1
|
Cao S, Tan C, Fei A, Hu G, Fu M, Lv J. Insights into pralsetinib resistance to the non-gatekeeper RET kinase G810C mutation through molecular dynamics simulations. J Mol Model 2022; 29:24. [PMID: 36576611 DOI: 10.1007/s00894-022-05429-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE RET (rearranged during transfection) kinase, as a transmembrane receptor tyrosine kinase, is a therapeutic target for several human cancer such as non-small cell lung cancer (NSCLC) and thyroid cancer. Pralsetinib is a recently approved drug for the treatment of RET-driven NSCLC and thyroid cancers. A single point mutation G810C at the C-lobe of the RET kinase causes pralsetinib resistance to this non-gatekeeper variant. However, the detailed mechanism remains poorly understood. METHODS Here, multiple microsecond molecular dynamics (MD) simulations, molecular mechanics/generalized born surface area (MM/GBSA) binding free energy calculations, and community network analysis were performed to reveal the mechanism of pralsetinib resistance to the RET G810C mutant. RESULTS The simulations showed that the G810C mutation had a minor effect on the overall conformational dynamics of the RET kinase domain. Energetic analysis suggested that the G810C mutation reduced the binding affinity of pralsetinib to the mutant. Per-residue energy contribution and structural analyses revealed that the hydrogen bonding interactions between pralsetinib and the hinge residues Glu805 and Ala807 were disrupted in the G810C mutant, which were responsible for the decreased binding affinity of pralsetinib to the mutant. CONCLUSIONS The obtained results may provide understanding of the mechanism of pralsetinib resistance to the non-gatekeeper RET G810C mutant.
Collapse
Affiliation(s)
- Shu Cao
- Department of Urology, Ezhou Central Hospital, Hubei, 436000, China
| | - Changbin Tan
- Department of Urology, Ezhou Central Hospital, Hubei, 436000, China
| | - Anhua Fei
- Department of Urology, Ezhou Central Hospital, Hubei, 436000, China
| | - Gangqiang Hu
- Department of Urology, Ezhou Central Hospital, Hubei, 436000, China
| | - Ming Fu
- Department of Urology, Ezhou Central Hospital, Hubei, 436000, China
| | - Jun Lv
- Department of Neurology, Ezhou Central Hospital, Hubei, 436000, China.
| |
Collapse
|
2
|
A computational study to reveal selpercatinib resistance to RET kinase double mutant V804M/Y806C. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Mou L, Dou W, Meng G, Sun K, Chen X. The structural basis of the autoinhibition mechanism of glycogen synthase kinase 3β (GSK3β): molecular modeling and molecular dynamics simulation studies. J Biomol Struct Dyn 2019; 38:1741-1750. [PMID: 31057052 DOI: 10.1080/07391102.2019.1615988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The autoinhibition phenomenon has been frequently observed in enzymes and represents an important regulatory strategy to fine-tune enzyme activity. Evolution has exploited this mechanism to reduce enzymatic activity. Glycogen synthase kinase 3β (GSK3β) undergoes autoinhibition via the phosphorylation of Ser9 at the N-terminus of the kinase, which, acting as a pseudosubstrate, occupies the catalytic domain of GSK3β and subsequently blocks primed substrates from having access to the catalytic domain. The detailed structural basis of the autoinhibition mechanism of GSK3β by the pseudosubstrate, however, has not yet been fully resolved. Here, a three-dimensional model of the binary GSK3β-pseudosubstrate complex was built via the molecular modeling method. Based on the constructed model, extensive molecular dynamics (MD) simulations and subsequent molecular mechanics generalized Born/surface area (MM_GBSA) calculations were performed on the wild-type GSK3β-pseudosubstrate complex and three mutated systems (R4A, R6A, and S9A). Analyses of MD simulations and binding free energies revealed that the phosphorylation of Ser9 is the prerequisite for the autoinhibition of GSK3β, and both mutations of Arg4 and Arg6 to alanine markedly reduced the binding affinities of the mutated pseudosubstrate to the GSK3β catalytic domain, thereby disrupting the autoinhibition of the kinase. This study highlights the importance of Ser9, Arg6, and Arg4 in modulating the autoinhibition mechanism of GSK3β, contributing to a deeper understanding of GSK3β biology.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Linkai Mou
- Department of Urology, Affiliated Hospital of Weifang Medicinal University, Weifang, Shandong, China
| | - Wenwen Dou
- Department of Infectious Diseases, Affiliated Hospital of Weifang Medicinal University, Weifang, Shandong, China
| | - Gang Meng
- Department of Urology, Affiliated Hospital of Weifang Medicinal University, Weifang, Shandong, China
| | - Ke Sun
- Department of Urology, Affiliated Hospital of Weifang Medicinal University, Weifang, Shandong, China
| | - Xiangyu Chen
- Department of Laboratory Medicine, Weifang Medicinal University, Weifang, Shandong, China
| |
Collapse
|
4
|
Chohan TA, Chen JJ, Qian HY, Pan YL, Chen JZ. Molecular modeling studies to characterize N-phenylpyrimidin-2-amine selectivity for CDK2 and CDK4 through 3D-QSAR and molecular dynamics simulations. MOLECULAR BIOSYSTEMS 2016; 12:1250-68. [PMID: 26883408 DOI: 10.1039/c5mb00860c] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular modeling simulations were carried out to understand the structure–activity and selectivity correlation of N-phenylpyrimidin-2-amines binding to CDK2 and CDK4.
Collapse
Affiliation(s)
- Tahir Ali Chohan
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Jiong-Jiong Chen
- The Children's Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
- China
| | - Hai-Yan Qian
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - You-Lu Pan
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Jian-Zhong Chen
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
5
|
Chohan TA, Qian HY, Pan YL, Chen JZ. Molecular simulation studies on the binding selectivity of 2-anilino-4-(thiazol-5-yl)-pyrimidines in complexes with CDK2 and CDK7. MOLECULAR BIOSYSTEMS 2016; 12:145-61. [DOI: 10.1039/c5mb00630a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular modeling simulations were performed to explore the selectivity mechanism of inhibitors binding to CDK2 and CDK7.
Collapse
Affiliation(s)
- Tahir Ali Chohan
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Hai-Yan Qian
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - You-Lu Pan
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Jian-Zhong Chen
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
6
|
Chen H, Tian R, Ni Z, Zhang Z, Chen H, Guo Q, Vastermark A. Conformational transition pathway in the inhibitor binding process of human monoacylglycerol lipase. Protein J 2015; 33:503-11. [PMID: 25078047 DOI: 10.1007/s10930-014-9572-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human monoacylglycerol lipase (MGL) catalyzes the hydrolysis of 2-arachidonoylglycerol to arachidonic and glycerol, which plays a pivotal role in the normal biological processes of brain. Co-crystal structure of the MGL in complex with its inhibitor, compound 1, shows that the helix α4 undergoes large-scale conformational changes in response to the compound 1 binding compared to the apo MGL. However, the detailed conformational transition pathway of the helix α4 in the inhibitor binding process of MGL has remained unclear. Here, conventional molecular dynamics (MD) and nudged elastic band (NEB) simulations were performed to explore the conformational transition pathway of the helix α4. Conventional MD simulations unveiled that the compound 1 induced the closed conformation of the active site of MGL, reduced the conformational flexibility of the helix α4, and elicited the large-scale conformational rearrangement of the helix α4, leading to the complete folding of the helix α4. Moreover, NEB simulations revealed that the conformational transition pathway of helix α4 underwent an almost 180° counter-clockwise rotation of the helix α4. Our computational results advance the structural and mechanistic understanding of the inhibitory mechanism.
Collapse
Affiliation(s)
- Huayou Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Ni Z, Zhang TC. Computationally unraveling how ceritinib overcomes drug-resistance mutations in ALK-rearranged lung cancer. J Mol Model 2015; 21:175. [DOI: 10.1007/s00894-015-2716-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/01/2015] [Indexed: 02/06/2023]
|
8
|
Li X, Wang X, Tian Z, Zhao H, Liang D, Li W, Qiu Y, Lu S. Structural basis of valmerins as dual inhibitors of GSK3β/CDK5. J Mol Model 2014; 20:2407. [PMID: 25142337 DOI: 10.1007/s00894-014-2407-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 07/29/2014] [Indexed: 11/24/2022]
Abstract
Development of multi-target drugs is becoming increasingly attractive in the repertoire of protein kinase inhibitors discovery. In this study, we carried out molecular docking, molecular dynamics simulations, molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations, principal component analysis (PCA), and dynamical cross-correlation matrices (DCCM) to dissect the molecular mechanism for the valmerin-19 acting as a dual inhibitor for glycogen synthase kinase 3β (GSK3β) and cyclin-dependent kinase 5 (CDK5). Detailed MM-PBSA calculations revealed that the binding free energies of the valmerin-19 to GSK3β/CDK5 were calculated to be -12.60 ± 2.28 kcal mol(-1) and -11.85 ± 2.54 kcal mol(-1), respectively, indicating that valmerin-19 has the potential to act as a dual inhibitor of GSK3β/CDK5. The analyses of PCA and DCCM results unraveled that binding of the valmerin-19 reduced the conformational dynamics of GSK3β/CDK5 and the valmerin-19 bound to GSK3β/CDK5 might occur mostly through a conformational selection mechanism. This study may be helpful for the future design of novel and potent dual GSK3β/CDK5 inhibitors.
Collapse
Affiliation(s)
- Xiaolong Li
- Depatment of Spinal Surgery, Affiliated Hospital of Weifang Medical University, Weifang, 261000, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Allostery is the most direct and efficient way for regulation of biological macromolecule function, ranging from the control of metabolic mechanisms to signal transduction pathways. Allosteric modulators target to allosteric sites, offering distinct advantages compared to orthosteric ligands that target to active sites, such as greater specificity, reduced side effects, and lower toxicity. Allosteric modulators have therefore drawn increasing attention as potential therapeutic drugs in the design and development of new drugs. In recent years, advancements in our understanding of the fundamental principles underlying allostery, coupled with the exploitation of powerful techniques and methods in the field of allostery, provide unprecedented opportunities to discover allosteric proteins, detect and characterize allosteric sites, design and develop novel efficient allosteric drugs, and recapitulate the universal features of allosteric proteins and allosteric modulators. In the present review, we summarize the recent advances in the repertoire of allostery, with a particular focus on the aforementioned allosteric compounds.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | | | | |
Collapse
|
10
|
Mou L, Li M, Lu SY, Li S, Shen Q, Zhang J, Li C, Lu X. Unraveling the Role of Arg4 and Arg6 in the Auto-Inhibition Mechanism of GSK3βFrom Molecular Dynamics Simulation. Chem Biol Drug Des 2014; 83:721-30. [PMID: 24444018 DOI: 10.1111/cbdd.12286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/13/2013] [Accepted: 01/06/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Linkai Mou
- Department of Urology; The Second Affiliated Hospital of Dalian Medical University; Dalian China
| | - Molin Li
- Department of Pathophysiology; Dalian Medical University; Dalian China
| | - Shao-Yong Lu
- Department of Pathophysiology and Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education; School of Medicine; Shanghai Jiao-Tong University; Shanghai China
| | - Shuai Li
- Department of Pathophysiology and Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education; School of Medicine; Shanghai Jiao-Tong University; Shanghai China
- Department of Obstetrics and Gynecology; Institute of Obstetrics and Gynecology; Renji Hospital; School of Medicine; Shanghai Jiao Tong University; Shanghai 200001 China
| | - Qiancheng Shen
- Department of Pathophysiology and Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education; School of Medicine; Shanghai Jiao-Tong University; Shanghai China
- Department of Obstetrics and Gynecology; Institute of Obstetrics and Gynecology; Renji Hospital; School of Medicine; Shanghai Jiao Tong University; Shanghai 200001 China
| | - Jian Zhang
- Department of Pathophysiology and Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education; School of Medicine; Shanghai Jiao-Tong University; Shanghai China
| | - Chuangang Li
- Department of Urology; The Second Affiliated Hospital of Dalian Medical University; Dalian China
| | - Xuefeng Lu
- Department of Obstetrics and Gynecology; Institute of Obstetrics and Gynecology; Renji Hospital; School of Medicine; Shanghai Jiao Tong University; Shanghai 200001 China
| |
Collapse
|
11
|
Binding selectivity studies of PKBα using molecular dynamics simulation and free energy calculations. J Mol Model 2013; 19:5097-112. [PMID: 24085537 DOI: 10.1007/s00894-013-1997-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/04/2013] [Indexed: 12/11/2022]
Abstract
Designing selective protein kinase B (PKB/Akt) inhibitor is an area of intense research to develop potential anticancer drugs. In the present study, the molecular basis governing PKB-selective inhibition has been investigated using molecular dynamics simulation. The binding free energies calculated by MM/PBSA gave a good correlation with the experimental biological activity and a good explanation of the activity difference of the studied inhibitors. The decomposition of free energies by MM/GBSA indicates that the ethyl group on pyrrolo[2,3-d]pyrimidine ring of inhibitor Lig1 (N-{[(3S)-3-amino-1-(5-ethyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)pyrrolidin-3-yl]-methyl}-2,4-difluoro-benzamide) is an important contributor to its PKBα selectivity due to its hydrophobic interaction with the side chain of Thr291 in PKBα. The substituted groups on the pyrrolidine ring of Lig1 also show a strong tendency to mediate protein-ligand interactions through the hydrogen bonds formed between the amino or amide groups of Lig1 and the carboxyl O atoms of Glu234, Glu278, and Asp292 of PKBα. It was reported that there are only three key amino acid differences between PKBα (Thr211, Ala230, Met281) and PKA (Val104, Val123, Leu173) within the clefts of ATP-binding sites. These differences propel a drastic conformational change in PKA, weakening its binding interactions with inhibitor. The impact was also confirmed by MD simulated interaction modes of inhibitor binding to PKBα mutants with the in silico mutations of the three key amino acids, respectively. We expect that the results obtained here could be useful for future rational design of specific ATP-competitive inhibitors of PKBα.
Collapse
|
12
|
Lu SY, Huang ZM, Huang WK, Liu XY, Chen YY, Shi T, Zhang J. How calcium inhibits the magnesium-dependent kinase gsk3β: a molecular simulation study. Proteins 2013. [PMID: 23184735 DOI: 10.1002/prot.24221] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glycogen synthase kinase 3β (GSK3β) is a ubiquitous serine/threonine kinase that plays a pivotal role in many biological processes. GSK3β catalyzes the transfer of γ-phosphate of ATP to the unique substrate Ser/Thr residues with the assistance of two natural activating cofactors Mg(2+). Interestingly, the biological observation reveals that a non-native Ca(2+) ion can inhibit the GSK3β catalytic activity. Here, the inhibitory mechanism of GSK3β by the displacement of native Mg(2+) at site 1 by Ca(2+) was investigated by means of 80 ns comparative molecular dynamics (MD) simulations of the GSK3β···Mg(2+)-2/ATP/Mg(2+) -1 and GSK3β···Mg(2+)-2/ATP/Ca(2+)-1 systems. MD simulation results revealed that using the AMBER point charge model force field for Mg(2+) was more appropriate in the reproduction of the active site architectural characteristics of GSK3β than using the magnesium-cationic dummy atom model force field. Compared with the native Mg(2+) bound system, the misalignment of the critical triphosphate moiety of ATP, the erroneous coordination environments around the Mg(2+) ion at site 2, and the rupture of the key hydrogen bond between the invariant Lys85 and the ATP O(β2) atom in the Ca(2+) substituted system were observed in the MD simulation due to the Ca(2+) ion in active site in order to achieve its preferred sevenfold coordination geometry, which adequately abolish the enzymatic activity. The obtained results are valuable in understanding the possible mechanism by why Ca(2+) inhibits the GSK3β activity and also provide insights into the mechanism of Ca(2+) inhibition in other structurally related protein kinases.
Collapse
Affiliation(s)
- Shao-Yong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Conformational transition pathway in the activation process of allosteric glucokinase. PLoS One 2013; 8:e55857. [PMID: 23409066 PMCID: PMC3567010 DOI: 10.1371/journal.pone.0055857] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 01/03/2013] [Indexed: 12/11/2022] Open
Abstract
Glucokinase (GK) is a glycolytic enzyme that plays an important role in regulating blood glucose level, thus acting as a potentially attractive target for drug discovery in the treatment of diabetes of the young type 2 and persistent hyperinsulinemic hypoglycemia of infancy. To characterize the activation mechanism of GK from the super-open state (inactive state) to the closed state (active state), a series of conventional molecular dynamics (MD) and targeted MD (TMD) simulations were performed on this enzyme. Conventional MD simulation showed a specific conformational ensemble of GK when the enzyme is inactive. Seven TMD simulations depicted a reliably conformational transition pathway of GK from the inactive state to the active state, and the components important to the conformational change of GK were identified by analyzing the detailed structures of the TMD trajectories. In combination with the inactivation process, our findings showed that the whole conformational pathway for the activation-inactivation-activation of GK is a one-direction circulation, and the active state is less stable than the inactive state in the circulation. Additionally, glucose was demonstrated to gradually modulate its binding pose with the help of residues in the large domain and connecting region of GK during the activation process. Furthermore, the obtained energy barriers were used to explain the preexisting equilibrium and the slow binding kinetic process of the substrate by GK. The simulated results are in accordance with the recent findings from the mutagenesis experiments and kinetic analyses. Our observations reveal a complicated conformational process in the allosteric protein, resulting in new knowledge about the delicate mechanisms for allosteric biological macromolecules that will be useful in drug design for targeting allosteric proteins.
Collapse
|
14
|
Toward an understanding of the sequence and structural basis of allosteric proteins. J Mol Graph Model 2013; 40:30-9. [PMID: 23337573 DOI: 10.1016/j.jmgm.2012.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 11/19/2022]
Abstract
Allostery is the most efficient means of regulating protein functions, ranging from the control of metabolic mechanisms to signal transduction pathways. Although allosteric regulation has been recognized for half a century, our knowledge is limited to the characteristics of allosteric proteins and the structural coupling of allosteric sites and modulators. In this paper, we present a comprehensive analysis of allosteric proteins that provides insight into the foundation of allosteric interactions by revealing a series of common features in the allosteric proteins. Allosteric proteins mainly appear in transferases, and phosphorylation is the most common type of modification found in allosteric proteins. Disorders related to allosteric proteins primarily comprise metabolic diseases and cancers. In general, allosteric proteins prefer to exist as monomers or even-numbered multimers. Greater stability and hydrophobicity are observed in allosteric proteins than in general proteins. Further analysis of the allosteric sites reveals a series of buried and compact pockets composed of significantly greater hydrophobic surface area than the corresponding orthosteric sites. The hydrophobicity of the allosteric sites plays a dominant role in the binding of allosteric modulators as observed in the analysis of 106 diverse allosteric protein-modulator pairs. These results may be of great significance in predicting which proteins are allosteric and in designing novel triggers to inhibit or activate proteins of interest.
Collapse
|
15
|
Doyle CM, Rumfeldt JA, Broom HR, Broom A, Stathopulos PB, Vassall KA, Almey JJ, Meiering EM. Energetics of oligomeric protein folding and association. Arch Biochem Biophys 2012; 531:44-64. [PMID: 23246784 DOI: 10.1016/j.abb.2012.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/29/2012] [Accepted: 12/05/2012] [Indexed: 12/11/2022]
Abstract
In nature, proteins most often exist as complexes, with many of these consisting of identical subunits. Understanding of the energetics governing the folding and misfolding of such homooligomeric proteins is central to understanding their function and misfunction, in disease or biotechnology. Much progress has been made in defining the mechanisms and thermodynamics of homooligomeric protein folding. In this review, we outline models as well as calorimetric and spectroscopic methods for characterizing oligomer folding, and describe extensive results obtained for diverse proteins, ranging from dimers to octamers and higher order aggregates. To our knowledge, this area has not been reviewed comprehensively in years, and the collective progress is impressive. The results provide evolutionary insights into the development of subunit interfaces, mechanisms of oligomer folding, and contributions of oligomerization to protein stability, function and regulation. Thermodynamic analyses have also proven valuable for understanding protein misfolding and aggregation mechanisms, suggesting new therapeutic avenues. Successful recent designs of novel, functional proteins demonstrate increased understanding of oligomer folding. Further rigorous analyses using multiple experimental and computational approaches are still required, however, to achieve consistent and accurate prediction of oligomer folding energetics. Modeling the energetics remains challenging but is a promising avenue for future advances.
Collapse
Affiliation(s)
- Colleen M Doyle
- Guelph-Waterloo Centre for Graduate Studies in Chemistry and Biochemistry, and Department of Chemistry, University of Waterloo, 200 University Ave. West, Waterloo, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Triple mutated antibody scFv2F3 with high GPx activity: insights from MD, docking, MDFE, and MM-PBSA simulation. Amino Acids 2012; 44:1009-19. [PMID: 23224825 DOI: 10.1007/s00726-012-1435-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/27/2012] [Indexed: 12/11/2022]
Abstract
By combining computational design and site-directed mutagenesis, we have engineered a new catalytic ability into the antibody scFv2F3 by installing a catalytic triad (Trp(29)-Sec(52)-Gln(72)). The resulting abzyme, Se-scFv2F3, exhibits a high glutathione peroxidase (GPx) activity, approaching the native enzyme activity. Activity assays and a systematic computational study were performed to investigate the effect of successive replacement of residues at positions 29, 52, and 72. The results revealed that an active site Ser(52)/Sec substitution is critical for the GPx activity of Se-scFv2F3. In addition, Phe(29)/Trp-Val(72)/Gln mutations enhance the reaction rate via functional cooperation with Sec(52). Molecular dynamics simulations showed that the designed catalytic triad is very stable and the conformational flexibility caused by Tyr(101) occurs mainly in the loop of complementarity determining region 3. The docking studies illustrated the importance of this loop that favors the conformational shift of Tyr(54), Asn(55), and Gly(56) to stabilize substrate binding. Molecular dynamics free energy and molecular mechanics-Poisson Boltzmann surface area calculations estimated the pK(a) shifts of the catalytic residue and the binding free energies of docked complexes, suggesting that dipole-dipole interactions among Trp(29)-Sec(52)-Gln(72) lead to the change of free energy that promotes the residual catalytic activity and the substrate-binding capacity. The calculated results agree well with the experimental data, which should help to clarify why Se-scFv2F3 exhibits high catalytic efficiency.
Collapse
|