1
|
Eilers G, Gupta K, Allen A, Montermoso S, Murali H, Sharp R, Hwang Y, Bushman FD, Van Duyne G. Structure of a HIV-1 IN-Allosteric inhibitor complex at 2.93 Å resolution: Routes to inhibitor optimization. PLoS Pathog 2023; 19:e1011097. [PMID: 36867659 PMCID: PMC10016701 DOI: 10.1371/journal.ppat.1011097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/15/2023] [Accepted: 01/03/2023] [Indexed: 03/04/2023] Open
Abstract
HIV integrase (IN) inserts viral DNA into the host genome and is the target of the strand transfer inhibitors (STIs), a class of small molecules currently in clinical use. Another potent class of antivirals is the allosteric inhibitors of integrase, or ALLINIs. ALLINIs promote IN aggregation by stabilizing an interaction between the catalytic core domain (CCD) and carboxy-terminal domain (CTD) that undermines viral particle formation in late replication. Ongoing challenges with inhibitor potency, toxicity, and viral resistance motivate research to understand their mechanism. Here, we report a 2.93 Å X-ray crystal structure of the minimal ternary complex between CCD, CTD, and the ALLINI BI-224436. This structure reveals an asymmetric ternary complex with a prominent network of π-mediated interactions that suggest specific avenues for future ALLINI development and optimization.
Collapse
Affiliation(s)
- Grant Eilers
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Audrey Allen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Saira Montermoso
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hemma Murali
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert Sharp
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Young Hwang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gregory Van Duyne
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
2
|
Rocchi C, Gouet P, Parissi V, Fiorini F. The C-Terminal Domain of HIV-1 Integrase: A Swiss Army Knife for the Virus? Viruses 2022; 14:v14071397. [PMID: 35891378 PMCID: PMC9316232 DOI: 10.3390/v14071397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 12/31/2022] Open
Abstract
Retroviral integrase is a multimeric enzyme that catalyzes the integration of reverse-transcribed viral DNA into the cellular genome. Beyond integration, the Human immunodeficiency virus type 1 (HIV-1) integrase is also involved in many other steps of the viral life cycle, such as reverse transcription, nuclear import, virion morphogenesis and proviral transcription. All these additional functions seem to depend on the action of the integrase C-terminal domain (CTD) that works as a molecular hub, interacting with many different viral and cellular partners. In this review, we discuss structural issues concerning the CTD, with particular attention paid to its interaction with nucleic acids. We also provide a detailed map of post-translational modifications and interaction with molecular partners.
Collapse
Affiliation(s)
- Cecilia Rocchi
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
| | - Patrice Gouet
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
| | - Vincent Parissi
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
- Fundamental Microbiology and Pathogenicity (MFP), CNRS, University of Bordeaux, UMR5234, 33405 Bordeaux, France
| | - Francesca Fiorini
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
- Correspondence: ; Tel.: +33-4-72722624; Fax: +33-4-72722616
| |
Collapse
|
3
|
Tan S, Banwell MG, Ye WC, Lan P, White LV. The Inhibition of RNA Viruses by Amaryllidaceae Alkaloids: Opportunities for the Development of Broad-Spectrum Anti-Coronavirus Drugs. Chem Asian J 2022; 17:e202101215. [PMID: 35032358 DOI: 10.1002/asia.202101215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/06/2021] [Indexed: 12/16/2022]
Abstract
The global COVID-19 pandemic has claimed the lives of millions and disrupted nearly every aspect of human society. Currently, vaccines remain the only widely available medical means to address the cause of the pandemic, the SARS-CoV-2 virus. Unfortunately, current scientific consensus deems the emergence of vaccine-resistant SARS-CoV-2 variants highly likely. In this context, the design and development of broad-spectrum, small-molecule based antiviral drugs has been described as a potentially effective, alternative medical strategy to address circulating and re-emerging CoVs. Small molecules are well-suited to target the least-rapidly evolving structures within CoVs such as highly conserved RNA replication enzymes, and this renders them less vulnerable to evolved drug resistance. Examination of the vast literature describing the inhibition of RNA viruses by Amaryllidaceae alkaloids suggests that future, broad-spectrum anti-CoV drugs may be derived from this family of natural products.
Collapse
Affiliation(s)
- Shen Tan
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| | - Martin G Banwell
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| | - Wen-Cai Ye
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Ping Lan
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| | - Lorenzo V White
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
4
|
Gupta K, Allen A, Giraldo C, Eilers G, Sharp R, Hwang Y, Murali H, Cruz K, Janmey P, Bushman F, Van Duyne GD. Allosteric HIV Integrase Inhibitors Promote Formation of Inactive Branched Polymers via Homomeric Carboxy-Terminal Domain Interactions. Structure 2021; 29:213-225.e5. [PMID: 33357410 PMCID: PMC7935764 DOI: 10.1016/j.str.2020.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/04/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
The major effect of allosteric HIV integrase (IN) inhibitors (ALLINIs) is observed during virion maturation, where ALLINI treatment interrupts IN-RNA interactions via drug-induced IN aggregation, leading to the formation of aberrant virions. To understand the structural changes that accompany drug-induced aggregation, we determined the soft matter properties of ALLINI-induced IN aggregates. Using small-angle neutron scattering, SEM, and rheology, we have discovered that the higher-order aggregates induced by ALLINIs have the characteristics of weak three-dimensional gels with a fractal-like character. Their formation is inhibited by the host factor LEDGF/p75, as well as ex vivo resistance substitutions. Mutagenesis and biophysical analyses reveal that homomeric carboxy-terminal domain interactions are required to achieve the branched-polymer nature of the ALLINI-induced aggregates. These studies provide key insight into the mechanisms of ALLINI action and resistance in the context of the crowded virion environment where ALLINIs exert their effect.
Collapse
Affiliation(s)
- Kushol Gupta
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, 809C Stellar-Chance Building, 422 Curie Boulevard, Philadelphia, PA 19105-6059, USA
| | - Audrey Allen
- Department of Microbiology, University of Pennsylvania School of Medicine, 426 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA
| | - Carolina Giraldo
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, 809C Stellar-Chance Building, 422 Curie Boulevard, Philadelphia, PA 19105-6059, USA
| | - Grant Eilers
- Department of Microbiology, University of Pennsylvania School of Medicine, 426 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA
| | - Robert Sharp
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, 809C Stellar-Chance Building, 422 Curie Boulevard, Philadelphia, PA 19105-6059, USA
| | - Young Hwang
- Department of Microbiology, University of Pennsylvania School of Medicine, 426 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA
| | - Hemma Murali
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, 809C Stellar-Chance Building, 422 Curie Boulevard, Philadelphia, PA 19105-6059, USA
| | - Katrina Cruz
- Department of Physiology, and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104-6383, USA
| | - Paul Janmey
- Department of Physiology, and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104-6383, USA
| | - Frederic Bushman
- Department of Microbiology, University of Pennsylvania School of Medicine, 426 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA.
| | - Gregory D Van Duyne
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, 809C Stellar-Chance Building, 422 Curie Boulevard, Philadelphia, PA 19105-6059, USA.
| |
Collapse
|
5
|
Winans S, Goff SP. Mutations altering acetylated residues in the CTD of HIV-1 integrase cause defects in proviral transcription at early times after integration of viral DNA. PLoS Pathog 2020; 16:e1009147. [PMID: 33351861 PMCID: PMC7787678 DOI: 10.1371/journal.ppat.1009147] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/06/2021] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
The central function of the retroviral integrase protein (IN) is to catalyze the integration of viral DNA into the host genome to form the provirus. The IN protein has also been reported to play a role in a number of other processes throughout the retroviral life cycle such as reverse transcription, nuclear import and particle morphogenesis. Studies have shown that HIV-1 IN is subject to multiple post-translational modifications (PTMs) including acetylation, phosphorylation and SUMOylation. However, the importance of these modifications during infection has been contentious. In this study we attempt to clarify the role of acetylation of HIV-1 IN during the retroviral life cycle. We show that conservative mutation of the known acetylated lysine residues has only a modest effect on reverse transcription and proviral integration efficiency in vivo. However, we observe a large defect in successful expression of proviral genes at early times after infection by an acetylation-deficient IN mutant that cannot be explained by delayed integration dynamics. We demonstrate that the difference between the expression of proviruses integrated by an acetylation mutant and WT IN is likely not due to altered integration site distribution but rather directly due to a lower rate of transcription. Further, the effect of the IN mutation on proviral gene expression is independent of the Tat protein or the LTR promoter. At early times after integration when the transcription defect is observed, the LTRs of proviruses integrated by the mutant IN have altered histone modifications as well as reduced IN protein occupancy. Over time as the transcription defect in the mutant virus diminishes, histone modifications on the WT and mutant proviral LTRs reach comparable levels. These results highlight an unexpected role for the IN protein in regulating proviral transcription at early times post-integration. A key step of the retrovirus life cycle is the insertion of the viral DNA genome into the host cell genome, a process called integration. The process of integration is solely catalyzed by the virally encoded integrase (IN) protein. IN has been reported to influence a number of other viral processes such as reverse transcription, nuclear import and particle morphogenesis. The HIV-1 IN protein is known to be heavily post-translationally modified. In light of the known effect of post-translational modifications on the function of the orthologous proteins of certain retrotransposons, we were motivated to ask how post-translational modifications of HIV-1 IN may regulate its various functions. In this study, we examined the consequences of mutations preventing the acetylation of the IN protein on the retroviral life cycle. Surprisingly, we saw that mutations blocking IN acetylation had only modest effects on viral DNA integration. Instead, we uncovered a novel function for HIV-1 IN in regulating proviral transcription at early times after infection. Our data suggests that IN may be retained on proviral DNA at early times after integration and promote proviral gene expression by altering chromatin modifications at the viral transcriptional promoter.
Collapse
Affiliation(s)
- Shelby Winans
- Columbia University, Department of Biochemistry and Molecular Biophysics, New York, New York, United States of America
- Columbia University, Department of Microbiology and Immunology, New York, New York, United States of America
- Howard Hughes Medical Institute, Columbia University, New York, New York United States of America
| | - Stephen P. Goff
- Columbia University, Department of Biochemistry and Molecular Biophysics, New York, New York, United States of America
- Columbia University, Department of Microbiology and Immunology, New York, New York, United States of America
- Howard Hughes Medical Institute, Columbia University, New York, New York United States of America
- * E-mail:
| |
Collapse
|
6
|
Engelman AN. Multifaceted HIV integrase functionalities and therapeutic strategies for their inhibition. J Biol Chem 2019; 294:15137-15157. [PMID: 31467082 DOI: 10.1074/jbc.rev119.006901] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Antiretroviral inhibitors that are used to manage HIV infection/AIDS predominantly target three enzymes required for virus replication: reverse transcriptase, protease, and integrase. Although integrase inhibitors were the last among this group to be approved for treating people living with HIV, they have since risen to the forefront of treatment options. Integrase strand transfer inhibitors (INSTIs) are now recommended components of frontline and drug-switch antiretroviral therapy formulations. Integrase catalyzes two successive magnesium-dependent polynucleotidyl transferase reactions, 3' processing and strand transfer, and INSTIs tightly bind the divalent metal ions and viral DNA end after 3' processing, displacing from the integrase active site the DNA 3'-hydroxyl group that is required for strand transfer activity. Although second-generation INSTIs present higher barriers to the development of viral drug resistance than first-generation compounds, the mechanisms underlying these superior barrier profiles are incompletely understood. A separate class of HIV-1 integrase inhibitors, the allosteric integrase inhibitors (ALLINIs), engage integrase distal from the enzyme active site, namely at the binding site for the cellular cofactor lens epithelium-derived growth factor (LEDGF)/p75 that helps to guide integration into host genes. ALLINIs inhibit HIV-1 replication by inducing integrase hypermultimerization, which precludes integrase binding to genomic RNA and perturbs the morphogenesis of new viral particles. Although not yet approved for human use, ALLINIs provide important probes that can be used to investigate the link between HIV-1 integrase and viral particle morphogenesis. Herein, I review the mechanisms of retroviral integration as well as the promises and challenges of using integrase inhibitors for HIV/AIDS management.
Collapse
Affiliation(s)
- Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215 Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
7
|
Chen L, Keppler OT, Schölz C. Post-translational Modification-Based Regulation of HIV Replication. Front Microbiol 2018; 9:2131. [PMID: 30254620 PMCID: PMC6141784 DOI: 10.3389/fmicb.2018.02131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus (HIV) relies heavily on the host cellular machinery for production of viral progeny. To exploit cellular proteins for replication and to overcome host factors with antiviral activity, HIV has evolved a set of regulatory and accessory proteins to shape an optimized environment for its replication and to facilitate evasion from the immune system. Several cellular pathways are hijacked by the virus to modulate critical steps during the viral life cycle. Thereby, post-translational modifications (PTMs) of viral and cellular proteins gain increasingly attention as modifying enzymes regulate virtually every step of the viral replication cycle. This review summarizes the current knowledge of HIV-host interactions influenced by PTMs with a special focus on acetylation, ubiquitination, and phosphorylation of proteins linked to cellular signaling and viral replication. Insights into these interactions are surmised to aid development of new intervention strategies.
Collapse
Affiliation(s)
- Lin Chen
- Max von Pettenkofer-Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Oliver T Keppler
- Max von Pettenkofer-Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christian Schölz
- Max von Pettenkofer-Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
8
|
Engelman AN, Singh PK. Cellular and molecular mechanisms of HIV-1 integration targeting. Cell Mol Life Sci 2018; 75:2491-2507. [PMID: 29417178 PMCID: PMC6004233 DOI: 10.1007/s00018-018-2772-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/23/2018] [Accepted: 02/01/2018] [Indexed: 12/21/2022]
Abstract
Integration is central to HIV-1 replication and helps mold the reservoir of cells that persists in AIDS patients. HIV-1 interacts with specific cellular factors to target integration to interior regions of transcriptionally active genes within gene-dense regions of chromatin. The viral capsid interacts with several proteins that are additionally implicated in virus nuclear import, including cleavage and polyadenylation specificity factor 6, to suppress integration into heterochromatin. The viral integrase protein interacts with transcriptional co-activator lens epithelium-derived growth factor p75 to principally position integration within gene bodies. The integrase additionally senses target DNA distortion and nucleotide sequence to help fine-tune the specific phosphodiester bonds that are cleaved at integration sites. Research into virus-host interactions that underlie HIV-1 integration targeting has aided the development of a novel class of integrase inhibitors and may help to improve the safety of viral-based gene therapy vectors.
Collapse
Affiliation(s)
- Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, 450 Brookline Avenue, CLS-1010, Boston, MA, 02215, USA.
- Department of Medicine, Harvard Medical School, A-111, 25 Shattuck Street, Boston, MA, 02115, USA.
| | - Parmit K Singh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, 450 Brookline Avenue, CLS-1010, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, A-111, 25 Shattuck Street, Boston, MA, 02115, USA
| |
Collapse
|
9
|
HIV-1 envelope glycoprotein stimulates viral transcription and increases the infectivity of the progeny virus through the manipulation of cellular machinery. Sci Rep 2017; 7:9487. [PMID: 28842659 PMCID: PMC5573355 DOI: 10.1038/s41598-017-10272-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/20/2017] [Indexed: 01/16/2023] Open
Abstract
During HIV infection, large amounts of progeny viral particles, including infectious virus and a large proportion of defective viral particles, are produced. Despite of the critical role of the infectious viruses in infection and pathogenesis in vivo, whether and how those defective viral particles, especially the virus-associated envelope glycoprotein (vEnv), would impact viral infection remains elusive. In this study, we investigated the effect of vEnv on HIV-infected T cells and demonstrated that the vEnv was able to stimulate HIV transcription in HIV-infected cells, including peripheral blood mononuclear cells (PBMCs) isolated from HIV patients. This vEnv-mediated HIV transcription activation is mediated primarily through the interaction between vEnv and CD4/coreceptors (CCR5 or CXCR4). Through transcriptome analysis, we found that numerous cellular gene products involved in various signaling pathways were modulated by vEnv. Among them, we have further identified a cellular microRNA miR181A2, which is downregulated upon vEnv treatment, resulting in increased HIV LTR histone H3 acetylation and HIV transcription. Furthermore, we also found a vEnv-modulated cellular histone deacetylase, HDAC10, whose downregulation is associated with the increased infectivity of progeny viruses. Altogether, these findings provide evidence of the important role vEnv plays in modulating cellular environments and facilitating HIV expression and infection.
Collapse
|
10
|
Post-translational selective intracellular silencing of acetylated proteins with de novo selected intrabodies. Nat Methods 2017; 14:279-282. [DOI: 10.1038/nmeth.4144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 11/30/2016] [Indexed: 01/03/2023]
|
11
|
Role of Eukaryotic Initiation Factors during Cellular Stress and Cancer Progression. J Nucleic Acids 2016; 2016:8235121. [PMID: 28083147 PMCID: PMC5204094 DOI: 10.1155/2016/8235121] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022] Open
Abstract
Protein synthesis can be segmented into distinct phases comprising mRNA translation initiation, elongation, and termination. Translation initiation is a highly regulated and rate-limiting step of protein synthesis that requires more than 12 eukaryotic initiation factors (eIFs). Extensive evidence shows that the transcriptome and corresponding proteome do not invariably correlate with each other in a variety of contexts. In particular, translation of mRNAs specific to angiogenesis, tumor development, and apoptosis is altered during physiological and pathophysiological stress conditions. In cancer cells, the expression and functions of eIFs are hampered, resulting in the inhibition of global translation and enhancement of translation of subsets of mRNAs by alternative mechanisms. A precise understanding of mechanisms involving eukaryotic initiation factors leading to differential protein expression can help us to design better strategies to diagnose and treat cancer. The high spatial and temporal resolution of translation control can have an immediate effect on the microenvironment of the cell in comparison with changes in transcription. The dysregulation of mRNA translation mechanisms is increasingly being exploited as a target to treat cancer. In this review, we will focus on this context by describing both canonical and noncanonical roles of eIFs, which alter mRNA translation.
Collapse
|
12
|
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
Affiliation(s)
- Guangdi Li
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| | - Erik De Clercq
- KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| |
Collapse
|
13
|
HIV Genome-Wide Protein Associations: a Review of 30 Years of Research. Microbiol Mol Biol Rev 2016; 80:679-731. [PMID: 27357278 DOI: 10.1128/mmbr.00065-15] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
|
14
|
Jeng MY, Ali I, Ott M. Manipulation of the host protein acetylation network by human immunodeficiency virus type 1. Crit Rev Biochem Mol Biol 2015; 50:314-25. [PMID: 26329395 PMCID: PMC4816045 DOI: 10.3109/10409238.2015.1061973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Over the past 15 years, protein acetylation has emerged as a globally important post-translational modification that fine-tunes major cellular processes in many life forms. This dynamic regulatory system is critical both for complex eukaryotic cells and for the viruses that infect them. HIV-1 accesses the host acetylation network by interacting with several key enzymes, thereby promoting infection at multiple steps during the viral life cycle. Inhibitors of host histone deacetylases and bromodomain-containing proteins are now being pursued as therapeutic strategies to enhance current antiretroviral treatment. As more acetylation-targeting compounds are reaching clinical trials, it is time to review the role of reversible protein acetylation in HIV-infected CD4(+) T cells.
Collapse
Affiliation(s)
- Mark Y. Jeng
- Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | - Ibraheem Ali
- Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
15
|
Li D, Wei T, Jin H, Rose A, Wang R, Lin MH, Spann K, Harrich D. Binding of the eukaryotic translation elongation factor 1A with the 5'UTR of HIV-1 genomic RNA is important for reverse transcription. Virol J 2015; 12:118. [PMID: 26242867 PMCID: PMC4525723 DOI: 10.1186/s12985-015-0337-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/01/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The cellular protein eukaryotic translation elongation factor 1A (eEF1A) binds to aminoacylated transfer RNAs and delivers them to the ribosome during translation. eEF1A also binds to RNA secondary structures present in genomes of several RNA viruses and plays important roles in their replication. As a RNA binding protein, whether eEF1A can bind with HIV-1 genomic RNA has not been investigated and was the aim of the study. METHODS RNA-protein interaction was determined by reversible crosslink co-immunoprecipitation (RC-Co-IP) and biolayer Interferometry assay (BLI). eEF1A binding region within RNA was mapped by deletion and mutation analysis. Virus with genomic RNA mutations were examined for eEF1A-RT interaction by proximity ligation assay, for reverse transcription by qPCR and for replication by CAp24 ELISA in cells. RESULTS The interaction of eEF1A with 5'UTR of HIV-1 genomic RNA was detected in cells and in vitro. Truncation and substitution mutations in the 5'UTR RNA demonstrated that a stem-loop formed by nucleotides 142 to 170, which encompass a reported tRNA anticodon-like-element, binds to eEF1A. Mutations that altered the stem-loop structure by changing two highly conserved sequence clusters in the stem-loop region result in reduction of the interaction with eEF1A in vitro. HIV-1 virus harbouring the same 5'UTR mutations significantly reduced the interaction of eEF1A with HIV-1 reverse transcription complex (RTC), reverse transcription and replication. CONCLUSION eEF1A interacts with 5'UTR of HIV-1 genomic RNA and the interaction is important for late DNA synthesis in reverse transcription.
Collapse
Affiliation(s)
- Dongsheng Li
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
| | - Ting Wei
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
| | - Hongping Jin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
| | - Amanda Rose
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
| | - Rui Wang
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia.,Present address: Centre of Infectious Diseases, Beijing Youan Hospital, Capital Medical University, No. 8 Xitoutiao Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Min-Hsuan Lin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
| | - Kirsten Spann
- School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia.
| |
Collapse
|
16
|
Abbas W, Kumar A, Herbein G. The eEF1A Proteins: At the Crossroads of Oncogenesis, Apoptosis, and Viral Infections. Front Oncol 2015; 5:75. [PMID: 25905039 PMCID: PMC4387925 DOI: 10.3389/fonc.2015.00075] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/12/2015] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic translation elongation factors 1 alpha, eEF1A1 and eEF1A2, are not only translation factors but also pleiotropic proteins that are highly expressed in human tumors, including breast cancer, ovarian cancer, and lung cancer. eEF1A1 modulates cytoskeleton, exhibits chaperone-like activity and also controls cell proliferation and cell death. In contrast, eEF1A2 protein favors oncogenesis as shown by the fact that overexpression of eEF1A2 leads to cellular transformation and gives rise to tumors in nude mice. The eEF1A2 protein stimulates the phospholipid signaling and activates the Akt-dependent cell migration and actin remodeling that ultimately favors tumorigenesis. In contrast, inactivation of eEF1A proteins leads to immunodeficiency, neural and muscular defects, and favors apoptosis. Finally, eEF1A proteins interact with several viral proteins resulting in enhanced viral replication, decreased apoptosis, and increased cellular transformation. This review summarizes the recent findings on eEF1A proteins indicating that eEF1A proteins play a critical role in numerous human diseases through enhancement of oncogenesis, blockade of apoptosis, and increased viral pathogenesis.
Collapse
Affiliation(s)
- Wasim Abbas
- Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences , Lahore , Pakistan
| | - Amit Kumar
- UPRES EA 4266, Laboratory of Pathogens and Inflammation, Department of Virology, CHRU Besançon, Université de Franche-Comté , Besançon , France
| | - Georges Herbein
- UPRES EA 4266, Laboratory of Pathogens and Inflammation, Department of Virology, CHRU Besançon, Université de Franche-Comté , Besançon , France
| |
Collapse
|
17
|
DeBoer J, Jagadish T, Haverland NA, Madson CJ, Ciborowski P, Belshan M. Alterations in the nuclear proteome of HIV-1 infected T-cells. Virology 2014; 468-470:409-420. [PMID: 25240327 DOI: 10.1016/j.virol.2014.08.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/19/2014] [Accepted: 08/27/2014] [Indexed: 01/17/2023]
Abstract
Virus infection of a cell involves the appropriation of host factors and the innate defensive response of the cell. The identification of proteins critical for virus replication may lead to the development of novel, cell-based inhibitors. In this study we mapped the changes in T-cell nuclei during human immunodeficiency virus type 1 (HIV-1) at 20 hpi. Using a stringent data threshold, a total of 13 and 38 unique proteins were identified in infected and uninfected cells, respectively, across all biological replicates. An additional 15 proteins were found to be differentially regulated between infected and control nuclei. STRING analysis identified four clusters of protein-protein interactions in the data set related to nuclear architecture, RNA regulation, cell division, and cell homeostasis. Immunoblot analysis confirmed the differential expression of several proteins in both C8166-45 and Jurkat E6-1 T-cells. These data provide a map of the response in host cell nuclei upon HIV-1 infection.
Collapse
Affiliation(s)
- Jason DeBoer
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Teena Jagadish
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nicole A Haverland
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christian J Madson
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; The Nebraska Center for Virology, University of Nebraska, Lincoln 68583, USA
| | - Michael Belshan
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; The Nebraska Center for Virology, University of Nebraska, Lincoln 68583, USA.
| |
Collapse
|
18
|
The unexpected roles of eukaryotic translation elongation factors in RNA virus replication and pathogenesis. Microbiol Mol Biol Rev 2014; 77:253-66. [PMID: 23699257 DOI: 10.1128/mmbr.00059-12] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The prokaryotic translation elongation factors were identified as essential cofactors for RNA-dependent RNA polymerase activity of the bacteriophage Qβ more than 40 years ago. A growing body of evidence now shows that eukaryotic translation elongation factors (eEFs), predominantly eEF1A, acting in partially characterized complexes sometimes involving additional eEFs, facilitate virus replication. The functions of eEF1A as a protein chaperone and an RNA- and actin-binding protein enable its "moonlighting" roles as a virus replication cofactor. A diverse group of viruses, from human immunodeficiency type 1 and West Nile virus to tomato bushy stunt virus, have adapted to use eEFs as cofactors for viral transcription, translation, assembly, and pathogenesis. Here we review the mechanisms used by viral pathogens to usurp these abundant cellular proteins for their replication.
Collapse
|
19
|
Ertl R, Klein D. Transcriptional profiling of the host cell response to feline immunodeficiency virus infection. Virol J 2014; 11:52. [PMID: 24642186 PMCID: PMC3999937 DOI: 10.1186/1743-422x-11-52] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/12/2014] [Indexed: 11/22/2022] Open
Abstract
Background Feline immunodeficiency virus (FIV) is a widespread pathogen of the domestic cat and an important animal model for human immunodeficiency virus (HIV) research. In contrast to HIV, only limited information is available on the transcriptional host cell response to FIV infections. This study aims to identify FIV-induced gene expression changes in feline T-cells during the early phase of the infection. Illumina RNA-sequencing (RNA-seq) was used identify differentially expressed genes (DEGs) at 24 h after FIV infection. Results After removal of low-quality reads, the remaining sequencing data were mapped against the cat genome and the numbers of mapping reads were counted for each gene. Regulated genes were identified through the comparison of FIV and mock-infected data sets. After statistical analysis and the removal of genes with insufficient coverage, we detected a total of 69 significantly DEGs (44 up- and 25 down-regulated genes) upon FIV infection. The results obtained by RNA-seq were validated by reverse transcription qPCR analysis for 10 genes. Discussion and conclusion Out of the most distinct DEGs identified in this study, several genes are already known to interact with HIV in humans, indicating comparable effects of both viruses on the host cell gene expression and furthermore, highlighting the importance of FIV as a model system for HIV. In addition, a set of new genes not previously linked to virus infections could be identified. The provided list of virus-induced genes may represent useful information for future studies focusing on the molecular mechanisms of virus-host interactions in FIV pathogenesis.
Collapse
Affiliation(s)
- Reinhard Ertl
- VetCore Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria.
| | | |
Collapse
|
20
|
Posttranslational modifications of HIV-1 integrase by various cellular proteins during viral replication. Viruses 2013; 5:1787-801. [PMID: 23863879 PMCID: PMC3738961 DOI: 10.3390/v5071787] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 12/21/2022] Open
Abstract
HIV-1 integrase (IN) is a key viral enzyme during HIV-1 replication that catalyzes the insertion of viral DNA into the host genome. Recent studies have provided important insights into the multiple posttranslational modifications (PTMs) of IN (e.g., ubiquitination, SUMOylation, acetylation and phosphorylation), which regulate its multifaceted functions. A number of host cellular proteins, including Lens Epithelium‑derived Growth factor (LEDGF/p75), p300 and Ku70 have been shown to interact with IN and be involved in the PTM process of IN, either facilitating or counteracting the IN PTMs. Although previous studies have revealed much about the important roles of IN PTMs, how IN functions are fine-tuned by these PTMs under the physiological setting still needs to be determined. Here, we review the advances in the understanding of the mechanisms and roles of multiple IN PTMs.
Collapse
|
21
|
Bromodomain proteins in HIV infection. Viruses 2013; 5:1571-86. [PMID: 23793227 PMCID: PMC3717722 DOI: 10.3390/v5061571] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/09/2013] [Accepted: 06/13/2013] [Indexed: 02/06/2023] Open
Abstract
Bromodomains are conserved protein modules of ~110 amino acids that bind acetylated lysine residues in histone and non-histone proteins. Bromodomains are present in many chromatin-associated transcriptional regulators and have been linked to diverse aspects of the HIV life cycle, including transcription and integration. Here, we review the role of bromodomain-containing proteins in HIV infection. We begin with a focus on acetylated viral factors, followed by a discussion of structural and biological studies defining the involvement of bromodomain proteins in the HIV life cycle. We end with an overview of promising new studies of bromodomain inhibitory compounds for the treatment of HIV latency.
Collapse
|
22
|
Fletcher AJ, Towers GJ. Inhibition of retroviral replication by members of the TRIM protein family. Curr Top Microbiol Immunol 2013; 371:29-66. [PMID: 23686231 DOI: 10.1007/978-3-642-37765-5_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The TRIM protein family is emerging as a central component of mammalian antiviral innate immunity. Beginning with the identification of TRIM5α as a mammalian post-entry restriction factor against retroviruses, to the repeated observation that many TRIMs ubiquitinate and regulate signaling pathways, the past decade has witnessed an intense research effort to understand how TRIM proteins influence immunity. The list of viral families targeted directly or indirectly by TRIM proteins has grown to include adenoviruses, hepadnaviruses, picornaviruses, flaviviruses, orthomyxoviruses, paramyxoviruses, herpesviruses, rhabdoviruses and arenaviruses. We have come to appreciate how, through intense bouts of positive selection, some TRIM genes have been honed into species-specific restriction factors. Similarly, in the case of TRIMCyp, we are beginning to understand how viruses too have mutated to evade restriction, suggesting that TRIM and viruses have coevolved for millions of years of primate evolution. Recently, TRIM5α returned to the limelight when it was shown to trigger the expression of antiviral genes upon recognition of an incoming virus, a paradigm shift that demonstrated that restriction factors make excellent pathogen sensors. However, it remains unclear how many of ~100 human TRIM genes are antiviral, despite the expression of many of these genes being upregulated by interferon and upon viral infection. TRIM proteins do not conform to one type of antiviral mechanism, reflecting the diversity of viruses they target. Moreover, the cofactors of restriction remain largely enigmatic. The control of retroviral replication remains an important medical subject and provides a useful backdrop for reviewing how TRIM proteins act to repress viral replication.
Collapse
Affiliation(s)
- Adam J Fletcher
- MRC Centre for Medical Molecular Virology, University College, London, UK.
| | | |
Collapse
|
23
|
Métifiot M, Marchand C, Pommier Y. HIV integrase inhibitors: 20-year landmark and challenges. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 67:75-105. [PMID: 23885999 DOI: 10.1016/b978-0-12-405880-4.00003-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Since the discovery of HIV as the cause for AIDS 30 years ago, major progress has been made, including the discovery of drugs that now control the disease. Here, we review the integrase (IN) inhibitors from the discovery of the first compounds 20 years ago to the approval of two highly effective IN strand transfer inhibitors (INSTIs), raltegravir (Isentress) and elvitegravir (Stribild), and the promising clinical activity of dolutegravir. After summarizing the molecular mechanism of action of the INSTIs as interfacial inhibitors, we discuss the remaining challenges. Those include: overcoming resistance to clinical INSTIs, long-term safety of INSTIs, cost of therapy, place of the INSTIs in prophylactic treatments, and the development of new classes of inhibitors (the LEDGINs) targeting IN outside its catalytic site. We also discuss the role of chromatin and host DNA repair factor for the completion of integration.
Collapse
Affiliation(s)
- Mathieu Métifiot
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
24
|
Arnold R, Boonen K, Sun MG, Kim PM. Computational analysis of interactomes: current and future perspectives for bioinformatics approaches to model the host-pathogen interaction space. Methods 2012; 57:508-18. [PMID: 22750305 PMCID: PMC7128575 DOI: 10.1016/j.ymeth.2012.06.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 11/05/2022] Open
Abstract
Bacterial and viral pathogens affect their eukaryotic host partly by interacting with proteins of the host cell. Hence, to investigate infection from a systems' perspective we need to construct complete and accurate host-pathogen protein-protein interaction networks. Because of the paucity of available data and the cost associated with experimental approaches, any construction and analysis of such a network in the near future has to rely on computational predictions. Specifically, this challenge consists of a number of sub-problems: First, prediction of possible pathogen interactors (e.g. effector proteins) is necessary for bacteria and protozoa. Second, the prospective host binding partners have to be determined and finally, the impact on the host cell analyzed. This review gives an overview of current bioinformatics approaches to obtain and understand host-pathogen interactions. As an application example of the methods covered, we predict host-pathogen interactions of Salmonella and discuss the value of these predictions as a prospective for further research.
Collapse
Affiliation(s)
- Roland Arnold
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada M5S 3E1
| | - Kurt Boonen
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada M5S 3E1
| | - Mark G.F. Sun
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada M5S 3E1
| | - Philip M. Kim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada M5S 3E1
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, Canada M5S 3E1
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 3E1
- Department of Computer Science, University of Toronto, Toronto, ON, Canada M5S 3E1
| |
Collapse
|
25
|
Eukaryotic elongation factor 1 complex subunits are critical HIV-1 reverse transcription cofactors. Proc Natl Acad Sci U S A 2012; 109:9587-92. [PMID: 22628567 DOI: 10.1073/pnas.1204673109] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cellular proteins have been implicated as important for HIV-1 reverse transcription, but whether any are reverse transcription complex (RTC) cofactors or affect reverse transcription indirectly is unclear. Here we used protein fractionation combined with an endogenous reverse transcription assay to identify cellular proteins that stimulated late steps of reverse transcription in vitro. We identified 25 cellular proteins in an active protein fraction, and here we show that the eEF1A and eEF1G subunits of eukaryotic elongation factor 1 (eEF1) are important components of the HIV-1 RTC. eEF1A and eEF1G were identified in fractionated human T-cell lysates as reverse transcription cofactors, as their removal ablated the ability of active protein fractions to stimulate late reverse transcription in vitro. We observed that the p51 subunit of reverse transcriptase and integrase, two subunits of the RTC, coimmunoprecipitated with eEF1A and eEF1G. Moreover eEF1A and eEF1G associated with purified RTCs and colocalized with reverse transcriptase following infection of cells. Reverse transcription in cells was sharply down-regulated when eEF1A or eEF1G levels were reduced by siRNA treatment as a result of reduced levels of RTCs in treated cells. The combined evidence indicates that these eEF1 subunits are critical RTC stability cofactors required for efficient completion of reverse transcription. The identification of eEF1 subunits as unique RTC components provides a basis for further investigations of reverse transcription and trafficking of the RTC to the nucleus.
Collapse
|
26
|
Friedel CC, Haas J. Virus-host interactomes and global models of virus-infected cells. Trends Microbiol 2011; 19:501-8. [PMID: 21855347 DOI: 10.1016/j.tim.2011.07.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 01/01/2023]
Abstract
Novel high-throughput technologies such as yeast two-hybrid and RNA interference (RNAi) screens provide the tools to study interactions between viral proteins and the host on a genomic scale. In this review, we provide an overview of studies in which these technologies were applied and of computational approaches for the analysis of the identified viral interactors in the context of the host cell. The results of these studies illustrate the advantages of integrative systems biology approaches in the investigation of viral pathogens.
Collapse
Affiliation(s)
- Caroline C Friedel
- Institut für Pharmazie und Molekulare Biotechnologie, Universität Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
27
|
Studamire B, Goff SP. Interactions of host proteins with the murine leukemia virus integrase. Viruses 2010; 2:1110-45. [PMID: 21637732 PMCID: PMC3104679 DOI: 10.3390/v2051110] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/02/2010] [Accepted: 05/03/2010] [Indexed: 12/20/2022] Open
Abstract
Retroviral infections cause a variety of cancers in animals and a number of diverse diseases in humans such as leukemia and acquired immune deficiency syndrome. Productive and efficient proviral integration is critical for retroviral function and is the key step in establishing a stable and productive infection, as well as the mechanism by which host genes are activated in leukemogenesis. Host factors are widely anticipated to be involved in all stages of the retroviral life cycle, and the identification of integrase interacting factors has the potential to increase our understanding of mechanisms by which the incoming virus might appropriate cellular proteins to target and capture host DNA sequences. Identification of MoMLV integrase interacting host factors may be key to designing efficient and benign retroviral-based gene therapy vectors; key to understanding the basic mechanism of integration; and key in designing efficient integrase inhibitors. In this review, we discuss current progress in the field of MoMLV integrase interacting proteins and possible roles for these proteins in integration.
Collapse
Affiliation(s)
- Barbara Studamire
- Brooklyn College of the City University of New York, Department of Biology, 2900 Bedford Avenue, Brooklyn, NY 11210, USA; E-Mail:
| | - Stephen P. Goff
- Columbia University College of Physicians and Surgeons, Department of Biochemistry and Molecular Biophysics and Howard Hughes Medical Institute, 701 West 168 Street, New York, NY 10028, USA
| |
Collapse
|
28
|
GCN5-dependent acetylation of HIV-1 integrase enhances viral integration. Retrovirology 2010; 7:18. [PMID: 20226045 PMCID: PMC2848186 DOI: 10.1186/1742-4690-7-18] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 03/12/2010] [Indexed: 11/24/2022] Open
Abstract
Background An essential event during the replication cycle of HIV-1 is the integration of the reverse transcribed viral DNA into the host cellular genome. Our former report revealed that HIV-1 integrase (IN), the enzyme that catalyzes the integration reaction, is positively regulated by acetylation mediated by the histone acetyltransferase (HAT) p300. Results In this study we demonstrate that another cellular HAT, GCN5, acetylates IN leading to enhanced 3'-end processing and strand transfer activities. GCN5 participates in the integration step of HIV-1 replication cycle as demonstrated by the reduced infectivity, due to inefficient provirus formation, in GCN5 knockdown cells. Within the C-terminal domain of IN, four lysines (K258, K264, K266, and K273) are targeted by GCN5 acetylation, three of which (K264, K266, and K273) are also modified by p300. Replication analysis of HIV-1 clones carrying substitutions at the IN lysines acetylated by both GCN5 and p300, or exclusively by GCN5, demonstrated that these residues are required for efficient viral integration. In addition, a comparative analysis of the replication efficiencies of the IN triple- and quadruple-mutant viruses revealed that even though the lysines targeted by both GCN5 and p300 are required for efficient virus integration, the residue exclusively modified by GCN5 (K258) does not affect this process. Conclusions The results presented here further demonstrate the relevance of IN post-translational modification by acetylation, which results from the catalytic activities of multiple HATs during the viral replication cycle. Finally, this study contributes to clarifying the recent debate raised on the role of IN acetylated lysines during HIV-1 infection.
Collapse
|
29
|
Amino acids special issue 'Protein interactions in the virus-host relationship'. Amino Acids 2009; 41:1135-6. [PMID: 20020162 DOI: 10.1007/s00726-009-0441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 12/01/2009] [Indexed: 10/20/2022]
|