1
|
Yao Z, Fan Y, Lin L, Kellems RE, Xia Y. Tissue transglutaminase: a multifunctional and multisite regulator in health and disease. Physiol Rev 2024; 104:281-325. [PMID: 37712623 DOI: 10.1152/physrev.00003.2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023] Open
Abstract
Tissue transglutaminase (TG2) is a widely distributed multifunctional protein involved in a broad range of cellular and metabolic functions carried out in a variety of cellular compartments. In addition to transamidation, TG2 also functions as a Gα signaling protein, a protein disulfide isomerase (PDI), a protein kinase, and a scaffolding protein. In the nucleus, TG2 modifies histones and transcription factors. The PDI function catalyzes the trimerization and activation of heat shock factor-1 in the nucleus and regulates the oxidation state of several mitochondrial complexes. Cytosolic TG2 modifies proteins by the addition of serotonin or other primary amines and in this way affects cell signaling. Modification of protein-bound glutamines reduces ubiquitin-dependent proteasomal degradation. At the cell membrane, TG2 is associated with G protein-coupled receptors (GPCRs), where it functions in transmembrane signaling. TG2 is also found in the extracellular space, where it functions in protein cross-linking and extracellular matrix stabilization. Of particular importance in transglutaminase research are recent findings concerning the role of TG2 in gene expression, protein homeostasis, cell signaling, autoimmunity, inflammation, and hypoxia. Thus, TG2 performs a multitude of functions in multiple cellular compartments, making it one of the most versatile cellular proteins. Additional evidence links TG2 with multiple human diseases including preeclampsia, hypertension, cardiovascular disease, organ fibrosis, cancer, neurodegenerative diseases, and celiac disease. In conclusion, TG2 provides a multifunctional and multisite response to physiological stress.
Collapse
Affiliation(s)
- Zhouzhou Yao
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yuhua Fan
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lizhen Lin
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School at Houston, Houston, Texas, United States
| | - Yang Xia
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
2
|
Paolella G, Sposito S, Romanelli AM, Caputo I. Type 2 Transglutaminase in Coeliac Disease: A Key Player in Pathogenesis, Diagnosis and Therapy. Int J Mol Sci 2022; 23:ijms23147513. [PMID: 35886862 PMCID: PMC9318967 DOI: 10.3390/ijms23147513] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 transglutaminase (TG2) is the main autoantigen in coeliac disease (CD), a widespread inflammatory enteropathy caused by the ingestion of gluten-containing cereals in genetically predisposed individuals. As a consequence, serum antibodies to TG2 represent a very useful marker in CD diagnosis. However, TG2 is also an important player in CD pathogenesis, for its ability to deamidate some Gln residues of gluten peptides, which become more immunogenic in CD intestinal mucosa. Given the importance of TG2 enzymatic activities in CD, several studies have sought to discover specific and potent inhibitors that could be employed in new therapeutical approaches for CD, as alternatives to a lifelong gluten-free diet. In this review, we summarise all the aspects regarding TG2 involvement in CD, including its enzymatic reactions in pathogenesis, the role of anti-TG2 antibodies in disease management, and the exploration of recent strategies to reduce deamidation or to use transamidation to detoxify gluten.
Collapse
Affiliation(s)
- Gaetana Paolella
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, SA, Italy; (S.S.); (A.M.R.)
- Correspondence: (G.P.); (I.C.)
| | - Silvia Sposito
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, SA, Italy; (S.S.); (A.M.R.)
| | | | - Ivana Caputo
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, SA, Italy; (S.S.); (A.M.R.)
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University of Salerno, 84084 Fisciano, SA, Italy
- Correspondence: (G.P.); (I.C.)
| |
Collapse
|
3
|
Chirdo FG, Auricchio S, Troncone R, Barone MV. The gliadin p31-43 peptide: Inducer of multiple proinflammatory effects. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 358:165-205. [PMID: 33707054 DOI: 10.1016/bs.ircmb.2020.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coeliac disease (CD) is the prototype of an inflammatory chronic disease induced by food. In this context, gliadin p31-43 peptide comes into the spotlight as an important player of the inflammatory/innate immune response to gliadin in CD. The p31-43 peptide is part of the p31-55 peptide from α-gliadins that remains undigested for a long time, and can be present in the small intestine after ingestion of a gluten-containing diet. Different biophysical methods and molecular dynamic simulations have shown that p31-43 spontaneously forms oligomeric nanostructures, whereas experimental approaches using in vitro assays, mouse models, and human duodenal tissues have shown that p31-43 is able to induce different forms of cellular stress by driving multiple inflammatory pathways. Increased proliferative activity of the epithelial cells in the crypts, enterocyte stress, activation of TG2, induction of Ca2+, IL-15, and NFκB signaling, inhibition of CFTR, alteration of vesicular trafficking, and activation of the inflammasome platform are some of the biological effects of p31-43, which, in the presence of appropriate genetic susceptibility and environmental factors, may act together to drive CD.
Collapse
Affiliation(s)
- Fernando Gabriel Chirdo
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Estudios Inmunológicos y Fisiopatológicos-IIFP (UNLP-CONICET), La Plata, Argentina.
| | - Salvatore Auricchio
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University Federico II, Naples, Italy
| | - Riccardo Troncone
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University Federico II, Naples, Italy; Department of Translational Medical Science, University Federico II, Naples, Italy
| | - Maria Vittoria Barone
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University Federico II, Naples, Italy; Department of Translational Medical Science, University Federico II, Naples, Italy
| |
Collapse
|
4
|
Maglio M, Troncone R. Intestinal Anti-tissue Transglutaminase2 Autoantibodies: Pathogenic and Clinical Implications for Celiac Disease. Front Nutr 2020; 7:73. [PMID: 32548124 PMCID: PMC7273338 DOI: 10.3389/fnut.2020.00073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
Celiac disease (CD) is a systemic disease that primarily affects the small intestine. The presence of anti-tissue transglutaminase 2 (anti-TG2) antibodies in the serum, as well as the presence of autoimmune phenomena, account for the inclusion of CD among autoimmune diseases. Anti-TG2 autoantibodies are produced at intestinal level, where they are deposited even before they appear in circulation. The pathogenic events that lead to their production are still not completely defined, but a central role seems to be played by gliadin-specific T cells. Interestingly, limited somatic mutations have been observed in VH and VL genes in TG2-specific plasma cells, another important aspect being the biased use of a heavy chain encoded by the VH5 gene. Conflicting data have been produced over the years on the effect of anti-TG2 antibodies on TG2 function. Although the presence of anti-TG2 antibodies in serum is considered a hallmark of CD and relevant from a clinical viewpoint, the role of these autoantibodies in the development of the celiac lesion remains to be defined. In the years, different technical approaches have been implemented to detect and measure intestinal CD-associated autoantibody production. Two aspects can make intestinal anti-TG2 antibodies relevant: from a clinical viewpoint: the first is their proposed ability in potential coeliac patients to predict the development of a full-blown enteropathy; the second is their possible role in revealing a condition of reactivity to gluten in patients with no circulating CD-associated autoantibodies. In fact, the detection of CD-specific autoantibodies production in the intestine, in the absence of serum positivity for the same antibodies, could be suggestive of a very early condition of gluten reactivity; alternatively, it could be not specific for CD and merely attributable to intestinal inflammation. In conclusion, the role of mucosal anti-TG2 antibodies in pathogenesis of CD is unknown. Their presence, the modalities of their production, their gluten dependence render them a unique model to study autoimmunity.
Collapse
Affiliation(s)
- Mariantonia Maglio
- Department of Medical Translational Sciences and European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| | - Riccardo Troncone
- Department of Medical Translational Sciences and European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| |
Collapse
|
5
|
Martucciello S, Sposito S, Esposito C, Paolella G, Caputo I. Interplay between Type 2 Transglutaminase (TG2), Gliadin Peptide 31-43 and Anti-TG2 Antibodies in Celiac Disease. Int J Mol Sci 2020; 21:ijms21103673. [PMID: 32456177 PMCID: PMC7279455 DOI: 10.3390/ijms21103673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
Celiac disease (CD) is a common intestinal inflammatory disease involving both a genetic background and environmental triggers. The ingestion of gluten, a proteic component of several cereals, represents the main hexogen factor implied in CD onset that involves concomitant innate and adaptive immune responses to gluten. Immunogenicity of some gluten sequences are strongly enhanced as the consequence of the deamidation of specific glutamine residues by type 2 transglutaminase (TG2), a ubiquitous enzyme whose expression is up-regulated in the intestine of CD patients. A short gluten sequence resistant to intestinal proteases, the α-gliadin peptide 31-43, seems to modulate TG2 function in the gut; on the other hand, the enzyme can affect the biological activity of this peptide. In addition, an intense auto-immune response towards TG2 is a hallmark of CD. Auto-antibodies exert a range of biological effects on several cells, effects that in part overlap with those induced by peptide 31-43. In this review, we delineate a scenario in which TG2, anti-TG2 antibodies and peptide 31-43 closely relate to each other, thus synergistically participating in CD starting and progression.
Collapse
Affiliation(s)
- Stefania Martucciello
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano (SA), Italy; (S.M.); (C.E.); (G.P.)
| | - Silvia Sposito
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University of Salerno, 84084 Fisciano (SA), Italy;
| | - Carla Esposito
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano (SA), Italy; (S.M.); (C.E.); (G.P.)
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University of Salerno, 84084 Fisciano (SA), Italy;
| | - Gaetana Paolella
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano (SA), Italy; (S.M.); (C.E.); (G.P.)
| | - Ivana Caputo
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano (SA), Italy; (S.M.); (C.E.); (G.P.)
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University of Salerno, 84084 Fisciano (SA), Italy;
- Correspondence: ; Tel.: +39-089-969592; Fax: +39-089-969603
| |
Collapse
|
6
|
Constitutive Differential Features of Type 2 Transglutaminase in Cells Derived from Celiac Patients and from Healthy Subjects. Int J Mol Sci 2020; 21:ijms21041231. [PMID: 32059410 PMCID: PMC7072952 DOI: 10.3390/ijms21041231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
Type 2 transglutaminase (TG2) is a ubiquitous enzyme able to modify gliadin peptides introduced into the organism through the diet. By means of its catalytic activity, TG2 seems to have an important pathogenetic role in celiac disease (CD), an inflammatory intestinal disease caused by the ingestion of gluten-containing cereals. A strong autoimmune response to TG2 characterizes CD development. Anti-TG2 antibodies specifically derange the uptake of the α-gliadin peptide 31–43 by control, but not by celiac dermal fibroblasts, underlying some different constitutive features regarding TG2 in healthy and celiac subjects. Our aim was to investigate whether these differences depended on a different TG2 subcellular distribution and whether peptide 31–43 differentially regulated TG2 expression and activity in cells of the two groups of subjects. We found that TG2 was more abundantly associated with membranes of celiac fibroblasts than of control cells, in particular with the early endosomal and autophagic compartments. We also found that peptide 31–43 differentially affected TG2 expression and activity in the two groups of cells, activating TG2 more in control than in celiac cells and inducing TG2 expression in celiac cells, but not in control ones. The different TG2 subcellular localization and the different way the peptide 31–43 modulates TG2 activity and availability into control and CD cells suggested that TG2 is involved in the definition of a constitutive CD cellular phenotype, thus having an important and still undefined role in CD pathogenesis.
Collapse
|
7
|
Cabanillas B. Gluten-related disorders: Celiac disease, wheat allergy, and nonceliac gluten sensitivity. Crit Rev Food Sci Nutr 2019; 60:2606-2621. [PMID: 31402697 DOI: 10.1080/10408398.2019.1651689] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The consumption of gluten-free products is becoming an increased alimentary habit in the general population. The scientific unfounded perception suggesting that the avoidance of gluten would improve health or that gluten could be toxic for humans are fostering medically unjustified adherences to a gluten-free diet. Currently, only patients diagnosed with celiac disease are advised to follow a strict lifelong gluten-free diet. In the same way, patients diagnosed with IgE-mediated wheat allergy must avoid exposure to wheat in any form. In that context, a third disorder, called nonceliac gluten sensitivity, characterized by distress after gluten consumption and in which neither celiac disease nor IgE-mediated allergy plays a role, has gained increased attention in the last years. Although important scientific advances have been made in the understanding of the pathologic mechanisms behind nonceliac gluten sensitivity, this disorder is still a matter of active debate in the scientific community. In the present review, the most recent advances in the immunopathology, diagnostic biomarkers and susceptibility determinants of gluten-related diseases are summarized and discussed. Furthermore, an updated overview of the new potential therapies that are currently underway for the treatment of gluten-related disorders is also provided.
Collapse
Affiliation(s)
- Beatriz Cabanillas
- Department of Dermatology and Allergy, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
8
|
Gallo M, Nigro F, Passannanti F, Nanayakkara M, Lania G, Parisi F, Salameh D, Budelli A, Barone MV, Nigro R. Effect of pH control during rice fermentation in preventing a gliadin P31-43 entrance in epithelial cells. Int J Food Sci Nutr 2019; 70:950-958. [PMID: 30969137 DOI: 10.1080/09637486.2019.1599827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coeliac disease is an increasingly recognised pathology, induced by the ingestion of gluten in genetically predisposed patients. Undigested gliadin peptide can induce adaptive and innate immune response that unleash the typical intestinal mucosal alterations. A growing attention is paid to alternative therapeutic approaches to the gluten-free diet: one of these approaches is the use of probiotics and/or postbiotics. We performed lactic fermentation of rice flour with and without pH control, using Lactobacillus paracasei CBA L74 as fermenting strain. We evaluated bacterial growth, lactic acid production during fermentation and gliadin peptide P31-43 entrance in CaCo-2 cells with and without pH control. When pH control was applied no differences were observed in terms of bacterial growth; on the contrary, lactic acid production was greater, as expected. Both samples could inhibit the P31-43 entrance in CaCo-2 cells but the effect was significantly greater for samples obtained when the pH control was applied.
Collapse
Affiliation(s)
- Marianna Gallo
- DICMAPI, University of Naples Federico II , Naples , Italy.,Engineering Department, University of Rome Niccolò Cusano , Rome , Italy
| | - Federica Nigro
- Engineering Department, University of Rome Niccolò Cusano , Rome , Italy
| | | | - Merlin Nanayakkara
- Department of Translational Medical Science, DISMET, University of Naples Federico II , Naples , Italy.,European Laboratory for the Investigation of Food Induced Disease (ELFID) , Naples , Italy
| | - Giuliana Lania
- Department of Translational Medical Science, DISMET, University of Naples Federico II , Naples , Italy.,European Laboratory for the Investigation of Food Induced Disease (ELFID) , Naples , Italy
| | | | - Dana Salameh
- DICMAPI, University of Naples Federico II , Naples , Italy
| | | | - Maria Vittoria Barone
- Department of Translational Medical Science, DISMET, University of Naples Federico II , Naples , Italy.,European Laboratory for the Investigation of Food Induced Disease (ELFID) , Naples , Italy
| | - Roberto Nigro
- DICMAPI, University of Naples Federico II , Naples , Italy
| |
Collapse
|
9
|
Quaglia S, Ferrara F, De Leo L, Ziberna F, Vatta S, Marchiò S, Sblattero D, Ventura A, Not T. A Functional Idiotype/Anti-Idiotype Network Is Active in Genetically Gluten-Intolerant Individuals Negative for Both Celiac Disease-Related Intestinal Damage and Serum Autoantibodies. THE JOURNAL OF IMMUNOLOGY 2019; 202:1079-1087. [PMID: 30635394 DOI: 10.4049/jimmunol.1800819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/10/2018] [Indexed: 11/19/2022]
Abstract
An unbalance between Abs that recognize an autoantigen (idiotypes; IDs) and Igs that bind such Abs (anti-IDs) is considered a functional event in autoimmune disorders. We investigated the presence of an ID/anti-ID network in celiac disease (CD), a condition in which antitissue transglutaminase 2 (TG2) Abs are suspected to contribute to CD pathogenesis. To characterize the ID side, we reproduced by in vitro yeast display the intestine-resident Abs from CD and control patients. These TG2-specific IDs were used to identify potential anti-IDs in the serum. We observed elevated titers of anti-IDs in asymptomatic patients with predisposition to CD and demonstrated that anti-ID depletion from the serum restores a detectable humoral response against TG2. Our study provides an alternative approach to quantify CD-related autoantibodies in cases that would be defined "negative serology" with current diagnostic applications. Therefore, we suggest that developments of this technology could be designed for perspective routine tests.
Collapse
Affiliation(s)
- Sara Quaglia
- Institute for Maternal and Child Health, Istituto di Ricerca e Cura a Carattere Scientifico Burlo Garofolo, Trieste 34137, Italy
| | | | - Luigina De Leo
- Institute for Maternal and Child Health, Istituto di Ricerca e Cura a Carattere Scientifico Burlo Garofolo, Trieste 34137, Italy
| | - Fabiana Ziberna
- Institute for Maternal and Child Health, Istituto di Ricerca e Cura a Carattere Scientifico Burlo Garofolo, Trieste 34137, Italy
| | - Serena Vatta
- Institute for Maternal and Child Health, Istituto di Ricerca e Cura a Carattere Scientifico Burlo Garofolo, Trieste 34137, Italy
| | - Serena Marchiò
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia, Istituto di Ricerca e Cura a Carattere Scientifico, Candiolo, Turin 10060, Italy.,Department of Oncology, University of Turin School of Medicine, Candiolo, Turin 10060, Italy; and
| | - Daniele Sblattero
- University of Trieste, Department of Life Science, Trieste 34128, Italy
| | - Alessandro Ventura
- Institute for Maternal and Child Health, Istituto di Ricerca e Cura a Carattere Scientifico Burlo Garofolo, Trieste 34137, Italy.,University of Trieste, Department of Life Science, Trieste 34128, Italy
| | - Tarcisio Not
- Institute for Maternal and Child Health, Istituto di Ricerca e Cura a Carattere Scientifico Burlo Garofolo, Trieste 34137, Italy; .,University of Trieste, Department of Life Science, Trieste 34128, Italy
| |
Collapse
|
10
|
Martucciello S, Paolella G, Esposito C, Lepretti M, Caputo I. Anti-type 2 transglutaminase antibodies as modulators of type 2 transglutaminase functions: a possible pathological role in celiac disease. Cell Mol Life Sci 2018; 75:4107-4124. [PMID: 30136165 PMCID: PMC11105699 DOI: 10.1007/s00018-018-2902-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/30/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022]
Abstract
Auto-antibodies to the ubiquitous enzyme type-2 transglutaminase (TG2) are a specific hallmark of celiac disease (CD), a widely diffused, multi-factorial disease, affecting genetically predisposed subjects. In CD an inflammatory response, at the intestinal level, is triggered by diet consumption of gluten-containing cereals. Intestinal mucosa displays various degrees of atrophy and hyperplasia, with consequent global intestinal dysfunction and other relevant extra-intestinal symptoms. Through deamidation of specific glutamines of gluten-derived gliadin peptides, TG2 strongly enhances gliadin immunogenicity. In addition, TG2 cross-linking activity may generate complexes between TG2 itself and gliadin peptides, and these complexes seem to cause the auto-immune response by means of an apten-carrier-like mechanism of antigen presentation. Anti-TG2 antibodies can be early detected in the intestinal mucosa of celiac patients and are also abundantly present into the serum, thus potentially reaching other organs and tissues by blood circulation. Recently, the possible pathogenetic role of auto-antibodies to TG2 in CD has been investigated. Here, we report an overview about the genesis of these antibodies, their specificity, their modulating ability toward TG2 enzymatic or non-enzymatic activities and their biological effects exerted by interacting with extracellular TG2 or with cell-surface TG2. We also discuss the auto-immune response occurring in CD against other TG members (i.e. type 3 and type 6) and analyze the occurrence of anti-TG2 antibodies in other auto-immune CD-related diseases. Data now available let us to suppose that, even if antibodies to TG2 do not represent the triggering molecules in CD, they could be important players in disease progression and manifestations.
Collapse
Affiliation(s)
- Stefania Martucciello
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
| | - Gaetana Paolella
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
| | - Carla Esposito
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
- Interuniversity Centre "European Laboratory for the Investigation of Food-Induced Diseases" (ELFID), University of Salerno, Fisciano (SA), Italy
| | - Marilena Lepretti
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
| | - Ivana Caputo
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy.
- Interuniversity Centre "European Laboratory for the Investigation of Food-Induced Diseases" (ELFID), University of Salerno, Fisciano (SA), Italy.
| |
Collapse
|
11
|
Paolella G, Lepretti M, Barone MV, Nanayakkara M, Di Zenzo M, Sblattero D, Auricchio S, Esposito C, Caputo I. Celiac anti-type 2 transglutaminase antibodies induce differential effects in fibroblasts from celiac disease patients and from healthy subjects. Amino Acids 2016; 49:541-550. [PMID: 27613408 DOI: 10.1007/s00726-016-2307-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/30/2016] [Indexed: 01/06/2023]
Abstract
Type 2 transglutaminase (TG2) has an important pathogenic role in celiac disease (CD), an inflammatory intestinal disease that is caused by the ingestion of gluten-containing cereals. Indeed, TG2 deamidates specific gliadin peptides, thus enhancing their immunogenicity. Moreover, the transamidating activity seems to provoke an autoimmune response, where TG2 is the main autoantigen. Many studies have highlighted a possible pathogenetic role of anti-TG2 antibodies, because they modulate TG2 enzymatic activity and they can interact with cell-surface TG2, triggering a wide range of intracellular responses. Autoantibodies also alter the uptake of the alpha-gliadin peptide 31-43 (p31-43), responsible of the innate immune response in CD, thus partially protecting cells from p31-43 damaging effects in an intestinal cell line. Here, we investigated whether anti-TG2 antibodies protect cells from p31-43-induced damage in a CD model consisting of primary dermal fibroblasts. We found that the antibodies specifically reduced the uptake of p31-43 by fibroblasts derived from healthy subjects but not in those derived from CD patients. Analyses of TG2 expression and enzymatic activity did not reveal any significant difference between fibroblasts from healthy and celiac subjects, suggesting that other features related to TG2 may be responsible of such different behaviors, e.g., trafficking or subcellular distribution. Our findings are in line with the concept that a "celiac cellular phenotype" exists and that TG2 may contribute to this phenotype. Moreover, they suggest that the autoimmune response to TG2, which alone may damage the celiac mucosa, also fails in its protective role in celiac cells.
Collapse
Affiliation(s)
- Gaetana Paolella
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Marilena Lepretti
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Maria Vittoria Barone
- Department of Translational Medical Science, University Federico II, Naples, Italy.,Interuniversity Center "European Laboratory for the Investigation of Food-Induced Diseases" (ELFID), University Federico II, Naples, Italy
| | - Merlin Nanayakkara
- Department of Translational Medical Science, University Federico II, Naples, Italy.,Interuniversity Center "European Laboratory for the Investigation of Food-Induced Diseases" (ELFID), University Federico II, Naples, Italy
| | - Marina Di Zenzo
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | | | - Salvatore Auricchio
- Department of Translational Medical Science, University Federico II, Naples, Italy.,Interuniversity Center "European Laboratory for the Investigation of Food-Induced Diseases" (ELFID), University Federico II, Naples, Italy
| | - Carla Esposito
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.,Interuniversity Center "ELFID", University of Salerno, Fisciano, Italy
| | - Ivana Caputo
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy. .,Interuniversity Center "ELFID", University of Salerno, Fisciano, Italy.
| |
Collapse
|
12
|
Transglutaminase 2-specific coeliac disease autoantibodies induce morphological changes and signs of inflammation in the small-bowel mucosa of mice. Amino Acids 2016; 49:529-540. [PMID: 27503559 DOI: 10.1007/s00726-016-2306-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/30/2016] [Indexed: 01/28/2023]
Abstract
Coeliac disease is hallmarked by an abnormal immune reaction against ingested wheat-, rye- and barley-derived gluten and the presence of transglutaminase 2 (TG2)-targeted autoantibodies. The small-bowel mucosal damage characteristic of the disorder develops gradually from normal villus morphology to inflammation and finally to villus atrophy with crypt hyperplasia. Patients with early-stage coeliac disease have TG2-autoantibodies present in serum and small-intestinal mucosa and they may already suffer from abdominal symptoms before the development of villus atrophy. Previously, we have shown that intraperitoneal injections of coeliac patient-derived sera or purified immunoglobulin fraction into mice induce a condition mimicking early-stage coeliac disease. In the current study, we sought to establish whether recombinantly produced patient-derived TG2-targeted autoantibodies are by themselves sufficient for the development of such an experimentally induced condition in immune-compromised mice. Interestingly, mice injected with coeliac patient TG2-antibodies had altered small-intestinal mucosal morphology, increased lamina propria cellular infiltration and disease-specific autoantibodies deposited in the small bowel, but did not evince clinical features of the disease. Thus, coeliac patient-derived TG2-specific autoantibodies seem to be sufficient for the induction of subtle small-bowel mucosal alterations in mice, but the development of clinical features probably requires additional factors such as other antibody populations relevant in coeliac disease.
Collapse
|
13
|
Vangone A, Abdel-Azeim S, Caputo I, Sblattero D, Di Niro R, Cavallo L, Oliva R. Structural basis for the recognition in an idiotype-anti-idiotype antibody complex related to celiac disease. PLoS One 2014; 9:e102839. [PMID: 25076134 PMCID: PMC4116137 DOI: 10.1371/journal.pone.0102839] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 06/21/2014] [Indexed: 11/19/2022] Open
Abstract
Anti-idiotype antibodies have potential therapeutic applications in many fields, including autoimmune diseases. Herein we report the isolation and characterization of AIM2, an anti-idiotype antibody elicited in a mouse model upon expression of the celiac disease-specific autoantibody MB2.8 (directed against the main disease autoantigen type 2 transglutaminase, TG2). To characterize the interaction between the two antibodies, a 3D model of the MB2.8-AIM2 complex has been obtained by molecular docking. Analysis and selection of the different obtained docking solutions was based on the conservation within them of the inter-residue contacts. The selected model is very well representative of the different solutions found and its stability is confirmed by molecular dynamics simulations. Furthermore, the binding mode it adopts is very similar to that observed in most of the experimental structures available for idiotype-anti-idiotype antibody complexes. In the obtained model, AIM2 is directed against the MB2.8 CDR region, especially on its variable light chain. This makes the concurrent formation of the MB2.8-AIM2 complex and of the MB2.8-TG2 complex incompatible, thus explaining the experimentally observed inhibitory effect on the MB2.8 binding to TG2.
Collapse
Affiliation(s)
- Anna Vangone
- Department of Chemistry and Biology, University of Salerno, Fisciano, Salerno, Italy
| | - Safwat Abdel-Azeim
- Kaust Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ivana Caputo
- Department of Chemistry and Biology, University of Salerno, Fisciano, Salerno, Italy
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University Federico II, Naples, Italy
| | - Daniele Sblattero
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont, Novara, Italy
| | - Roberto Di Niro
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Luigi Cavallo
- Department of Chemistry and Biology, University of Salerno, Fisciano, Salerno, Italy
- Kaust Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University “Parthenope” of Naples, Naples, Italy
- * E-mail:
| |
Collapse
|
14
|
Sarno M, Lania G, Cuomo M, Nigro F, Passannanti F, Budelli A, Fasano F, Troncone R, Auricchio S, Barone MV, Nigro R, Nanayakkara M. Lactobacillus paracaseiCBA L74 interferes with gliadin peptides entrance in Caco-2 cells. Int J Food Sci Nutr 2014; 65:953-9. [DOI: 10.3109/09637486.2014.940283] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Paolella G, Caputo I, Marabotti A, Lepretti M, Salzano AM, Scaloni A, Vitale M, Zambrano N, Sblattero D, Esposito C. Celiac anti-type 2 transglutaminase antibodies induce phosphoproteome modification in intestinal epithelial Caco-2 cells. PLoS One 2013; 8:e84403. [PMID: 24391952 PMCID: PMC3877280 DOI: 10.1371/journal.pone.0084403] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 11/13/2013] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Celiac disease is an inflammatory condition of the small intestine that affects genetically predisposed individuals after dietary wheat gliadin ingestion. Type 2-transglutaminase (TG2) activity seems to be responsible for a strong autoimmune response in celiac disease, TG2 being the main autoantigen. Several studies support the concept that celiac anti-TG2 antibodies may contribute to disease pathogenesis. Our recent findings on the ability of anti-TG2 antibodies to induce a rapid intracellular mobilization of calcium ions, as well as extracellular signal-regulated kinase phosphorylation, suggest that they potentially act as signaling molecules. In line with this concept, we have investigated whether anti-TG2 antibodies can induce phosphoproteome modification in an intestinal epithelial cell line. METHODS AND PRINCIPAL FINDINGS We studied phosphoproteome modification in Caco-2 cells treated with recombinant celiac anti-TG2 antibodies. We performed a two-dimensional electrophoresis followed by specific staining of phosphoproteins and mass spectrometry analysis of differentially phosphorylated proteins. Of 14 identified proteins (excluding two uncharacterized proteins), three were hypophosphorylated and nine were hyperphosphorylated. Bioinformatics analyses confirmed the presence of phosphorylation sites in all the identified proteins and highlighted their involvement in several fundamental biological processes, such as cell cycle progression, cell stress response, cytoskeletal organization and apoptosis. CONCLUSIONS Identification of differentially phosphorylated proteins downstream of TG2-antibody stimulation suggests that in Caco-2 cells these antibodies perturb cell homeostasis by behaving as signaling molecules. We hypothesize that anti-TG2 autoantibodies may destabilize the integrity of the intestinal mucosa in celiac individuals, thus contributing to celiac disease establishment and progression. Since several proteins here identified in this study were already known as TG2 substrates, we can also suppose that transamidating activity and differential phosphorylation of the same targets may represent a novel regulatory mechanism whose relevance in celiac disease pathogenesis is still unexplored.
Collapse
Affiliation(s)
- Gaetana Paolella
- Department of Chemistry and Biology, University of Salerno, Salerno, Italy
| | - Ivana Caputo
- Department of Chemistry and Biology, University of Salerno, Salerno, Italy
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University “Federico II”, Naples, Italy
| | - Anna Marabotti
- Department of Chemistry and Biology, University of Salerno, Salerno, Italy
| | - Marilena Lepretti
- Department of Chemistry and Biology, University of Salerno, Salerno, Italy
| | - Anna Maria Salzano
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Monica Vitale
- Department of Molecular Medicine and Medical Biotechnologies, University “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Nicola Zambrano
- Department of Molecular Medicine and Medical Biotechnologies, University “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Daniele Sblattero
- Department of Health Sciences and IRCAD, University of Eastern Piedmont, Novara, Italy
| | - Carla Esposito
- Department of Chemistry and Biology, University of Salerno, Salerno, Italy
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University “Federico II”, Naples, Italy
| |
Collapse
|
16
|
Caputo I, Secondo A, Lepretti M, Paolella G, Auricchio S, Barone MV, Esposito C. Gliadin peptides induce tissue transglutaminase activation and ER-stress through Ca2+ mobilization in Caco-2 cells. PLoS One 2012; 7:e45209. [PMID: 23049776 PMCID: PMC3458012 DOI: 10.1371/journal.pone.0045209] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 08/16/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Celiac disease (CD) is an intestinal inflammatory condition that develops in genetically susceptible individuals after exposure to dietary wheat gliadin. The role of post-translational modifications of gliadin catalyzed by tissue transglutaminase (tTG) seems to play a crucial role in CD. However, it remains to be established how and where tTG is activated in vivo. We have investigated whether gliadin peptides modulate intracellular Ca(2+) homeostasis and tTG activity. METHODS/PRINCIPAL FINDINGS We studied Ca(2+) homeostasis in Caco-2 cells by single cell microfluorimetry. Under our conditions, A-gliadin peptides 31-43 and 57-68 rapidly mobilized Ca(2+) from intracellular stores. Specifically, peptide 31-43 mobilized Ca(2+) from the endoplasmic reticulum (ER) and mitochondria, whereas peptide 57-68 mobilized Ca(2+) only from mitochondria. We also found that gliadin peptide-induced Ca(2+) mobilization activates the enzymatic function of intracellular tTG as revealed by in situ tTG activity using the tTG substrate pentylamine-biotin. Moreover, we demonstrate that peptide 31-43, but not peptide 57-68, induces an increase of tTG expression. Finally, we monitored the expression of glucose-regulated protein-78 and of CCAAT/enhancer binding protein-homologous protein, which are two biochemical markers of ER-stress, by real-time RT-PCR and western blot. We found that chronic administration of peptide 31-43, but not of peptide 57-68, induces the expression of both genes. CONCLUSIONS By inducing Ca(2+) mobilization from the ER, peptide 31-43 could promote an ER-stress pathway that may be relevant in CD pathogenesis. Furthermore, peptides 31-43 and 57-68, by activating intracellular tTG, could alter inflammatory key regulators, and induce deamidation of immunogenic peptides and gliadin-tTG crosslinking in enterocytes and specialized antigen-presenting cells.
Collapse
Affiliation(s)
- Ivana Caputo
- Department of Chemistry and Biology, University of Salerno, Fisciano, Salerno, Italy.
| | | | | | | | | | | | | |
Collapse
|
17
|
Martucciello S, Lavric M, Toth B, Boglarka T, Korponay-Szabo I, Nadalutti C, Myrsky E, Rauhavirta T, Esposito C, Sulic AM, Sblattero D, Marzari R, Mäki M, Kaukinen K, Lindfors K, Caja S. RhoB is associated with the anti-angiogenic effects of celiac patient transglutaminase 2-targeted autoantibodies. J Mol Med (Berl) 2012; 90:817-26. [PMID: 22223195 DOI: 10.1007/s00109-011-0853-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 12/15/2011] [Accepted: 12/23/2011] [Indexed: 10/14/2022]
Abstract
Celiac patient-derived anti-transglutaminase 2 (TG2) antibodies disturb several steps in angiogenesis, but the detailed molecular basis is not known. Therefore, we here analyzed by microarray technology the expression of a set of genes related to angiogenesis and endothelial cell biology in order to identify factors that could explain our previous data related to vascular biology in the context of celiac disease. To this end, in vitro models using human umbilical vein endothelial cells (HUVECs) or in vivo models of angiogenesis were used. A total of 116 genes were analyzed after treatment with celiac patient autoantibodies against TG2. Compared to treatment with control IgA celiac patient, total IgA induced a consistent expression change of 10 genes, the up-regulation of four and down-regulation of six. Of these genes the up-regulated RhoB was selected for further studies. RhoB expression was found to be up-regulated at both messenger RNA and protein level in response to celiac patient total IgA as well as anti-TG2-specific antibody derived from a celiac patient. Interestingly, down-regulation of RhoB by specific small interfering RNA treatment in endothelial cells could rescue the deranged endothelial length and tubule formation caused by celiac disease autoantibodies. RhoB function is controlled by its post-translational modification by farnesylation. This modification of RhoB required for its correct function can be prevented by the cholesterol lowering drug simvastatin, which was also able to abolish the anti-angiogenic effects of celiac anti-TG2 autoantibodies. Taken together, our results would suggest that RhoB plays a key role in the response of endothelial cells to celiac disease-specific anti-TG2 autoantibodies.
Collapse
Affiliation(s)
- Stefania Martucciello
- Pediatric Research Center, University of Tampere, Tampere University Hospital, Finn-Medi 3, School of Medicine 33014, University of Tampere, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|