1
|
Chen CH, Di YQ, Shen QY, Wang JX, Zhao XF. The steroid hormone 20-hydroxyecdysone induces phosphorylation and aggregation of stromal interacting molecule 1 for store-operated calcium entry. J Biol Chem 2019; 294:14922-14936. [PMID: 31413111 DOI: 10.1074/jbc.ra119.008484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/29/2019] [Indexed: 12/22/2022] Open
Abstract
Oligomerization of stromal interacting molecule 1 (STIM1) promotes store-operated calcium entry (SOCE); however, the mechanism of STIM1 aggregation is unclear. Here, using the lepidopteran insect and agricultural pest cotton bollworm (Helicoverpa armigera) as a model and immunoblotting, RT-qPCR, RNA interference (RNAi), and ChIP assays, we found that the steroid hormone 20-hydroxyecdysone (20E) up-regulates STIM1 expression via G protein-coupled receptors (GPCRs) and the 20E nuclear receptor (EcRB1). We also identified an ecdysone-response element (EcRE) in the 5'-upstream region of the STIM1 gene and also noted that STIM1 is located in the larval midgut during metamorphosis. STIM1 knockdown in larvae delayed pupation time, prevented midgut remodeling, and decreased 20E-induced gene transcription. STIM1 knockdown in a H. armigera epidermal cell line, HaEpi, repressed 20E-induced calcium ion influx and apoptosis. Moreover, 20E-induced STIM1 clustering to puncta and translocation toward the cell membrane. Inhibitors of GPCRs, phospholipase C (PLC), and inositol trisphosphate receptor (IP3R) repressed 20E-induced STIM1 phosphorylation, and we found that two GPCRs are involved in 20E-induced STIM1 phosphorylation. 20E-induced STIM1 phosphorylation on Ser-485 through protein kinase C (PKC), and we observed that Ser-485 phosphorylation is critical for STIM1 clustering, interaction with calcium release-activated calcium channel modulator 1 (Orai1), calcium ion influx, and 20E-induced apoptosis. These results suggest that 20E up-regulates STIM1 phosphorylation for aggregation via GPCRs, followed by interaction with Orai1 to induce SOCE, thereby promoting apoptosis in the midgut during insect metamorphosis.
Collapse
Affiliation(s)
- Cai-Hua Chen
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China.,Department of Entomology, College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Yu-Qin Di
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Qin-Yong Shen
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
2
|
Uno T, Ozakiya Y, Furutani M, Sakamoto K, Uno Y, Kajiwara H, Kanamaru K, Mizoguchi A. Functional characterization of insect-specific RabX6 of Bombyx mori. Histochem Cell Biol 2018; 151:187-198. [DOI: 10.1007/s00418-018-1710-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2018] [Indexed: 10/28/2022]
|
3
|
Li YB, Pei XY, Wang D, Chen CH, Cai MJ, Wang JX, Zhao XF. The steroid hormone 20-hydroxyecdysone upregulates calcium release-activated calcium channel modulator 1 expression to induce apoptosis in the midgut of Helicoverpa armigera. Cell Calcium 2017; 68:24-33. [PMID: 29129205 DOI: 10.1016/j.ceca.2017.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 01/22/2023]
Abstract
Animal steroid hormones stimulate extracellular Ca2+ influx into cells; however, the mechanism remains unclear. In this study, we determined that the Ca2+ influx induced by steroid hormone 20-hydroxyecdysone (20E) is mediated by the calcium release-activated calcium channel modulator 1 (CRACM1/Orai1). The Orai1 mRNA is highly expressed during midgut programmed cell death in the lepidopteran insect Helicoverpa armigera. 20E upregulated the expression of Orai1 in H. armigera larvae and in an epidermal cell line (HaEpi). Knockdown of Orai1 in HaEpi cells blocked 20E-induced Ca2+ influx, and the inhibitor of inositol 1, 4, 5-trisphosphate receptor (IP3R) Xestospongin (XeC) blocked 20E-induced Ca2+ influx, suggesting that 20E, via Orai1, induces stored-operated Ca2+ influx. Orai1 interacts with stromal interaction molecule 1(Stim1) to exert its function in 20E-induced Ca2+ influx. 20E promotes Orai1 aggregation through G-protein-coupled receptors, phospholipase C gamma 1, and Stim1. Knockdown of Orai1 in the HaEpi cell line repressed apoptosis and maintained autophagy under 20E regulation. Knockdown of Orai1 in larvae delayed pupation, repressed midgut apoptosis, maintained the midgut in an autophagic state, and repressed 20E-pathway gene expression. These results revealed that steroid hormone 20E, via Orai1, induces Ca2+ influx to promote the transition of midgut from autophagy to apoptosis.
Collapse
Affiliation(s)
- Yong-Bo Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xu-Yang Pei
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Di Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Cai-Hua Chen
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Mei-Juan Cai
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
4
|
Uno T, Furutani M, Sakamoto K, Uno Y, Kanamaru K, Mizoguchi A, Hiragaki S, Takeda M. Localization and functional analysis of the insect-specific RabX4 in the brain of Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 96:e21404. [PMID: 28707374 DOI: 10.1002/arch.21404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Rab proteins are small monomeric GTPases/GTP-binding proteins, which form the largest branch of the Ras superfamily. The different Rab GTPases are localized to the cytosolic face of specific intracellular membranes, where they function as regulators of distinct steps in membrane trafficking. RabX4 is an insect-specific Rab protein that has no close homolog in vertebrates. There is little information about insect-specific Rab proteins. RabX4 was expressed in Escherichia coli and subsequently purified. Antibodies against Bombyx mori RabX4 were produced in rabbits for western immunoblotting and immunohistochemistry. Western blotting of neural tissues revealed a single band, at approximately 26 kD. RabX4-like immunohistochemical reactivity was restricted to neurons of the pars intercerebralis and dorsolateral protocerebrum in the brain. Further immunohistochemical analysis revealed that RabX4 colocalized with Rab6 and bombyxin in the corpus allatum, a neuronal organ that secretes neuropeptides synthesized in the brain into the hemolymph. RabX4 expression in the frontal ganglion, part of the insect stomatogastric nervous system that is found in most insect orders, was restricted to two neurons on the outer region and did not colocalize with allatotropin or Rab6. Furthermore, RNA interference of RabX4 decreased bombyxin expression levels in the brain. These findings suggest that RabX4 is involved in the neurosecretion of a secretory organ in Bombyx mori.
Collapse
Affiliation(s)
- Tomohide Uno
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, Hyogo, Japan
| | - Masayuki Furutani
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, Hyogo, Japan
| | | | - Yuichi Uno
- Department of Plant Resource Science, Faculty of Agriculture, Kobe University, Hyogo, Japan
| | - Kengo Kanamaru
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, Hyogo, Japan
| | - Akira Mizoguchi
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, Aichi, Japan
| | - Susumu Hiragaki
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Makio Takeda
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
5
|
Abstract
In eukaryotic cells, Rab guanosine triphosphate-ases serve as key regulators of membrane-trafficking events, such as exocytosis and endocytosis. Rab3, Rab6, and Rab27 control the regulatory secretory pathway of neuropeptides and neurotransmitters. The cDNAs of Rab3, Rab6, and Rab27 from B. mori were inserted into a plasmid, transformed into Escherichia coli, and then subsequently purified. We then produced antibodies against Rab3, Rab6, and Rab27 of Bombyx mori in rabbits and rats for use in western immunoblotting and immunohistochemistry. Western immunoblotting of brain tissue revealed a single band at approximately 26 kDa. Immunohistochemistry results revealed that Rab3, Rab6, and Rab27 expression was restricted to neurons in the pars intercerebralis and dorsolateral protocerebrum of the brain. Rab3 and Rab6 co-localized with bombyxin, an insect neuropeptide. However, there was no Rab that co-localized with prothoracicotropic hormone. The corpus allatum secretes neuropeptides synthesized in the brain into the hemolymph. Results showed that Rab3 and Rab6 co-localized with bombyxin in the corpus allatum. These findings suggest that Rab3 and Rab6 are involved in neurosecretion in B. mori. This study is the first to report a possible relationship between Rab and neurosecretion in the insect corpus allatum.
Collapse
|
6
|
A molecular view of autophagy in Lepidoptera. BIOMED RESEARCH INTERNATIONAL 2014; 2014:902315. [PMID: 25143951 PMCID: PMC4124216 DOI: 10.1155/2014/902315] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/06/2014] [Accepted: 06/20/2014] [Indexed: 12/17/2022]
Abstract
Metamorphosis represents a critical phase in the development of holometabolous insects, during which the larval body is completely reorganized: in fact, most of the larval organs undergo remodeling or completely degenerate before the final structure of the adult insect is rebuilt. In the past, increasing evidence emerged concerning the intervention of autophagy and apoptosis in the cell death processes that occur in larval organs of Lepidoptera during metamorphosis, but a molecular characterization of these pathways was undertaken only in recent years. In addition to developmentally programmed autophagy, there is growing interest in starvation-induced autophagy. Therefore we are now entering a new era of research on autophagy that foreshadows clarification of the role and regulatory mechanisms underlying this self-digesting process in Lepidoptera. Given that some of the most important lepidopteran species of high economic importance, such as the silkworm, Bombyx mori, belong to this insect order, we expect that this information on autophagy will be fully exploited not only in basic research but also for practical applications.
Collapse
|
7
|
Characterization of Rab-interacting lysosomal protein in the brain of Bombyx mori. Histochem Cell Biol 2013; 141:311-20. [PMID: 24190830 DOI: 10.1007/s00418-013-1160-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
Abstract
Rab guanosine triphosphatases in eukaryotic cells are key regulators of membrane-trafficking events, such as exocytosis and endocytosis. Rab7 regulates traffic from early to late endosomes and from late endosomes to vacuoles/lysosomes. The Rab7-interacting lysosomal protein (RILP) was extracted from the silkworm, Bombyx mori (B. mori), and expressed in Escherichia coli (E. coli), followed by its purification. The glutathione sulfotransferase pull-down assay revealed that Rab7 of B. mori interacted with RILP of B. mori. We then produced antibodies against RILP of B. mori in rabbits for their use in Western immunoblotting and immunohistochemistry. Western immunoblotting of brain tissue for RILP revealed a single band, at approximately 50 kD. RILP-like immunohistochemical reactivity (RILP-ir) was restricted to neurons of the pars intercerebralis and dorsolateral protocerebrum. Furthermore, RILP-ir was colocalized with the eclosion hormone-ir and bombyxin-ir. However, RILP-ir was not colocalized with prothoracicotropic hormone-ir. These results were similar to those of Rab7 from our previous study. These findings suggest that RILP and Rab7 are involved in the neurosecretion in a restricted subtype of neurons in B. mori. Thus, our study is the first to report of a possible relationship between an insect Rab effector and neurosecretion.
Collapse
|
8
|
Upregulation of the expression of prodeath serine/threonine protein kinase for programmed cell death by steroid hormone 20-hydroxyecdysone. Apoptosis 2013. [PMID: 23203537 DOI: 10.1007/s10495-012-0784-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Serine/threonine protein kinases phosphorylate protein substrates to initiate further cellular events. Different serine/threonine protein kinases have varied functions despite their highly conserved homology. We propose prodeath-S/TK, a prodeath serine/threonine protein kinase from the lepidopteran insect Helicoverpa armigera, promotes programmed cell death (PCD) during metamorphosis. Prodeath-S/TK is expressed in various tissues with a high expression level during molting and metamorphosis by 20-hydroxyecdysone (20E) induction. Prodeath-S/TK is localized in the larval midgut during metamorphosis. Prodeath-S/TK knockdown by injecting dsRNA into larval hemocoel suppresses the 20E-induced metamorphosis and PCD, as well as downregulates a set of genes involved in the PCD and 20E signaling pathway. 20E upregulates prodeath-S/TK expression through its nuclear receptor EcR-B1 and USP1. Prodeath-S/TK overexpression in the epidermal cell line leads to PCD with DNA fragmentation and the activation of caspases 3 and 7. Prodeath-S/TK plays role in the cytoplasm. The N-terminal and C-terminal sequences of prodeath-S/TK determine its subcellular location. These data indicate that prodeath-S/TK participates in PCD by regulating gene expression in the 20E signaling pathway.
Collapse
|
9
|
Mod(mdg4) participates in hormonally regulated midgut programmed cell death during metamorphosis. Apoptosis 2012; 17:1327-39. [DOI: 10.1007/s10495-012-0761-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
10
|
Relationship between the expression of Rab family GTPases and neuropeptide hormones in the brain of Bombyx mori. Histochem Cell Biol 2012; 139:299-308. [PMID: 22922733 DOI: 10.1007/s00418-012-1021-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2012] [Indexed: 01/25/2023]
Abstract
Rab proteins are small GTPases that play essential roles in vesicle transport. In this study, we examined the expression of Rab proteins and neuropeptide hormones in the brain of the silkworm, Bombyx mori. We produced antibodies against B. mori Rab1 and Rab14 in rabbits. Immunoblotting of samples of brain tissue from B. mori revealed a single band for each antibody. Rab1 and Rab14 immunohistochemical labeling in the brain of B. mori was restricted to neurons of the pars intercerebralis and dorsolateral protocerebrum. Rab1, Rab7 and Rab14 co-localized with bombyxin. Rab1 and Rab7 co-localized with eclosion hormone. Rab1 co-localized with prothoracicotropic hormone. These results suggest that Rab1, Rab7 and Rab14 may be involved in neuropeptide transport in the brain of B. mori. This is the first report on the specificity of Rab proteins for the secretion of different neuropeptides in insects.
Collapse
|
11
|
Hou L, Cai MJ, Liu W, Song Q, Zhao XF. Small GTPase Rab4b participates in the gene transcription of 20-hydroxyecdysone and insulin pathways to regulate glycogen level and metamorphosis. Dev Biol 2012; 371:13-22. [PMID: 22824427 DOI: 10.1016/j.ydbio.2012.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 05/13/2012] [Accepted: 06/20/2012] [Indexed: 12/26/2022]
Abstract
The insulin and 20-hydroxyecdysone (20E) pathways coordinately regulate insect growth and metamorphosis. However, the molecular mechanism of the interaction of these two pathways in regulating insect development is not well understood. In the present study, we found that a small GTPase Rab4b from a lepidopteran insect Helicoverpa armigera participates in gene transcription in the two pathways. The results show that RNA interference of Rab4b in larvae results in a decrease in glycogen levels, small pupae, abnormal metamorphic transition, or larval death. The molecular mechanisms are demonstrated that knockdown of Rab4b in the larvae suppresses the transcription of glycogen synthase (GS), as well as the metamorphic-initiating factor (Br) and hormone receptor 3 (HR3), but increases the transcription of Forkhead box class O (FOXO). Further studies in the cell line confirm that Rab4b is necessary for gene transcription in the insulin and 20E pathways. Rab4b locates in the cytoplasm and takes part in regulation on FOXO cytoplasmic location by insulin induction, but travels toward the cell membrane upon 20E induction without affecting the FOXO location. The transcription of Rab4b could be upregulated by insulin injection or glucose feeding to the larvae, but not by 20E or juvenile hormone analogy methoprene. Our data suggest that Rab4b takes part in metamorphosis by regulating gene transcription and glycogen level in the insulin and 20E pathways.
Collapse
Affiliation(s)
- Li Hou
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China.
| | | | | | | | | |
Collapse
|
12
|
Liu PC, Wang JX, Song QS, Zhao XF. The participation of calponin in the cross talk between 20-hydroxyecdysone and juvenile hormone signaling pathways by phosphorylation variation. PLoS One 2011; 6:e19776. [PMID: 21625546 PMCID: PMC3098250 DOI: 10.1371/journal.pone.0019776] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 04/05/2011] [Indexed: 01/01/2023] Open
Abstract
20-hydroxyecdysone (20E) and juvenile hormone (JH) signaling pathways interact to mediate insect development, but the mechanism of this interaction is poorly understood. Here, a calponin homologue domain (Chd) containing protein (HaCal) is reported to play a key role in the cross talk between 20E and JH signaling by varying its phosphorylation. Chd is known as an actin binding domain present in many proteins including some signaling proteins. Using an epidermal cell line (HaEpi), HaCal was found to be up-regulated by either 20E or the JH analog methoprene (JHA). 20E induced rapid phosphorylation of HaCal whereas no phosphorylation occurred with JHA. HaCal could be quickly translocated into the nuclei through 20E or JH signaling but interacted with USP1 only under the mediation of JHA. Knockdown of HaCal by RNAi blocked the 20E inducibility of USP1, PKC and HR3, and also blocked the JHA inducibility of USP1, PKC and JHi. After gene silencing of HaCal by ingestion of dsHaCal expressed by Escherichia coli, the larval development was arrested and the gene expression of USP1, PKC, HR3 and JHi were blocked. These composite data suggest that HaCal plays roles in hormonal signaling by quickly transferring into nucleus to function as a phosphorylated form in the 20E pathway and as a non-phosphorylated form interacting with USP1 in the JH pathway to facilitate 20E or JH signaling cascade, in short, by switching its phosphorylation status to regulate insect development.
Collapse
Affiliation(s)
- Peng-Cheng Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Jin-Xing Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Qi-Sheng Song
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Xiao-Fan Zhao
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| |
Collapse
|