1
|
O’Day DH. Protein Biomarkers Shared by Multiple Neurodegenerative Diseases Are Calmodulin-Binding Proteins Offering Novel and Potentially Universal Therapeutic Targets. J Clin Med 2023; 12:7045. [PMID: 38002659 PMCID: PMC10672630 DOI: 10.3390/jcm12227045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Seven major neurodegenerative diseases and their variants share many overlapping biomarkers that are calmodulin-binding proteins: Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal lobar dementia (FTD), Huntington's disease (HD), Lewy body disease (LBD), multiple sclerosis (MS), and Parkinson's disease (PD). Calcium dysregulation is an early and persistent event in each of these diseases, with calmodulin serving as an initial and primary target of increased cytosolic calcium. Considering the central role of calcium dysregulation and its downstream impact on calcium signaling, calmodulin has gained interest as a major regulator of neurodegenerative events. Here, we show that calmodulin serves a critical role in neurodegenerative diseases via binding to and regulating an abundance of biomarkers, many of which are involved in multiple neurodegenerative diseases. Of special interest are the shared functions of calmodulin in the generation of protein biomarker aggregates in AD, HD, LBD, and PD, where calmodulin not only binds to amyloid beta, pTau, alpha-synuclein, and mutant huntingtin but also, via its regulation of transglutaminase 2, converts them into toxic protein aggregates. It is suggested that several calmodulin binding proteins could immediately serve as primary drug targets, while combinations of calmodulin binding proteins could provide simultaneous insight into the onset and progression of multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Danton H. O’Day
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada;
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
2
|
Currò M, Saija C, Trainito A, Trovato-Salinaro A, Bertuccio MP, Visalli G, Caccamo D, Ientile R. Rotenone-induced oxidative stress in THP-1 cells: biphasic effects of baicalin. Mol Biol Rep 2023; 50:1241-1252. [PMID: 36446982 DOI: 10.1007/s11033-022-08060-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Several results demonstrated that microglia and peripheral monocytes/macrophages infiltrating the central nervous system (CNS) are involved in cell response against toxic compounds. It has been shown that rotenone induces neurodegeneration in various in vitro experimental models. Baicalin, a natural compound, is able to attenuate cell damage through anti-oxidant, anti-microbial, anti-inflammatory, and immunomodulatory action. Using THP-1 monocytes, we investigated rotenone effects on mitochondrial dysfunction and apoptosis, as well as baicalin ability to counteract rotenone toxicity. METHODS AND RESULTS THP-1 cells were exposed to rotenone (250 nM), in the presence/absence of baicalin (10-500 μM) for 2-24 h. Reactive Oxygen Species production (ROS), mitochondrial activity and transmembrane potential (Δψm), DNA damage, and caspase-3 activity were assessed. Moreover, gene expression of mitochondrial transcription factor a (mtTFA), interleukin-1β (IL-1β), B-cell lymphoma 2 (Bcl2) and BCL2-associated X protein (Bax), together with apoptotic morphological changes, were evaluated. After 2 h of rotenone incubation, increased ROS production and altered Δψm were observed, hours later resulting in DNA oxidative damage and apoptosis. Baicalin treatment at 50 µM counteracted rotenone toxicity by modulating the expression levels of some proteins involved in mitochondrial biogenesis and apoptosis. Interestingly, at higher baicalin concentrations, rotenone-induced alterations persisted. CONCLUSIONS These results give evidence that exposure to rotenone may promote the activation of THP-1 monocytes contributing to enhanced neurodegeneration. In this context, baicalin at low concentration exerts beneficial effects on mitochondrial function, and thus may prevent the onset of neurotoxic processes.
Collapse
Affiliation(s)
- Monica Currò
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Polyclinic Hospital University, 98125, Messina, Italy
| | - Caterina Saija
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Polyclinic Hospital University, 98125, Messina, Italy
| | - Alessandra Trainito
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Polyclinic Hospital University, 98125, Messina, Italy
| | | | - Maria Paola Bertuccio
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Polyclinic Hospital University, 98125, Messina, Italy
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Polyclinic Hospital University, 98125, Messina, Italy
| | - Daniela Caccamo
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Polyclinic Hospital University, 98125, Messina, Italy
| | - Riccardo Ientile
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Polyclinic Hospital University, 98125, Messina, Italy.
| |
Collapse
|
3
|
Sima LE, Matei D, Condello S. The Outside-In Journey of Tissue Transglutaminase in Cancer. Cells 2022; 11:cells11111779. [PMID: 35681474 PMCID: PMC9179582 DOI: 10.3390/cells11111779] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Tissue transglutaminase (TG2) is a member of the transglutaminase family that catalyzes Ca2+-dependent protein crosslinks and hydrolyzes guanosine 5′-triphosphate (GTP). The conformation and functions of TG2 are regulated by Ca2+ and GTP levels; the TG2 enzymatically active open conformation is modulated by high Ca2+ concentrations, while high intracellular GTP promotes the closed conformation, with inhibition of the TG-ase activity. TG2’s unique characteristics and its ubiquitous distribution in the intracellular compartment, coupled with its secretion in the extracellular matrix, contribute to modulate the functions of the protein. Its aberrant expression has been observed in several cancer types where it was linked to metastatic progression, resistance to chemotherapy, stemness, and worse clinical outcomes. The N-terminal domain of TG2 binds to the 42 kDa gelatin-binding domain of fibronectin with high affinity, facilitating the formation of a complex with β-integrins, essential for cellular adhesion to the matrix. This mechanism allows TG2 to interact with key matrix proteins and to regulate epithelial to mesenchymal transition and stemness. Here, we highlight the current knowledge on TG2 involvement in cancer, focusing on its roles translating extracellular cues into activation of oncogenic programs. Improved understanding of these mechanisms could lead to new therapeutic strategies targeting this multi-functional protein.
Collapse
Affiliation(s)
- Livia Elena Sima
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania;
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Salvatore Condello
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence:
| |
Collapse
|
4
|
Alam J, Sharma L. Potential Enzymatic Targets in Alzheimer's: A Comprehensive Review. Curr Drug Targets 2020; 20:316-339. [PMID: 30124150 DOI: 10.2174/1389450119666180820104723] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/23/2018] [Accepted: 08/15/2018] [Indexed: 12/13/2022]
Abstract
Alzheimer's, a degenerative cause of the brain cells, is called as a progressive neurodegenerative disease and appears to have a heterogeneous etiology with main emphasis on amyloid-cascade and hyperphosphorylated tau-cascade hypotheses, that are directly linked with macromolecules called enzymes such as β- & γ-secretases, colinesterases, transglutaminases, and glycogen synthase kinase (GSK-3), cyclin-dependent kinase (cdk-5), microtubule affinity-regulating kinase (MARK). The catalytic activity of the above enzymes is the result of cognitive deficits, memory impairment and synaptic dysfunction and loss, and ultimately neuronal death. However, some other enzymes also lead to these dysfunctional events when reduced to their normal activities and levels in the brain, such as α- secretase, protein kinase C, phosphatases etc; metabolized to neurotransmitters, enzymes like monoamine oxidase (MAO), catechol-O-methyltransferase (COMT) etc. or these abnormalities can occur when enzymes act by other mechanisms such as phosphodiesterase reduces brain nucleotides (cGMP and cAMP) levels, phospholipase A2: PLA2 is associated with reactive oxygen species (ROS) production etc. On therapeutic fronts, several significant clinical trials are underway by targeting different enzymes for development of new therapeutics to treat Alzheimer's, such as inhibitors for β-secretase, GSK-3, MAO, phosphodiesterase, PLA2, cholinesterases etc, modulators of α- & γ-secretase activities and activators for protein kinase C, sirtuins etc. The last decades have perceived an increasing focus on findings and search for new putative and novel enzymatic targets for Alzheimer's. Here, we review the functions, pathological roles, and worth of almost all the Alzheimer's associated enzymes that address to therapeutic strategies and preventive approaches for treatment of Alzheimer's.
Collapse
Affiliation(s)
- Jahangir Alam
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., Pin 173229, India
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., Pin 173229, India
| |
Collapse
|
5
|
Rudlong J, Cheng A, Johnson GVW. The role of transglutaminase 2 in mediating glial cell function and pathophysiology in the central nervous system. Anal Biochem 2019; 591:113556. [PMID: 31866289 DOI: 10.1016/j.ab.2019.113556] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/04/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022]
Abstract
The ubiquitously expressed transglutaminase 2 (TG2) has diverse functions in virtually all cell types, with its role depending not only on cell type, but also on specific subcellular localization. In the central nervous system (CNS) different types of glial cells, such as astrocytes, microglia, and oligodendrocytes and their precursor cells (OPCs), play pivotal supportive functions. This review is focused on what is currently known about the role of TG2 in each type of glial cell, in the context of normal function and pathophysiology. For example, astrocytic TG2 facilitates their migration and proliferation, but hinders their ability to protect neurons after CNS injury. The review also examines the interactions between glial cell types, and how TG2 in one cell type may affect another, as well as implications for specific TG2 populations as therapeutic targets in CNS pathology.
Collapse
Affiliation(s)
- Jacob Rudlong
- Department of Anesthesiology and Perioperative Medicine and the Neuroscience Graduate Program, University of Rochester, Rochester, NY, 14620, USA
| | - Anson Cheng
- Department of Anesthesiology and Perioperative Medicine and the Neuroscience Graduate Program, University of Rochester, Rochester, NY, 14620, USA
| | - Gail V W Johnson
- Department of Anesthesiology and Perioperative Medicine and the Neuroscience Graduate Program, University of Rochester, Rochester, NY, 14620, USA.
| |
Collapse
|
6
|
Sun H, Kaartinen MT. Transglutaminases in Monocytes and Macrophages. ACTA ACUST UNITED AC 2018; 6:medsci6040115. [PMID: 30545030 PMCID: PMC6313455 DOI: 10.3390/medsci6040115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 12/28/2022]
Abstract
Macrophages are key players in various inflammatory disorders and pathological conditions via phagocytosis and orchestrating immune responses. They are highly heterogeneous in terms of their phenotypes and functions by adaptation to different organs and tissue environments. Upon damage or infection, monocytes are rapidly recruited to tissues and differentiate into macrophages. Transglutaminases (TGs) are a family of structurally and functionally related enzymes with Ca2+-dependent transamidation and deamidation activity. Numerous studies have shown that TGs, particularly TG2 and Factor XIII-A, are extensively involved in monocyte- and macrophage-mediated physiological and pathological processes. In the present review, we outline the current knowledge of the role of TGs in the adhesion and extravasation of monocytes, the expression of TGs during macrophage differentiation, and the regulation of TG2 expression by various pro- and anti-inflammatory mediators in macrophages. Furthermore, we summarize the role of TGs in macrophage phagocytosis and the understanding of the mechanisms involved. Finally, we review the roles of TGs in tissue-specific macrophages, including monocytes/macrophages in vasculature, alveolar and interstitial macrophages in lung, microglia and infiltrated monocytes/macrophages in central nervous system, and osteoclasts in bone. Based on the studies in this review, we conclude that monocyte- and macrophage-derived TGs are involved in inflammatory processes in these organs. However, more in vivo studies and clinical studies during different stages of these processes are required to determine the accurate roles of TGs, their substrates, and the mechanisms-of-action.
Collapse
Affiliation(s)
- Huifang Sun
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, H3A 0C7, Canada.
| | - Mari T Kaartinen
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, H3A 0C7, Canada.
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
7
|
Min B, Chung KC. New insight into transglutaminase 2 and link to neurodegenerative diseases. BMB Rep 2018; 51:5-13. [PMID: 29187283 PMCID: PMC5796628 DOI: 10.5483/bmbrep.2018.51.1.227] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Indexed: 12/13/2022] Open
Abstract
Formation of toxic protein aggregates is a common feature and mainly contributes to the pathogenesis of neurodegenerative diseases (NDDs), which include amyotrophic lateral sclerosis (ALS), Alzheimer’s, Parkinson’s, Huntington’s, and prion diseases. The transglutaminase 2 (TG2) gene encodes a multifunctional enzyme, displaying four types of activity, such as transamidation, GTPase, protein disulfide isomerase, and protein kinase activities. Many studies demonstrated that the calcium-dependent transamidation activity of TG2 affects the formation of insoluble and toxic amyloid aggregates that mainly consisted of NDD-related proteins. So far, many important and NDD-related substrates of TG2 have been identified, including amlyoid-β, tau, α-synuclein, mutant huntingtin, and ALS-linked trans-activation response (TAR) DNA-binding protein 43. Recently, the formation of toxic inclusions mediated by several TG2 substrates were efficiently inhibited by TG2 inhibitors. Therefore, the development of highly specific TG2 inhibitors would be an important tool in alleviating the progression of TG2-related brain disorders. In this review, the authors discuss recent advances in TG2 biochemistry, several mechanisms of molecular regulation and pleotropic signaling functions, and the presumed role of TG2 in the progression of many NDDs.
Collapse
Affiliation(s)
- Boram Min
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
8
|
Currò M, Gangemi C, Giunta ML, Ferlazzo N, Navarra M, Ientile R, Caccamo D. Transglutaminase 2 is involved in amyloid-beta1–42-induced pro-inflammatory activation via AP1/JNK signalling pathways in THP-1 monocytes. Amino Acids 2016; 49:659-669. [DOI: 10.1007/s00726-016-2366-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/12/2016] [Indexed: 12/11/2022]
|
9
|
Eligini S, Fiorelli S, Tremoli E, Colli S. Inhibition of transglutaminase 2 reduces efferocytosis in human macrophages: Role of CD14 and SR-AI receptors. Nutr Metab Cardiovasc Dis 2016; 26:922-930. [PMID: 27378395 DOI: 10.1016/j.numecd.2016.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/28/2016] [Accepted: 05/25/2016] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND AIMS Transglutaminase 2 (TGM2), a member of the transglutaminase family of enzymes, is a multifunctional protein involved in numerous events spanning from cell differentiation, to signal transduction, apoptosis, and wound healing. It is expressed in a variety of cells, macrophages included. Macrophage TGM2 promotes the clearance of apoptotic cells (efferocytosis) and emerging evidence suggests that defective efferocytosis contributes to the consequences of inflammation-associated diseases, including atherosclerotic lesion progression and its sequelae. Of interest, active TGM2 identified in human atherosclerotic lesions plays critical roles in plaque stability through effects on matrix cross-linking and TGFβ activity. This study explores the mechanisms by which TGM2 controls efferocytosis in human macrophages. METHODS AND RESULTS Herein we show that TGM2 increases progressively during monocyte differentiation towards macrophages and controls their efferocytic potential as well as morphology and viability. Two experimental approaches that took advantage of the inhibition of TGM2 activity and protein silencing give proof that TGM2 reduction significantly impairs macrophage efferocytosis. Among the mechanisms involved we highlighted a role of the receptors CD14 and SR-AI whose levels were markedly reduced by TGM2 inhibition. Conversely, CD36 receptor and αvβ3 integrin levels were not influenced. Of note, lipid accumulation and IL-10 secretion were reduced in macrophages displaying defective efferocytosis. CONCLUSION Overall, our data define a crucial role of TGM2 activity during macrophage differentiation via mechanisms involving CD14 and SR-AI receptors and show that TGM2 inhibition triggers a pro-inflammatory phenotype.
Collapse
Affiliation(s)
- S Eligini
- Centro Cardiologico Monzino I.R.C.C.S., Milan, Italy.
| | - S Fiorelli
- Centro Cardiologico Monzino I.R.C.C.S., Milan, Italy
| | - E Tremoli
- Centro Cardiologico Monzino I.R.C.C.S., Milan, Italy
| | - S Colli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
10
|
Currò M, Gangemi C, Gugliandolo A, Risitano R, Ferlazzo N, Ientile R, Caccamo D. Transglutaminase 2 is involved in homocysteine-induced activation of human THP-1 monocytes. Free Radic Res 2015; 49:299-308. [PMID: 25547897 DOI: 10.3109/10715762.2014.1002495] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aberrant transglutaminase 2 (TG2) expression and protein cross-linking activity have been associated with several chronic neurodegenerative disorders in which inflammatory processes triggered by activated microglia and monocytes play a key role, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. Interestingly, mild-to-moderate hyperhomocysteinemia (HHcy), corresponding to increased plasma homocysteine (Hcy) concentrations in the range 16-60 μM, have recently been associated with the above-cited diseases. Using THP-1 monocytes, here we investigated the role of TG2 in cell response to mildly elevated Hcy concentrations. A five-day incubation with Hcy (∼25 μM) increased reactive oxygen species, peroxide lipids, as well as 8-hydroxyguanosine levels by twofold, and decreased the endogenous cell antioxidant defenses, that is reduced glutathione, by 50% in Hcy-exposed cultures compared with controls (p < 0.01). Hcy-induced oxidative stress was associated with increases in TG2 expression and activity, as well as nuclear factor kappa B activation. Notably, the latter was reduced in the presence of the TG-specific inhibitor R283. Hcy exposure also significantly increased the mRNA levels of tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β, as well as the level of Hcy-inducible endoplasmic reticulum (ER) stress protein, a marker of ER stress, in Hcy-exposed cultures compared with controls. Notably, these effects were dramatically reduced by R283. These preliminary findings indicate that TG2 plays a key role in Hcy-induced activation of THP-1 monocytes, involving oxidative as well as ER stress and inflammation. This underlines the potential of TG2 inhibition in the therapeutic management of inflammatory processes contributing to neurodegenerative disorders associated with mild HHcy.
Collapse
Affiliation(s)
- M Currò
- Department of Biomedical Sciences and Morphofunctional Imaging, University of Messina , Messina , Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Ientile R, Currò M, Caccamo D. Transglutaminase 2 and neuroinflammation. Amino Acids 2014; 47:19-26. [PMID: 25398223 DOI: 10.1007/s00726-014-1864-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/29/2014] [Indexed: 12/28/2022]
Abstract
Neuroinflammatory processes seem to play a pivotal role in various chronic neurodegenerative diseases, characterized also by the pathogenetic accumulation of specific protein aggregates. Several of these proteins have been shown to be substrates of transglutaminases, calcium-dependent enzymes that catalyze protein crosslinking reactions. However, it has recently been demonstrated that transglutaminase 2 (TG2) may also be involved in molecular mechanisms underlying inflammation. In the central nervous system, astrocytes and microglia are the cell types mainly involved in the inflammatory process. This review is focused on the increases of TG2 protein expression and enzyme activity that occur in astroglial, microglial and monocyte cell models in response to inflammatory stimuli. The transcription factor NF-κB is considered the main regulator of inflammation, being activated by a variety of stimuli including calcium influx, oxidative stress and inflammatory cytokines. Under these conditions, the over-expression of TG2 results in the sustained activation of NF-κB. Several findings emphasize the possible role of the TG2/NF-κB activation pathway in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, multiple sclerosis and amyotrophic lateral sclerosis. Although further studies are needed to characterize the TG2/NF-κB cross-talk in monocytes/macrophages/microglia within the central nervous system, some results show that TG2 and NF-κB are co-localized in cell compartments. Together, evidence suggests that TG2 plays a role in neuroinflammation and contributes to the production of compounds that are potentially deleterious to neuronal cells.
Collapse
Affiliation(s)
- Riccardo Ientile
- Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, AOU Policlinico "G. Martino", Via C. Valeria, Messina, Italy,
| | | | | |
Collapse
|
12
|
Currò M, Ferlazzo N, Risitano R, Condello S, Vecchio M, Caccamo D, Ientile R. Transglutaminase 2 and phospholipase A₂ interactions in the inflammatory response in human Thp-1 monocytes. Amino Acids 2013; 46:759-66. [PMID: 23913269 DOI: 10.1007/s00726-013-1569-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/19/2013] [Indexed: 12/16/2022]
Abstract
Several experimental approaches have demonstrated that transglutaminase 2 (TG2) increased activity is involved in monocyte activation and inflammatory response. Preliminary results also demonstrate a TG-mediated post-translational modification of phospholipase A2 (PLA2), which catalyzes the release of arachidonic acid from its lipid storage sites. The control of PLA2-mediated production of eicosanoids has been found to be of great benefit for inflammatory disease treatment. However, the identification of the mechanisms of PLA2 activation is a very complex issue, because of the presence of multiple PLA2 forms. The aim of this study was to characterize the interactions between TG2 and sPLA2 in LPS-stimulated THP-1 cells, which were treated with TPA to induce early differentiated macrophage-type model. We demonstrated that increases in TG2 enzyme activity and protein expression may be considered an early event in monocyte/macrophage activation by LPS. Under these conditions, TG2 protein was co-immunoprecipitated with PLA2 by monoclonal antibody directed against the secretory form of the enzyme (sPLA2-V). Concomitantly, the PLA2 enzyme activity increased in TPA-treated cells exposed to LPS; these high levels of enzyme activity were significant reduced by R283, a site-specific inhibitor of TG2. Moreover, confocal laser scanning microscopy analysis of double-immunostained cytochemical specimens confirmed a co-localization of BAPA-labeled proteins and sPLA2-V in LPS-treated cells. These findings give evidence of a complex TG2/sPLA2-V, suggesting the possibility that sPLA2-V is a substrate for TG2. These results demonstrated that TG2 increases produced a sustained activation of PLA2 activity, suggesting a functional interaction between these enzymes in the regulation of inflammatory response.
Collapse
Affiliation(s)
- Monica Currò
- Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, AOU Policlinico "G. Martino", Via C. Valeria, 98125, Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
de Jager M, van der Wildt B, Schul E, Bol JGJM, van Duinen SG, Drukarch B, Wilhelmus MMM. Tissue transglutaminase colocalizes with extracellular matrix proteins in cerebral amyloid angiopathy. Neurobiol Aging 2012; 34:1159-69. [PMID: 23122413 DOI: 10.1016/j.neurobiolaging.2012.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/27/2012] [Accepted: 10/07/2012] [Indexed: 11/20/2022]
Abstract
Cerebral amyloid angiopathy (CAA) is a key histopathological hallmark of Alzheimer's disease (AD) and hereditary cerebral hemorrhage with amyloidosis of the Dutch type (HCHWA-D). CAA is characterized by amyloid-beta (Aβ) depositions and remodeling of the extracellular matrix (ECM) in brain vessels and plays an important role in the development and progression of both AD and HCHWA-D. Tissue transglutaminase (tTG) modulates the ECM by molecular cross-linking of ECM proteins. Here, we investigated the distribution pattern, cellular source, and activity of tTG in CAA in control, AD, and HCHWA-D cases. We observed increased tTG immunoreactivity and colocalization with Aβ in the vessel wall in early stage CAA, whereas in later CAA stages, tTG and its cross-links were present in halos enclosing the Aβ deposition. In CAA, tTG and its cross-links at the abluminal side of the vessel were demonstrated to be either of astrocytic origin in parenchymal vessels, of fibroblastic origin in leptomeningeal vessels, and of endothelial origin at the luminal side of the deposited Aβ. Furthermore, the ECM proteins fibronectin and laminin colocalized with the tTG-positive halos surrounding the deposited Aβ in CAA. However, we observed that in situ tTG activity was present throughout the vessel wall in late stage CAA. Together, our data suggest that tTG and its activity might play a differential role in the development and progression of CAA, possibly evolving from direct modulation of Aβ aggregation to cross-linking of ECM proteins resulting in ECM restructuring.
Collapse
Affiliation(s)
- Mieke de Jager
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|