenic bacteria such as Pseudomonas aeruginosa in eukaryotic hosts. The key iron chelator in this organism is the siderophore pyoverdine, which was shown to be crucial for iron homeostasis. Pyoverdine is a non-ribosomal peptide with several maturation steps in the cytoplasm and others in the periplasmatic space. A key enzyme for its maturation is the acylase PvdQ. The inhibition of PvdQ stops the maturation of pyoverdine causing a significant imbalance in the iron homeostasis and hence can negatively influence the survival of P. aeruginosa. In this work, we successfully synthesized chromene-derived inhibitory molecules targeting PvdQ in a low micromolar range. In silico modeling as well as kinetic evaluations of the inhibitors suggest a competitive inhibition of the PvdQ function. Further, we evaluated the inhibitor in vivo on P. aeruginosa cells and report a dose-dependent reduction of pyoverdine formation. The compound also showed a protecting effect in a Galleria mellonella infection model.
Collapse
Affiliation(s)
- Jan G T Vogel
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713, AV, the Netherlands
| | - Joko P Wibowo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713, AV, the Netherlands; Faculty of Pharmacy, University of Muhammadiyah Banjarmasin, Jl. Gubernur Syarkawi, Barito Kuala, 70582, Indonesia
| | - Hillina Fan
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713, AV, the Netherlands
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713, AV, the Netherlands
| | - Kan Wang
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713, AV, the Netherlands
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713, AV, the Netherlands
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713, AV, the Netherlands
| | - Wim J Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713, AV, the Netherlands.
| |
Collapse
|
13
|
Zhang W, Yuan Y, Li S, Deng B, Zhang J, Li Z. Comparative transcription analysis of resistant mutants against four different antibiotics in Pseudomonas aeruginosa. Microb Pathog 2021; 160:105166. [PMID: 34480983 DOI: 10.1016/j.micpath.2021.105166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 11/28/2022]
Abstract
The emergence of antibiotic resistance has severely impaired the treatment of infections caused by Pseudomonas aeruginosa. There are few studies related to comparing the antibiotics resistance mechanisms of P. aeruginosa against different antibiotics. In this study, RNA sequencing was used to investigate the differences of transcriptome between wild strain and four antibiotics resistant strains of P. aeruginosa PAO1 (polymyxin B, ciprofloxacin, doxycycline, and ceftriaxone). Compared to the wild strain, 1907, 495, 2402, and 116 differentially expressed genes (DEGs) were identified in polymyxin B, ciprofloxacin, doxycycline, and ceftriaxone resistant PAO1, respectively. After analysis of genes related to antimicrobial resistance, we found genes implicated in biofilm formation (pelB, pelC, pelD, pelE, pelF, pelG, algA, algF, and alg44) were significantly upregulated in polymyxin B-resistant PAO1, efflux pump genes (mexA, mexB, oprM) and biofilm formation genes (pslJ, pslK and pslN) were upregulated in ciprofloxacin-resistant PAO1; other efflux pump genes (mexC, mexD, oprJ) were upregulated in doxycycline-resistant PAO1; ampC were upregulated in ceftriaxone-resistant PAO1. As a consequence of antibiotic resistance, genes related to virulence factors such as type Ⅱ secretion system (lasA, lasB and piv) were significantly upregulated in polymyxin B-resistant PAO1, and type Ⅲ secretion system (exoS, exoT, exoY, exsA, exsB, exsC, exsD, pcrV, popB, popD, pscC, pscE, pscG, and pscJ) were upregulated in doxycycline-resistant PAO1. While, ampC were upregulated in ceftriaxone-resistant PAO1. In addition, variants were obtained in wild type and four antibiotics resistant PAO1. Our findings provide a comparative transcriptome analysis of antibiotic resistant mutants selected by different antibiotics, and might assist in identifying potential therapeutic strategies for P. aeruginosa infection.
Collapse
Affiliation(s)
- Wenlu Zhang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yaping Yuan
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Shasha Li
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Bo Deng
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Jiaming Zhang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Zhongjie Li
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
14
|
Henderson PJF, Maher C, Elbourne LDH, Eijkelkamp BA, Paulsen IT, Hassan KA. Physiological Functions of Bacterial "Multidrug" Efflux Pumps. Chem Rev 2021; 121:5417-5478. [PMID: 33761243 DOI: 10.1021/acs.chemrev.0c01226] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial multidrug efflux pumps have come to prominence in human and veterinary pathogenesis because they help bacteria protect themselves against the antimicrobials used to overcome their infections. However, it is increasingly realized that many, probably most, such pumps have physiological roles that are distinct from protection of bacteria against antimicrobials administered by humans. Here we undertake a broad survey of the proteins involved, allied to detailed examples of their evolution, energetics, structures, chemical recognition, and molecular mechanisms, together with the experimental strategies that enable rapid and economical progress in understanding their true physiological roles. Once these roles are established, the knowledge can be harnessed to design more effective drugs, improve existing microbial production of drugs for clinical practice and of feedstocks for commercial exploitation, and even develop more sustainable biological processes that avoid, for example, utilization of petroleum.
Collapse
Affiliation(s)
- Peter J F Henderson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Claire Maher
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Liam D H Elbourne
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Ian T Paulsen
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Karl A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| |
Collapse
|
15
|
Gomez NO, Tetard A, Ouerdane L, Laffont C, Brutesco C, Ball G, Lobinski R, Denis Y, Plésiat P, Llanes C, Arnoux P, Voulhoux R. Involvement of the Pseudomonas aeruginosa MexAB-OprM efflux pump in the secretion of the metallophore pseudopaline. Mol Microbiol 2020; 115:84-98. [PMID: 32896017 DOI: 10.1111/mmi.14600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/07/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022]
Abstract
To overcome the metal restriction imposed by the host's nutritional immunity, pathogenic bacteria use high metal affinity molecules called metallophores. Metallophore-mediated metal uptake pathways necessitate complex cycles of synthesis, secretion, and recovery of the metallophore across the bacterial envelope. We recently discovered staphylopine and pseudopaline, two members of a new family of broad-spectrum metallophores important for bacterial survival during infections. Here, we are expending the molecular understanding of the pseudopaline transport cycle across the diderm envelope of the Gram-negative bacterium Pseudomonas aeruginosa. We first explored pseudopaline secretion by performing in vivo quantifications in various genetic backgrounds and revealed the specific involvement of the MexAB-OprM efflux pump in pseudopaline transport across the outer membrane. We then addressed the recovery part of the cycle by investigating the fate of the recaptured metal-loaded pseudopaline. To do so, we combined in vitro reconstitution experiments and in vivo phenotyping in absence of pseudopaline transporters to reveal the existence of a pseudopaline modification mechanism, possibly involved in the metal release following pseudopaline recovery. Overall, our data allowed us to provide an improved molecular model of secretion, recovery, and fate of this important metallophore by P. aeruginosa.
Collapse
Affiliation(s)
- Nicolas Oswaldo Gomez
- Laboratoire de Chimie Bactérienne (LCB) UMR7283, Institut de Microbiologie de la Méditerranée (IMM), CNRS, Aix-Marseille Université, Marseille, France
| | - Alexandre Tetard
- Laboratoire de Bactériologie, UMR CNRS 6249 Chrono-Environnement, Faculté de Médecine-Pharmacie, Université de Bourgogne Franche-Comté, Besançon, France
| | - Laurent Ouerdane
- Université de Pau et des Pays de l'Adour, e2s UPPA, CNRS, IPREM-UMR5254, Hélioparc, Pau, France
| | - Clémentine Laffont
- CEA, CNRS, Aix-Marseille Université, Institut de Biosciences et Biotechnologies d'Aix-Marseille, UMR, CEA Cadarache, Saint-Paul-lez Durance, France
| | - Catherine Brutesco
- CEA, CNRS, Aix-Marseille Université, Institut de Biosciences et Biotechnologies d'Aix-Marseille, UMR, CEA Cadarache, Saint-Paul-lez Durance, France
| | - Geneviève Ball
- Laboratoire de Chimie Bactérienne (LCB) UMR7283, Institut de Microbiologie de la Méditerranée (IMM), CNRS, Aix-Marseille Université, Marseille, France
| | - Ryszard Lobinski
- Université de Pau et des Pays de l'Adour, e2s UPPA, CNRS, IPREM-UMR5254, Hélioparc, Pau, France
| | - Yann Denis
- CNRS, Aix-Marseille Université, Institut de Microbiologie de la Méditerranée (IMM), Marseille, France
| | - Patrick Plésiat
- Laboratoire de Bactériologie, UMR CNRS 6249 Chrono-Environnement, Faculté de Médecine-Pharmacie, Université de Bourgogne Franche-Comté, Besançon, France
| | - Catherine Llanes
- Laboratoire de Bactériologie, UMR CNRS 6249 Chrono-Environnement, Faculté de Médecine-Pharmacie, Université de Bourgogne Franche-Comté, Besançon, France
| | - Pascal Arnoux
- CEA, CNRS, Aix-Marseille Université, Institut de Biosciences et Biotechnologies d'Aix-Marseille, UMR, CEA Cadarache, Saint-Paul-lez Durance, France
| | - Romé Voulhoux
- Laboratoire de Chimie Bactérienne (LCB) UMR7283, Institut de Microbiologie de la Méditerranée (IMM), CNRS, Aix-Marseille Université, Marseille, France
| |
Collapse
|
16
|
AlMatar M, Albarri O, Makky EA, Var I, Köksal F. A Glance on the Role of Bacterial Siderophore from the Perspectives of Medical and Biotechnological Approaches. Curr Drug Targets 2020; 21:1326-1343. [PMID: 32564749 DOI: 10.2174/1389450121666200621193018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/10/2020] [Accepted: 05/20/2020] [Indexed: 11/22/2022]
Abstract
Iron, which is described as the most basic component found in nature, is hard to be assimilated by microorganisms. It has become increasingly complicated to obtain iron from nature as iron (II) in the presence of oxygen oxidized to press (III) oxide and hydroxide, becoming unsolvable at neutral pH. Microorganisms appeared to produce organic molecules known as siderophores in order to overcome this condition. Siderophore's essential function is to connect with iron (II) and make it dissolvable and enable cell absorption. These siderophores, apart from iron particles, have the ability to chelate various other metal particles that have collocated away to focus the use of siderophores on wound care items. There is a severe clash between the host and the bacterial pathogens during infection. By producing siderophores, small ferric iron-binding molecules, microorganisms obtain iron. In response, host immune cells produce lipocalin 2 to prevent bacterial reuptake of siderophores loaded with iron. Some bacteria are thought to produce lipocalin 2-resistant siderophores to counter this risk. The aim of this article is to discuss the recently described roles and applications of bacterial siderophore.
Collapse
Affiliation(s)
- Manaf AlMatar
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | - Osman Albarri
- Department of Biotechnology, Institute of Natural and Applied Sciences (Fen Bilimleri Enstitusu) Cukurova University, Adana, Turkey
| | - Essam A Makky
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | - Işıl Var
- Department of Food Engineering, Agricultural Faculty, Cukurova University, Adana, Turkey
| | - Fatih Köksal
- Department of Medical Microbiology, Faculty of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
17
|
Hoffarth ER, Rothchild KW, Ryan KS. Emergence of oxygen- and pyridoxal phosphate-dependent reactions. FEBS J 2020; 287:1403-1428. [PMID: 32142210 DOI: 10.1111/febs.15277] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/29/2019] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Pyridoxal 5'-phosphate (PLP) is an organic cofactor employed by ~ 4% of enzymes. The structure of the PLP cofactor allows for the stabilization of carbanions through resonance. A small number of PLP-dependent enzymes employ molecular oxygen as a cosubstrate. Here, we review the biological roles and possible mechanisms of these enzymes, and we observe that these enzymes are found in multiple protein families, suggesting that reaction with oxygen might have emerged de novo in several protein families and thus could be directed to emerge again through laboratory evolution experiments.
Collapse
Affiliation(s)
- Elesha R Hoffarth
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | | | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Abstract
It is not fully understood how phosphate deficiency could influence the virulence of Pseudomonas aeruginosa through modulation of the bacterial QS systems. This report presents a systemic investigation on the impact of phosphate depletion on the hierarchy of quorum sensing systems of P. aeruginosa. The results showed that phosphate stress could have an extensive impact on the QS networks of this bacterial pathogen. Among the 7 QS regulatory genes representing the 3 sets of QS systems tested, 4 were significantly upregulated by phosphate depletion stress through the PhoR/PhoB two-component regulatory system, especially the upstream QS regulatory gene lasI. We also present evidence that the response regulator PhoB was a strong competitor against the las regulators LasR and RsaL for the lasI promoter, unveiling the mechanistic basis of the process by which phosphate stress could modulate the bacterial QS systems. The hierarchical quorum sensing (QS) systems of Pseudomonas aeruginosa, consisting of las, pqs, and rhl, coordinate the expression of bacterial virulence genes. Previous studies showed that under phosphate deficiency conditions, two-component regulatory system PhoRB could activate various genes involved in cytotoxicity through modulation of QS systems, but the mechanism by which PhoR/PhoB influences QS remains largely unknown. Here, we provide evidence that among the key QS regulatory genes in P. aeruginosa, rhlR, pqsA, mvfR, and lasI were activated by the response regulator PhoB under phosphate-depleted conditions. We show that PhoB is a strong competitor against LasR and RsaL for binding to the promoter of lasI and induces significant expression of lasI, rhlR, and mvfR. However, expression of lasI, encoding the signal 3-oxo-C12-HSL, was increased only marginally under the same phosphate-depleted conditions. This seeming inconsistency was attributed to the induction of pvdQ, which encodes an enzyme for degradation of 3-oxo-C12-HSL signal molecules. Taken together, the results from this study demonstrate that through the two-component regulatory system PhoR/PhoB, phosphate depletion stress could influence the QS network by modulating several key regulators, including lasI, rhlR, mvfR, and pvdQ. The findings highlight not only the potency of the PhoR/PhoB-mediated bacterial stress response mechanism but also the plasticity of the P. aeruginosa QS systems in coping with the changed environmental conditions. IMPORTANCE It is not fully understood how phosphate deficiency could influence the virulence of Pseudomonas aeruginosa through modulation of the bacterial QS systems. This report presents a systemic investigation on the impact of phosphate depletion on the hierarchy of quorum sensing systems of P. aeruginosa. The results showed that phosphate stress could have an extensive impact on the QS networks of this bacterial pathogen. Among the 7 QS regulatory genes representing the 3 sets of QS systems tested, 4 were significantly upregulated by phosphate depletion stress through the PhoR/PhoB two-component regulatory system, especially the upstream QS regulatory gene lasI. We also present evidence that the response regulator PhoB was a strong competitor against the las regulators LasR and RsaL for the lasI promoter, unveiling the mechanistic basis of the process by which phosphate stress could modulate the bacterial QS systems.
Collapse
|
19
|
Schalk IJ, Rigouin C, Godet J. An overview of siderophore biosynthesis among fluorescent Pseudomonads and new insights into their complex cellular organization. Environ Microbiol 2020; 22:1447-1466. [PMID: 32011068 DOI: 10.1111/1462-2920.14937] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 01/02/2023]
Abstract
Siderophores are iron-chelating molecules produced by bacteria to access iron, a key nutrient. These compounds have highly diverse chemical structures, with various chelating groups. They are released by bacteria into their environment to scavenge iron and bring it back into the cells. The biosynthesis of siderophores requires complex enzymatic processes and expression of the enzymes involved is very finely regulated by iron availability and diverse transcriptional regulators. Recent data have also highlighted the organization of the enzymes involved in siderophore biosynthesis into siderosomes, multi-enzymatic complexes involved in siderophore synthesis. An understanding of siderophore biosynthesis is of great importance, as these compounds have many potential biotechnological applications because of their metal-chelating properties and their key role in bacterial growth and virulence. This review focuses on the biosynthesis of siderophores produced by fluorescent Pseudomonads, bacteria capable of colonizing a large variety of ecological niches. They are characterized by the production of chromopeptide siderophores, called pyoverdines, which give the typical green colour characteristic of fluorescent pseudomonad cultures. Secondary siderophores are also produced by these strains and can have highly diverse structures (such as pyochelins, pseudomonine, yersiniabactin, corrugatin, achromobactin and quinolobactin).
Collapse
Affiliation(s)
- Isabelle J Schalk
- CNRS, UMR7242, ESBS, Illkirch, Strasbourg, France.,Université de Strasbourg, UMR7242, ESBS, Illkirch, Strasbourg, France
| | - Coraline Rigouin
- CNRS, UMR7242, ESBS, Illkirch, Strasbourg, France.,Université de Strasbourg, UMR7242, ESBS, Illkirch, Strasbourg, France
| | - Julien Godet
- Université de Strasbourg, Laboratoire de BioImagerie et Pathologies, UMR CNRS, 7021, Illkirch, France
| |
Collapse
|
20
|
Bonneau A, Roche B, Schalk IJ. Iron acquisition in Pseudomonas aeruginosa by the siderophore pyoverdine: an intricate interacting network including periplasmic and membrane proteins. Sci Rep 2020; 10:120. [PMID: 31924850 PMCID: PMC6954188 DOI: 10.1038/s41598-019-56913-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/18/2019] [Indexed: 01/06/2023] Open
Abstract
Pyoverdine (PVDI) has been reported to act both as a siderophore for scavenging iron (a key nutrient) and a signaling molecule for the expression of virulence factors. This compound is itself part of a core set of virulence factors produced by Pseudomonas aeruginosa during infections. Once secreted into the bacterial environment and having scavenged ferric iron, PVDI-Fe3+ is taken back into the P. aeruginosa periplasm via the outer membrane transporters FpvAI and FpvB. Iron release from PVDI in the bacterial periplasm involves numerous proteins encoded by the fpvGHJKCDEF genes and a mechanism of iron reduction. Here, we investigated the global interacting network between these various proteins using systematic bacterial two-hybrid screening. We deciphered a network of five interacting proteins composed of two inner-membrane proteins, FpvG (iron reductase) and FpvH (unknown function), and three periplasmic proteins, FpvJ (unknown function), FpvF (periplasmic PVDI-binding protein), and FpvC (iron periplasmic-binding protein). This interacting network strongly suggests the existence of a large protein machinery composed of these five proteins, all playing a role in iron acquisition by PVDI. Furthermore, we discovered an interaction between the periplasmic siderophore binding protein FpvF and the PvdRT-OpmQ efflux pump, also suggesting a role for FpvF in apo-PVDI recycling and secretion after iron delivery. These results highlight a multi-protein complex that drives iron release from PVDI in the periplasm of P. aeruginosa.
Collapse
Affiliation(s)
- Anne Bonneau
- CNRS, UMR7242, ESBS, Illkirch, Strasbourg, France.,Université de Strasbourg, UMR7242, ESBS, Illkirch, Strasbourg, France
| | - Béatrice Roche
- CNRS, UMR7242, ESBS, Illkirch, Strasbourg, France. .,Université de Strasbourg, UMR7242, ESBS, Illkirch, Strasbourg, France.
| | - Isabelle J Schalk
- CNRS, UMR7242, ESBS, Illkirch, Strasbourg, France. .,Université de Strasbourg, UMR7242, ESBS, Illkirch, Strasbourg, France.
| |
Collapse
|
21
|
In cellulo FRET-FLIM and single molecule tracking reveal the supra-molecular organization of the pyoverdine bio-synthetic enzymes in Pseudomonas aeruginosa. Q Rev Biophys 2020; 53:e1. [PMID: 31915092 DOI: 10.1017/s0033583519000155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The bio-synthesis of pyoverdine (PVD) in Pseudomonas aeruginosa involves multiple enzymatic steps including the action of non-ribosomal peptide synthetases (NRPSs). One hallmark of NRPS is their ability to make usage of non-proteinogenic amino-acids synthesized by co-expressed accessory enzymes. It is generally proposed that different enzymes of a secondary metabolic pathway assemble into large supra-molecular complexes. However, evidence for the assembly of sequential enzymes in the cellular context is sparse. Here, we used in cellulo single-molecule tracking and Förster resonance energy transfer measured by fluorescence lifetime microscopy (FRET-FLIM) to explore the spatial partitioning of the ornithine hydroxylase PvdA and its interactions with NRPS. We found PvdA was mostly diffusing bound to large complexes in the cytoplasm with a small exchangeable trapped fraction. FRET-FLIM clearly showed that PvdA is physically interacting with PvdJ, PvdI, PvdL, and PvdD, the four NRPS involved in the PVD pathway in Pseudomonas aeruginosa PAO1. The binding modes of PvdA were strikingly different according to the NRPS it is interacting with, suggesting that PvdA binding sites have co-evolved with the enzymatic active sites of NRPS. Our data provide evidence for strongly organized multi-enzymatic complexes responsible for the bio-synthesis of PVD and illustrate how binding sites have evolved to finely control the co-localization of sequential enzymes and promote metabolic pathway efficiency.
Collapse
|
22
|
Wibowo JP, Batista FA, van Oosterwijk N, Groves MR, Dekker FJ, Quax WJ. A novel mechanism of inhibition by phenylthiourea on PvdP, a tyrosinase synthesizing pyoverdine of Pseudomonas aeruginosa. Int J Biol Macromol 2019; 146:212-221. [PMID: 31899238 DOI: 10.1016/j.ijbiomac.2019.12.252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/06/2019] [Accepted: 12/28/2019] [Indexed: 12/18/2022]
Abstract
The biosynthesis of pyoverdine, the major siderophore of Pseudomonas aeruginosa, is a well-organized process involving a discrete number of enzyme-catalyzed steps. The final step of this process involves the PvdP tyrosinase, which converts ferribactin into pyoverdine. Thus, inhibition of the PvdP tyrosinase activity provides an attractive strategy to interfere with siderophore synthesis to manage P. aeruginosa infections. Here, we report phenylthiourea as a non-competitive inhibitor of PvdP for which we solved a crystal structure in complex with PvdP. The crystal structure indicates that phenylthiourea binds to an allosteric binding site and thereby interferes with its tyrosinase activity. We further provide proofs that PvdP tyrosinase inhibition by phenylthiourea requires the C-terminal lid region. This provides opportunities to develop inhibitors that target the allosteric site, which seems to be confined to fluorescent pseudomonads, and not the tyrosinase active site. Furthermore, increases the chances to identify PvdP inhibitors that selectively interfere with siderophore synthesis.
Collapse
Affiliation(s)
- Joko P Wibowo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands; Faculty of Pharmacy, University of Muhammadiyah Banjarmasin, Banjarmasin, Indonesia
| | - Fernando A Batista
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Niels van Oosterwijk
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Matthew R Groves
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Wim J Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands.
| |
Collapse
|
23
|
Arginine Biosynthesis Modulates Pyoverdine Production and Release in Pseudomonas putida as Part of the Mechanism of Adaptation to Oxidative Stress. J Bacteriol 2019; 201:JB.00454-19. [PMID: 31451546 DOI: 10.1128/jb.00454-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/22/2019] [Indexed: 12/28/2022] Open
Abstract
Iron is essential for most life forms. Under iron-limiting conditions, many bacteria produce and release siderophores-molecules with high affinity for iron-which are then transported into the cell in their iron-bound form, allowing incorporation of the metal into a wide range of cellular processes. However, free iron can also be a source of reactive oxygen species that cause DNA, protein, and lipid damage. Not surprisingly, iron capture is finely regulated and linked to oxidative-stress responses. Here, we provide evidence indicating that in the plant-beneficial bacterium Pseudomonas putida KT2440, the amino acid l-arginine is a metabolic connector between iron capture and oxidative stress. Mutants defective in arginine biosynthesis show reduced production and release of the siderophore pyoverdine and altered expression of certain pyoverdine-related genes, resulting in higher sensitivity to iron limitation. Although the amino acid is not part of the siderophore side chain, addition of exogenous l-arginine restores pyoverdine release in the mutants, and increased pyoverdine production is observed in the presence of polyamines (agmatine and spermidine), of which arginine is a precursor. Spermidine also has a protective role against hydrogen peroxide in P. putida, whereas defects in arginine and pyoverdine synthesis result in increased production of reactive oxygen species.IMPORTANCE The results of this study show a previously unidentified connection between arginine metabolism, siderophore turnover, and oxidative stress in Pseudomonas putida Although the precise molecular mechanisms involved have yet to be characterized in full detail, our data are consistent with a model in which arginine biosynthesis and the derived pathway leading to polyamine production function as a homeostasis mechanism that helps maintain the balance between iron uptake and oxidative-stress response systems.
Collapse
|
24
|
Cremer J, Melbinger A, Wienand K, Henriquez T, Jung H, Frey E. Cooperation in Microbial Populations: Theory and Experimental Model Systems. J Mol Biol 2019; 431:4599-4644. [PMID: 31634468 DOI: 10.1016/j.jmb.2019.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 01/07/2023]
Abstract
Cooperative behavior, the costly provision of benefits to others, is common across all domains of life. This review article discusses cooperative behavior in the microbial world, mediated by the exchange of extracellular products called public goods. We focus on model species for which the production of a public good and the related growth disadvantage for the producing cells are well described. To unveil the biological and ecological factors promoting the emergence and stability of cooperative traits we take an interdisciplinary perspective and review insights gained from both mathematical models and well-controlled experimental model systems. Ecologically, we include crucial aspects of the microbial life cycle into our analysis and particularly consider population structures where ensembles of local communities (subpopulations) continuously emerge, grow, and disappear again. Biologically, we explicitly consider the synthesis and regulation of public good production. The discussion of the theoretical approaches includes general evolutionary concepts, population dynamics, and evolutionary game theory. As a specific but generic biological example, we consider populations of Pseudomonas putida and its regulation and use of pyoverdines, iron scavenging molecules, as public goods. The review closes with an overview on cooperation in spatially extended systems and also provides a critical assessment of the insights gained from the experimental and theoretical studies discussed. Current challenges and important new research opportunities are discussed, including the biochemical regulation of public goods, more realistic ecological scenarios resembling native environments, cell-to-cell signaling, and multispecies communities.
Collapse
Affiliation(s)
- J Cremer
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - A Melbinger
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| | - K Wienand
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| | - T Henriquez
- Microbiology, Department of Biology I, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, Martinsried, Germany
| | - H Jung
- Microbiology, Department of Biology I, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, Martinsried, Germany.
| | - E Frey
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany.
| |
Collapse
|
25
|
Henríquez T, Stein NV, Jung H. PvdRT-OpmQ and MdtABC-OpmB efflux systems are involved in pyoverdine secretion in Pseudomonas putida KT2440. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:98-106. [PMID: 30346656 DOI: 10.1111/1758-2229.12708] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Fluorescent pseudomonads produce and secrete a siderophore termed pyoverdine to capture iron when it becomes scarce. The molecular basis of pyoverdine secretion is only partially understood. Here, we investigate the role of the putative PvdRT-OpmQ and MdtABC-OpmB efflux systems in pyoverdine secretion in the soil bacterium Pseudomonas putida KT2440. Expression from the respective promoters is stimulated by iron limitation albeit to varying degrees. Deletion of pvdRT-opmQ leads to reduced amounts of pyoverdine in the medium and decreased growth under iron limitation. Deletion of mdtABC-opmB does not affect growth. However, when both systems are deleted, strong effects on growth and pyoverdine secretion (yellow colony phenotype, less pyoverdine in medium, more pyoverdine in the periplasm) are observed. Overexpression of pvdRT-opmQ causes the opposite effect. These results provide first evidence for an involvement of the multidrug efflux system MdtABC-OpmB in pyoverdine secretion. In addition, the PvdRT-OpmQ system was shown to contribute to pyoverdine secretion in P. putida KT2440, extending previous investigations on its role in Pseudomonas species. Since the double deletion mutant still secrets pyoverdine, at least one additional efflux system participates in the transport of the siderophore. Furthermore, our results suggest a contribution of both efflux systems to ampicillin resistance.
Collapse
Affiliation(s)
- Tania Henríquez
- Ludwig-Maximilians-Universität München, Biozentrum, Martinsried, Germany
| | | | - Heinrich Jung
- Ludwig-Maximilians-Universität München, Biozentrum, Martinsried, Germany
| |
Collapse
|
26
|
Ringel MT, Brüser T. The biosynthesis of pyoverdines. MICROBIAL CELL (GRAZ, AUSTRIA) 2018; 5:424-437. [PMID: 30386787 PMCID: PMC6206403 DOI: 10.15698/mic2018.10.649] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/03/2018] [Indexed: 01/11/2023]
Abstract
Pyoverdines are fluorescent siderophores of pseudomonads that play important roles for growth under iron-limiting conditions. The production of pyoverdines by fluorescent pseudomonads permits their colonization of hosts ranging from humans to plants. Prominent examples include pathogenic or non-pathogenic species such as Pseudomonas aeruginosa, P. putida, P. syringae, or P. fluorescens. Many distinct pyoverdines have been identified, all of which have a dihydroxyquinoline fluorophore in common, derived from oxidative cyclizations of non-ribosomal peptides. These serve as precursor of pyoverdines and are commonly known as ferribactins. Ferribactins of distinct species or even strains often differ in their sequence, resulting in a large variety of pyoverdines. However, synthesis of all ferribactins begins with an L-Glu/D-Tyr/L-Dab sequence, and the fluorophore is generated from the D-Tyr/L-Dab residues. In addition, the initial L-Glu residue is modified to various acids and amides that are responsible for the range of distinguishable pyoverdines in individual strains. While ferribactin synthesis is a cytoplasmic process, the maturation to the fluorescent pyoverdine as well as the tailoring of the initial glutamate are exclusively periplasmic processes that have been a mystery until recently. Here we review the current knowledge of pyoverdine biosynthesis with a focus on the recent advancements regarding the periplasmic maturation and tailoring reactions.
Collapse
Affiliation(s)
- Michael T. Ringel
- Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| |
Collapse
|
27
|
Poppe J, Reichelt J, Blankenfeldt W. Pseudomonas aeruginosa pyoverdine maturation enzyme PvdP has a noncanonical domain architecture and affords insight into a new subclass of tyrosinases. J Biol Chem 2018; 293:14926-14936. [PMID: 30030378 DOI: 10.1074/jbc.ra118.002560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/16/2018] [Indexed: 11/06/2022] Open
Abstract
Pyoverdines (PVDs) are important chromophore-containing siderophores of fluorescent pseudomonad bacteria such as the opportunistic human pathogen Pseudomonas aeruginosa in which they play an essential role in host infection. PVD biosynthesis encompasses a complex pathway comprising cytosolic nonribosomal peptide synthetases that produce a polypeptide precursor that periplasmic enzymes convert to the final product. The structures of most enzymes involved in PVD chromophore maturation have been elucidated, but the structure of the essential tyrosinase PvdP, a monooxygenase required for the penultimate step in PVD biosynthesis, is not known. Here, we closed this gap by determining the crystal structure of PvdP in an apo and tyrosine-complexed state at 2.1 and 2.7 Å, respectively. These structures revealed that PvdP is a homodimer, with each chain consisting of a C-terminal tyrosinase domain and an N-terminal eight-stranded β-barrel reminiscent of streptavidin that appears to have a structural role only. We observed that ligand binding leads to the displacement of a "placeholder" tyrosine that blocks the active site in the apo structure. This exposes a large, deep binding site that seems suitable for accommodating ferribactin, a substrate of PvdP in PVD biosynthesis. The binding site consists almost exclusively of residues from the tyrosinase domain. Of note, we also found that this domain is more closely related to tyrosinases from arthropods rather than to tyrosinases from other bacteria. In conclusion, our work unravels the structural basis of PvdP's activity in PVD biosynthesis, observations that may inform structure-guided development of PvdP-specific inhibitors to manage P. aeruginosa infections.
Collapse
Affiliation(s)
- Juliane Poppe
- From the Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany and
| | - Joachim Reichelt
- From the Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany and
| | - Wulf Blankenfeldt
- From the Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany and .,Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| |
Collapse
|
28
|
Analysis of two quorum sensing-deficient isolates of Pseudomonas aeruginosa. Microb Pathog 2018; 119:162-169. [PMID: 29635051 DOI: 10.1016/j.micpath.2018.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 01/23/2023]
Abstract
Three strains of Pseudomonas aeruginosa were isolated: wild-type (WT, NO4) showed normal quorum sensing (QS), whereas QSD3 and QSD7 were QS-deficient (QSD) containing limited N-butyryl homoserine lactone (C4-HSL). The autoinducer activity produced by NO4 was found to be at least 50-fold higher than those by the QSD3 and the QSD7 strains. The QSDs produced lower levels of phenazine compounds (pyocyanin), siderophores (pyoverdine) and biosurfactants (rhamnolipids) than NO4. Therefore, the swarming motility and the swimming motility of the QSD3 and the QSD7 strains also decreased. Treatment with exogenous C4-HSL completely restored rhamnolipid production in both QSDs, suggesting that the biosynthesis of C4-HSL is defective. However, the biofilm production of the QSDs reached much higher levels than those of wild-types (NO4 and P. aeruginosa PAO1). And both QSD strains were more resistant than wild-type cell (NO4) against kanamycin and tobramycin. The RpoS gene, which function is related with QS, is point-nonsense mutated in QSD3 strain. But eleven QS-related genes in QSD3 were not mutated, compared to those of PAO1, which carries intact QS genes and is used as a positive control. This study is helpful in the development of novel approaches in the treatment of P. aeruginosa infections.
Collapse
|
29
|
Ringel MT, Dräger G, Brüser T. PvdO is required for the oxidation of dihydropyoverdine as the last step of fluorophore formation in Pseudomonas fluorescens. J Biol Chem 2017; 293:2330-2341. [PMID: 29208656 DOI: 10.1074/jbc.ra117.000121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/30/2017] [Indexed: 02/04/2023] Open
Abstract
Pyoverdines are important siderophores that guarantee iron supply to important pathogenic and non-pathogenic pseudomonads in host habitats. A key characteristic of all pyoverdines is the fluorescent dihydroxyquinoline group that contributes two ligands to the iron complexes. Pyoverdines are derived from the non-ribosomally synthesized peptide ferribactin, and their fluorophore is generated by periplasmic oxidation and cyclization reactions of d-tyrosine and l-diaminobutyric acid. The formation of the fluorophore is known to be driven by the periplasmic tyrosinase PvdP. Here we report that the putative periplasmic oxidoreductase PvdO of Pseudomonas fluorescens A506 is required for the final oxidation of dihydropyoverdine to pyoverdine, which completes the fluorophore. The pvdO deletion mutant accumulates dihydropyoverdine, and this phenotype is fully complemented by recombinant PvdO. The autoxidation of dihydropyoverdine at alkaline pH and the presence of high copper concentrations can mask this phenotype. Mutagenesis of conserved residues with potential catalytic function identified Glu-260 as an essential residue whose mutation abolished function without affecting stability or transport. Glu-260 of PvdO is at the exact position of the active-site cysteine in the structurally related formylglycine-generating enzyme. Evolution thus used the same protein fold for two distinct functionalities. As purified PvdO was inactive, additional factors are required for catalysis.
Collapse
Affiliation(s)
- Michael T Ringel
- From the Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany and
| | - Gerald Dräger
- the Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1 B, 30167 Hannover, Germany
| | - Thomas Brüser
- From the Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany and
| |
Collapse
|
30
|
Ringel MT, Dräger G, Brüser T. The periplasmic transaminase PtaA of Pseudomonas fluorescens converts the glutamic acid residue at the pyoverdine fluorophore to α-ketoglutaric acid. J Biol Chem 2017; 292:18660-18671. [PMID: 28912270 DOI: 10.1074/jbc.m117.812545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/13/2017] [Indexed: 11/06/2022] Open
Abstract
The periplasmic conversion of ferribactin to pyoverdine is essential for siderophore biogenesis in fluorescent pseudomonads, such as pathogenic Pseudomonas aeruginosa or plant growth-promoting Pseudomonas fluorescens The non-ribosomal peptide ferribactin undergoes cyclizations and oxidations that result in the fluorophore, and a strictly conserved fluorophore-bound glutamic acid residue is converted to a range of variants, including succinamide, succinic acid, and α-ketoglutaric acid residues. We recently discovered that the pyridoxal phosphate-containing enzyme PvdN is responsible for the generation of the succinamide, which can be hydrolyzed to succinic acid. Based on this, a distinct unknown enzyme was postulated to be responsible for the conversion of the glutamic acid to α-ketoglutaric acid. Here we report the identification and characterization of this enzyme in P. fluorescens strain A506. In silico analyses indicated a periplasmic transaminase in fluorescent pseudomonads and other proteobacteria that we termed PtaA for "periplasmic transaminase A" An in-frame-deleted ptaA mutant selectively lacked the α-ketoglutaric acid form of pyoverdine, and recombinant PtaA complemented this phenotype. The ptaA/pvdN double mutant produced exclusively the glutamic acid form of pyoverdine. PtaA is homodimeric and contains a pyridoxal phosphate cofactor. Mutation of the active-site lysine abolished PtaA activity and affected folding as well as Tat-dependent transport of the enzyme. In pseudomonads, the occurrence of ptaA correlates with the occurrence of α-ketoglutaric acid forms of pyoverdines. As this enzyme is not restricted to pyoverdine-producing bacteria, its catalysis of periplasmic transaminations is most likely a general tool for specific biosynthetic pathways.
Collapse
Affiliation(s)
- Michael T Ringel
- From the Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany and
| | - Gerald Dräger
- the Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1 B, 30167 Hannover, Germany
| | - Thomas Brüser
- From the Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany and
| |
Collapse
|
31
|
Abstract
Bacillus anthracis—a Gram-positive, spore-forming bacterium—causes anthrax, a highly lethal disease with high bacteremia titers. Such rapid growth requires ample access to nutrients, including iron. However, access to this critical metal is heavily restricted in mammals, which requires B. anthracis to employ petrobactin, an iron-scavenging small molecule known as a siderophore. Petrobactin biosynthesis is mediated by asb gene products, and import of the iron-bound (holo)-siderophore into the bacterium has been well studied. In contrast, little is known about the mechanism of petrobactin export following its production in B. anthracis cells. Using a combination of bioinformatics data, gene deletions, and laser ablation electrospray ionization mass spectrometry (LAESI-MS), we identified a resistance-nodulation-cell division (RND)-type transporter, termed ApeX, as a putative petrobactin exporter. Deletion of apeX abrogated export of intact petrobactin, which accumulated inside the cell. However, growth of ΔapeX mutants in iron-depleted medium was not affected, and virulence in mice was not attenuated. Instead, petrobactin components were determined to be exported through a different protein, which enables iron transport sufficient for growth, albeit with a slightly lower affinity for iron. This is the first report to identify a functional siderophore exporter in B. anthracis and the in vivo functionality of siderophore components. Moreover, this is the first application of LAESI-MS to sample a virulence factor/metabolite directly from bacterial culture media and cell pellets of a human pathogen. Bacillus anthracis requires iron for growth and employs the siderophore petrobactin to scavenge this trace metal during infections. While we understand much about petrobactin biosynthesis and ferric petrobactin import, how apo-petrobactin (iron free) is exported remains unknown. This study used a combination of bioinformatics, genetics, and mass spectrometry to identify the petrobactin exporter. After screening 17 mutants with mutations of candidate exporter genes, we identified the apo-petrobactin exporter (termed ApeX) as a member of the resistance-nodulation-cell division (RND) family of transporters. In the absence of ApeX, petrobactin accumulates inside the cell while continuing to export petrobactin components that are capable of transporting iron. Thus, the loss of ApeX does not affect the ability of B. anthracis to cause disease in mice. This has implications for treatment strategies designed to target and control pathogenicity of B. anthracis in humans.
Collapse
|
32
|
Sexton DJ, Schuster M. Nutrient limitation determines the fitness of cheaters in bacterial siderophore cooperation. Nat Commun 2017; 8:230. [PMID: 28794499 PMCID: PMC5550491 DOI: 10.1038/s41467-017-00222-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 06/09/2017] [Indexed: 11/28/2022] Open
Abstract
Cooperative behaviors provide a collective benefit, but are considered costly for the individual. Here, we report that these costs vary dramatically in different contexts and have opposing effects on the selection for non-cooperating cheaters. We investigate a prominent example of bacterial cooperation, the secretion of the peptide siderophore pyoverdine by Pseudomonas aeruginosa, under different nutrient-limiting conditions. Using metabolic modeling, we show that pyoverdine incurs a fitness cost only when its building blocks carbon or nitrogen are growth-limiting and are diverted from cellular biomass production. We confirm this result experimentally with a continuous-culture approach. We show that pyoverdine non-producers (cheaters) enjoy a large fitness advantage in co-culture with producers (cooperators) and spread to high frequency when limited by carbon, but not when limited by phosphorus. The principle of nutrient-dependent fitness costs has implications for the stability of cooperation in pathogenic and non-pathogenic environments, in biotechnological applications, and beyond the microbial realm. Cooperative behaviour among individuals provides a collective benefit, but is considered costly. Using Pseudomonas aeruginosa as a model system, the authors show that secretion of the siderophore pyoverdine only incurs a fitness cost and favours cheating when its building blocks carbon or nitrogen are growth-limiting.
Collapse
Affiliation(s)
- D Joseph Sexton
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Martin Schuster
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA.
| |
Collapse
|
33
|
Abstract
Covering: up to 2017.Natural products are important secondary metabolites produced by bacterial and fungal species that play important roles in cellular growth and signaling, nutrient acquisition, intra- and interspecies communication, and virulence. A subset of natural products is produced by nonribosomal peptide synthetases (NRPSs), a family of large, modular enzymes that function in an assembly line fashion. Because of the pharmaceutical activity of many NRPS products, much effort has gone into the exploration of their biosynthetic pathways and the diverse products they make. Many interesting NRPS pathways have been identified and characterized from both terrestrial and marine bacterial sources. Recently, several NRPS pathways in human commensal bacterial species have been identified that produce molecules with antibiotic activity, suggesting another source of interesting NRPS pathways may be the commensal and pathogenic bacteria that live on the human body. The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) have been identified as a significant cause of human bacterial infections that are frequently multidrug resistant. The emerging resistance profile of these organisms has prompted calls from multiple international agencies to identify novel antibacterial targets and develop new approaches to treat infections from ESKAPE pathogens. Each of these species contains several NRPS biosynthetic gene clusters. While some have been well characterized and produce known natural products with important biological roles in microbial physiology, others have yet to be investigated. This review catalogs the NRPS pathways of ESKAPE pathogens. The exploration of novel NRPS products may lead to a better understanding of the chemical communication used by human pathogens and potentially to the discovery of novel therapeutic approaches.
Collapse
Affiliation(s)
- Andrew M Gulick
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA.
| |
Collapse
|
34
|
Bartell JA, Blazier AS, Yen P, Thøgersen JC, Jelsbak L, Goldberg JB, Papin JA. Reconstruction of the metabolic network of Pseudomonas aeruginosa to interrogate virulence factor synthesis. Nat Commun 2017; 8:14631. [PMID: 28266498 PMCID: PMC5344303 DOI: 10.1038/ncomms14631] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 01/18/2017] [Indexed: 01/13/2023] Open
Abstract
Virulence-linked pathways in opportunistic pathogens are putative therapeutic targets that may be associated with less potential for resistance than targets in growth-essential pathways. However, efficacy of virulence-linked targets may be affected by the contribution of virulence-related genes to metabolism. We evaluate the complex interrelationships between growth and virulence-linked pathways using a genome-scale metabolic network reconstruction of Pseudomonas aeruginosa strain PA14 and an updated, expanded reconstruction of P. aeruginosa strain PAO1. The PA14 reconstruction accounts for the activity of 112 virulence-linked genes and virulence factor synthesis pathways that produce 17 unique compounds. We integrate eight published genome-scale mutant screens to validate gene essentiality predictions in rich media, contextualize intra-screen discrepancies and evaluate virulence-linked gene distribution across essentiality datasets. Computational screening further elucidates interconnectivity between inhibition of virulence factor synthesis and growth. Successful validation of selected gene perturbations using PA14 transposon mutants demonstrates the utility of model-driven screening of therapeutic targets.
Collapse
Affiliation(s)
- Jennifer A. Bartell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Hørsholm, Denmark
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Anna S. Blazier
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Phillip Yen
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Juliane C. Thøgersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Joanna B. Goldberg
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Children's Healthcare of Atlanta, Atlanta, Georgia 30322, USA
- Emory+Children's Center for Cystic Fibrosis Research, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, USA
| | - Jason A. Papin
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
35
|
Yuan Z, Gao F, Bai G, Xia H, Gu L, Xu S. Crystal structure of PvdO from Pseudomonas aeruginosa. Biochem Biophys Res Commun 2017; 484:195-201. [DOI: 10.1016/j.bbrc.2016.12.181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 12/27/2016] [Indexed: 02/04/2023]
|
36
|
Trautman EP, Crawford JM. Linking Biosynthetic Gene Clusters to their Metabolites via Pathway- Targeted Molecular Networking. Curr Top Med Chem 2016; 16:1705-16. [PMID: 26456470 PMCID: PMC5055756 DOI: 10.2174/1568026616666151012111046] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/25/2015] [Accepted: 09/08/2015] [Indexed: 12/16/2022]
Abstract
The connection of microbial biosynthetic gene clusters to the small molecule metabolites they encode is central to the discovery and characterization of new metabolic pathways with ecological and pharmacological potential. With increasing microbial genome sequence information being deposited into publicly available databases, it is clear that microbes have the coding capacity for many more biologically active small molecules than previously realized. Of increasing interest are the small molecules encoded by the human microbiome, as these metabolites likely mediate a variety of currently uncharacterized human-microbe interactions that influence health and disease. In this mini-review, we describe the ongoing biosynthetic, structural, and functional characterizations of the genotoxic colibactin pathway in gut bacteria as a thematic example of linking biosynthetic gene clusters to their metabolites. We also highlight other natural products that are produced through analogous biosynthetic logic and comment on some current disconnects between bioinformatics predictions and experimental structural characterizations. Lastly, we describe the use of pathway-targeted molecular networking as a tool to characterize secondary metabolic pathways within complex metabolomes and to aid in downstream metabolite structural elucidation efforts.
Collapse
Affiliation(s)
| | - Jason M Crawford
- Department of Chemistry, Faculty of Yale University, P.O. Box: 27392, West Haven, CT, 06516, USA.
| |
Collapse
|
37
|
Schalk IJ, Cunrath O. An overview of the biological metal uptake pathways in Pseudomonas aeruginosa. Environ Microbiol 2016; 18:3227-3246. [PMID: 27632589 DOI: 10.1111/1462-2920.13525] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/07/2016] [Indexed: 12/21/2022]
Abstract
Biological metal ions, including Co, Cu, Fe, Mg, Mn, Mo, Ni and Zn ions, are necessary for the survival and the growth of all microorganisms. Their biological functions are linked to their particular chemical properties: they play a role in structuring macromolecules and/or act as co-factors catalyzing diverse biochemical reactions. These metal ions are also essential for microbial pathogens during infection: they are involved in bacterial metabolism and various virulence factor functions. Therefore, during infection, bacteria need to acquire biological metal ions from the host such that there is competition for these ions between the bacterium and the host. Evidence is increasingly emerging of "nutritional immunity" against pathogens in the hosts; this includes strategies making access to metals difficult for infecting bacteria. It is clear that biological metals play key roles during infection and in the battle between the pathogens and the host. Here, we summarize current knowledge about the strategies used by Pseudomonas aeruginosa to access the various biological metals it requires. P. aeruginosa is a medically significant Gram-negative bacterial opportunistic pathogen that can cause severe chronic lung infections in cystic fibrosis patients and that is responsible for nosocomial infections worldwide.
Collapse
Affiliation(s)
- Isabelle J Schalk
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brant, F-67413, Illkirch, Strasbourg, France.
| | - Olivier Cunrath
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brant, F-67413, Illkirch, Strasbourg, France
| |
Collapse
|
38
|
Ringel MT, Dräger G, Brüser T. PvdN Enzyme Catalyzes a Periplasmic Pyoverdine Modification. J Biol Chem 2016; 291:23929-23938. [PMID: 27703013 DOI: 10.1074/jbc.m116.755611] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/30/2016] [Indexed: 11/06/2022] Open
Abstract
Pyoverdines are high affinity siderophores produced by a broad range of pseudomonads to enhance growth under iron deficiency. They are especially relevant for pathogenic and mutualistic strains that inhabit iron-limited environments. Pyoverdines are generated from non-ribosomally synthesized highly modified peptides. They all contain an aromatic chromophore that is formed in the periplasm by intramolecular cyclization steps. Although the cytoplasmic peptide synthesis and side-chain modifications are well characterized, the periplasmic maturation steps are far from understood. Out of five periplasmic enzymes, PvdM, PvdN, PvdO, PvdP, and PvdQ, functions have been attributed only to PvdP and PvdQ. The other three enzymes are also regarded as essential for siderophore biosynthesis. The structure of PvdN has been solved recently, but no function could be assigned. Here we present the first in-frame deletion of the PvdN-encoding gene. Unexpectedly, PvdN turned out to be required for a specific modification of pyoverdine, whereas the overall amount of fluorescent pyoverdines was not altered by the mutation. The mutant strain grew normally under iron-limiting conditions. Mass spectrometry identified the PvdN-dependent modification as a transformation of the N-terminal glutamic acid to a succinamide. We postulate a pathway for this transformation catalyzed by the enzyme PvdN, which is most likely functional in the case of all pyoverdines.
Collapse
Affiliation(s)
- Michael T Ringel
- From the Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover and
| | - Gerald Dräger
- the Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1 B, 30167 Hannover, Germany
| | - Thomas Brüser
- From the Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover and
| |
Collapse
|
39
|
Hagan AK, Carlson PE, Hanna PC. Flying under the radar: The non-canonical biochemistry and molecular biology of petrobactin from Bacillus anthracis. Mol Microbiol 2016; 102:196-206. [PMID: 27425635 DOI: 10.1111/mmi.13465] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2016] [Indexed: 01/01/2023]
Abstract
The dramatic, rapid growth of Bacillus anthracis that occurs during systemic anthrax implies a crucial requirement for the efficient acquisition of iron. While recent advances in our understanding of B. anthracis iron acquisition systems indicate the use of strategies similar to other pathogens, this review focuses on unique features of the major siderophore system, petrobactin. Ways that petrobactin differs from other siderophores include: A. unique ferric iron binding moieties that allow petrobactin to evade host immune proteins; B. a biosynthetic operon that encodes enzymes from both major siderophore biosynthesis classes; C. redundancy in membrane transport systems for acquisition of Fe-petrobactin holo-complexes; and, D. regulation that appears to be controlled predominately by sensing the host-like environmental signals of temperature, CO2 levels and oxidative stress, as opposed to canonical sensing of intracellular iron levels. We argue that these differences contribute in meaningful ways to B. anthracis pathogenesis. This review will also outline current major gaps in our understanding of the petrobactin iron acquisition system, some projected means for exploiting current knowledge, and potential future research directions.
Collapse
Affiliation(s)
- A K Hagan
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 W. Medical Center Drive, 6703 Medical Science Building II, Ann Arbor, MI, 48109
| | - P E Carlson
- Laboratory of Mucosal Pathogens and Cellular Immunity, Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Building 52/72; Rm 3306, Silver Spring, MD, 20993
| | - P C Hanna
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 W. Medical Center Drive, 6703 Medical Science Building II, Ann Arbor, MI, 48109.
| |
Collapse
|
40
|
Selective ciprofloxacin antibiotic detection by fluorescent siderophore pyoverdin. Biosens Bioelectron 2016; 81:274-279. [DOI: 10.1016/j.bios.2016.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 11/17/2022]
|
41
|
Cianciotto NP. An update on iron acquisition by Legionella pneumophila: new pathways for siderophore uptake and ferric iron reduction. Future Microbiol 2016; 10:841-51. [PMID: 26000653 DOI: 10.2217/fmb.15.21] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Iron acquisition is critical for the growth and pathogenesis of Legionella pneumophila, the causative agent of Legionnaires' disease. L. pneumophila utilizes two main modes of iron assimilation, namely ferrous iron uptake via the FeoB system and ferric iron acquisition through the action of the siderophore legiobactin. This review highlights recent studies concerning the mechanism of legiobactin assimilation, the impact of c-type cytochromes on siderophore production, the importance of legiobactin in lung infection and a newfound role for a bacterial pyomelanin in iron acquisition. These data demonstrate that key aspects of L. pneumophila iron acquisition are significantly distinct from those of long-studied, 'model' organisms. Indeed, L. pneumophila may represent a new paradigm for a variety of other intracellular parasites, pathogens and under-studied bacteria.
Collapse
|
42
|
Calcott MJ, Ackerley DF. Portability of the thiolation domain in recombinant pyoverdine non-ribosomal peptide synthetases. BMC Microbiol 2015; 15:162. [PMID: 26268580 PMCID: PMC4535683 DOI: 10.1186/s12866-015-0496-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 07/28/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-ribosomal peptide synthetase (NRPS) enzymes govern the assembly of amino acids and related monomers into peptide-like natural products. A key goal of the field is to develop methods to effective recombine NRPS domains or modules, and thereby generate modified or entirely novel products. We previously showed that substitution of the condensation (C) and adenylation (A) domains in module 2 of the pyoverdine synthetase PvdD from Pseudomonas aeruginosa led to synthesis of modified pyoverdines in a minority of cases, but that more often the recombinant enzymes were non-functional. One possible explanation was that the majority of introduced C domains were unable to effectively communicate with the thiolation (T) domain immediately upstream, in the first module of PvdD. RESULTS To test this we first compared the effectiveness of C-A domain substitution relative to T-C-A domain substitution using three different paired sets of domains. Having previously demonstrated that the PvdD A/T domain interfaces are tolerant of domain substitution, we hypothesised that T-C-A domain substitution would lead to more functional recombinant enzymes, by maintaining native T/C domain interactions. Although we successfully generated two recombinant pyoverdines, having a serine or a N5-formyl-N5-hydroxyornithine residue in place of the terminal threonine of wild type pyoverdine, in neither case did the T-C-A domain substitution strategy lead to substantially higher product yield. To more comprehensively examine the abilities of non-native T domains to communicate effectively with the C domain of PvdD module 2 we then substituted the module 1 T domain with 18 different T domains sourced from other pyoverdine NRPS enzymes. In 15/18 cases the recombinant NRPS was functional, including 6/6 cases where the introduced T domain was located upstream of a C domain in its native context. CONCLUSIONS Our data indicate that T domains are generally able to interact effectively with non-native C domains, contrasting with previous findings that they are not generally portable upstream of epimerisation (E) or thioesterase (TE) domains. This offers promise for NRPS recombination efforts, but also raises the possibility that some C domains are unable to efficiently accept non-native peptides at their donor site due to steric constraints or other limitations.
Collapse
Affiliation(s)
- Mark J Calcott
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
| | - David F Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand. .,Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
43
|
Bouvier B, Cézard C, Sonnet P. Selectivity of pyoverdine recognition by the FpvA receptor of Pseudomonas aeruginosa from molecular dynamics simulations. Phys Chem Chem Phys 2015; 17:18022-34. [PMID: 26098682 DOI: 10.1039/c5cp02939b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Gram-negative bacterium Pseudomonas aeruginosa, a ubiquitous human opportunistic pathogen, has developed resistances to multiple antibiotics. It uses its primary native siderophore, pyoverdine, to scavenge the iron essential to its growth in the outside medium and transport it back into its cytoplasm. The FpvA receptor on the bacterial outer membrane recognizes and internalizes pyoverdine bearing its iron payload, but can also bind pyoverdines from other Pseudomonads or synthetic analogues. Pyoverdine derivatives could therefore be used as vectors to deliver antibiotics into the bacterium. In this study, we use molecular dynamics and free energy calculations to characterize the mechanisms and thermodynamics of the recognition of the native pyoverdines of P. aeruginosa and P. fluorescens by FpvA. Based on these results, we delineate the features that pyoverdines with high affinity for FpvA should possess. In particular, we show that (i) the dynamics and interaction of the unbound pyoverdines with water should be optimized with equal care as the interface contacts in the complex with FpvA; (ii) the C-terminal extremity of the pyoverdine chain, which appears to play no role in the bound complex, is involved in the intermediate stages of recognition; and (iii) the length and cyclicity of the pyoverdine chain can be used to fine-tune the kinetics of the recognition mechanism.
Collapse
Affiliation(s)
- Benjamin Bouvier
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources, CNRS FRE3517/Université de Picardie Jules Verne, 1, rue des Louvels, 80037 Amiens Cedex 1, France.
| | | | | |
Collapse
|
44
|
Cellular organization of siderophore biosynthesis in Pseudomonas aeruginosa: Evidence for siderosomes. J Inorg Biochem 2015; 148:27-34. [PMID: 25697961 DOI: 10.1016/j.jinorgbio.2015.01.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 11/24/2022]
Abstract
Pyoverdine I (PVDI) and pyochelin (PCH) are the two major siderophores produced by Pseudomonas aeruginosa PAO1 to import iron. The biochemistry of the biosynthesis of these two siderophores has been described in detail in the literature over recent years. PVDI assembly requires the coordinated action of seven cytoplasmic enzymes and is followed by a periplasmic maturation before secretion of the siderophore into the extracellular medium by the efflux system PvdRT-OpmQ. PCH biosynthesis also involves seven cytoplasmic enzymes but no periplasmic maturation. Recent findings indicate that the cytoplasmic enzymes involved in each of these two siderophore biosynthesis pathways can form siderophore-specific multi-enzymatic complexes called siderosomes associated with the inner leaflet of the cytoplasmic membrane. This organization may optimize the transfer of the siderophore precursors between the various participating enzymes and avoid the diffusion of siderophore precursors, able to chelate metals, throughout the cytoplasm. Here, we describe these recently published findings and discuss the existence of these siderosomes in P. aeruginosa.
Collapse
|
45
|
Sun YY, Sun L. Pseudomonas fluorescens: iron-responsive proteins and their involvement in host infection. Vet Microbiol 2015; 176:309-20. [PMID: 25680811 DOI: 10.1016/j.vetmic.2015.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 11/17/2022]
Abstract
For pathogenic bacteria, the ability to acquire iron is vital to survival in the host. In consequence, many genes involved in iron acquisition are associated with bacterial virulence. Pseudomonas fluorescens is a bacterial pathogen to a variety of farmed fish. However, the global regulatory function of iron in pathogenic P. fluorescens is essentially unknown. In this study, in order to identify proteins affected by iron condition at the expression level, we performed proteomic analysis to compare the global protein profiles of P. fluorescens strain TSS, a fish pathogen, cultured under iron-replete and iron-deplete conditions. Twenty-two differentially expressed proteins were identified, most of which were confirmed to be regulated by iron at the mRNA level. To investigate their potential involvement in virulence, the genes encoding four of the 22 proteins, i.e. HemO (heme oxygenase), PspB (serine protease), Sod (superoxide dismutase), and TfeR (TonB-dependent outermembrane ferric enterobactin receptor), were knocked out, and the pathogenicity of the mutants was examined in a model of turbot (Scophthalmus maximus). The results showed that compared to the wild type, the hemO, pspB, and tfeR knockouts were significantly impaired in the ability to survive in host serum, to invade host tissues, and to cause host mortality. Immunization of turbot with recombinant TfeR (rTfeR) and PspB induced production of specific serum antibodies and significant protections against lethal TSS challenge. Further analysis showed that rTfeR antibodies recognized and bound to TSS, and that treatment of TSS with rTfeR antibodies significantly impaired the infectivity of TSS to fish cells. Taken together, these results indicate for the first time that in pathogenic P. fluorescens, iron affects the expression of a large number of proteins including those that are involved in host infection.
Collapse
Affiliation(s)
- Yuan-yuan Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
46
|
Kem MP, Naka H, Iinishi A, Haygood MG, Butler A. Fatty Acid Hydrolysis of Acyl Marinobactin Siderophores by Marinobacter Acylases. Biochemistry 2015; 54:744-52. [DOI: 10.1021/bi5013673] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Michelle P. Kem
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Hiroaki Naka
- Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239-3098, United States
| | - Akira Iinishi
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Margo G. Haygood
- Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239-3098, United States
| | - Alison Butler
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
47
|
Clevenger KD, Wu R, Liu D, Fast W. n-Alkylboronic Acid Inhibitors Reveal Determinants of Ligand Specificity in the Quorum-Quenching and Siderophore Biosynthetic Enzyme PvdQ. Biochemistry 2014; 53:6679-86. [DOI: 10.1021/bi501086s] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | - Rui Wu
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Dali Liu
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | | |
Collapse
|
48
|
Mohanty A, Liu Y, Yang L, Cao B. Extracellular biogenic nanomaterials inhibit pyoverdine production in Pseudomonas aeruginosa: a novel insight into impacts of metal(loid)s on environmental bacteria. Appl Microbiol Biotechnol 2014; 99:1957-66. [DOI: 10.1007/s00253-014-6097-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 08/18/2014] [Accepted: 09/11/2014] [Indexed: 12/29/2022]
|
49
|
Cunrath O, Gasser V, Hoegy F, Reimmann C, Guillon L, Schalk IJ. A cell biological view of the siderophore pyochelin iron uptake pathway in Pseudomonas aeruginosa. Environ Microbiol 2014; 17:171-85. [PMID: 24947078 DOI: 10.1111/1462-2920.12544] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/13/2014] [Indexed: 11/29/2022]
Abstract
Pyochelin (PCH) is a siderophore produced and secreted by Pseudomonas aeruginosa for iron capture. Using (55) Fe uptake and binding assays, we showed that PCH-Fe uptake in P. aeruginosa involves, in addition to the highly studied outer membrane transporter FptA, the inner membrane permease FptX, which recognizes PCH-(55) Fe with an affinity of 0.6 ± 0.2 nM and transports the ferri-siderophore complex from the periplasm into the cytoplasm: fptX deletion inhibited (55) Fe accumulation in the bacterial cytoplasm. Chromosomal replacement was used to generate P. aeruginosa strains producing fluorescent fusions with FptX, PchR (an AraC regulator), PchA (the first enzyme involved in the PCH biosynthesis) and PchE (a non-ribosomic peptide-synthetase involved in a further step). Fluorescence imaging and cellular fractionation showed a uniform repartition of FptX in the inner membrane. PchA and PchE were found in the cytoplasm, associated to the inner membrane all over the bacteria and also concentrated at the bacterial poles. PchE clustering at the bacterial poles was dependent on PchA expression, but on the opposite PchA clustering and membrane association was PchE-independent. PchA and PchE cellular organization suggests the existence of a siderosome for PCH biosynthesis as previously proposed for pyoverdine biosynthesis (another siderophore produced by P. aeruginosa).
Collapse
Affiliation(s)
- Olivier Cunrath
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brant, Strasbourg, Illkirch, F-67413, France
| | | | | | | | | | | |
Collapse
|
50
|
PvdP is a tyrosinase that drives maturation of the pyoverdine chromophore in Pseudomonas aeruginosa. J Bacteriol 2014; 196:2681-90. [PMID: 24816606 DOI: 10.1128/jb.01376-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The iron binding siderophore pyoverdine constitutes a major adaptive factor contributing to both virulence and survival in fluorescent pseudomonads. For decades, pyoverdine production has allowed the identification and classification of fluorescent and nonfluorescent pseudomonads. Here, we demonstrate that PvdP, a periplasmic enzyme of previously unknown function, is a tyrosinase required for the maturation of the pyoverdine chromophore in Pseudomonas aeruginosa. PvdP converts the nonfluorescent ferribactin, containing two iron binding groups, into a fluorescent pyoverdine, forming a strong hexadentate complex with ferrous iron, by three consecutive oxidation steps. PvdP represents the first characterized member of a small family of tyrosinases present in fluorescent pseudomonads that are required for siderophore maturation and are capable of acting on large peptidic substrates.
Collapse
|