1
|
Hussain S, Khan M, Altaf MT, Shah MN, Alfagham AT. Deciphering the morpho-physiological and biochemical response of sunflower hybrids with the application of biochar and slow-release nitrogen fertilizers under drought stress for sustainable crop production. FRONTIERS IN PLANT SCIENCE 2025; 16:1541123. [PMID: 40104032 PMCID: PMC11914920 DOI: 10.3389/fpls.2025.1541123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/31/2025] [Indexed: 03/20/2025]
Abstract
Agriculture problems like drought stress and improper fertilization like overuse of nitrogen fertilizers for maximum productivity are the problem responsible for low yield of crop and environmental pollution. Biochar and slow releasing nitrogen fertilizers (SRNF) application in agriculture are the sustainable practices being used for better crop nutrient management strategies, since the well-recognized environmental problem caused by overusing fertilizers. Biochar also used as tools for sustainable way alleviating drought stress. For this, two-year field study was planned with randomized complete block designed (RCBD) and was replicated three time. Treatments included the two irrigation conditions like normal irrigation (CK) and drought stress (DS), two biochar treatments like biochar (BC) and without biochar (WBC); and three application of SRNF like zinc-coated urea (ZCU), sulfur-coated urea (SCU) and non-coated simple urea (SU). Results revealed that drought stress significantly reduced plant height (20.7%), stem diameter (25.6%), and achene yield (25.9%), while increasing antioxidant activity. Biochar mitigated these effects, increasing plant height by 23.2% and achene yield by 12.0% under drought stress. Among SRNFs, ZCU was most effective, improving photosynthetic rate (18.5%), chlorophyll content (12.3%), and achene yield (19.6%) under drought conditions. The combination of biochar and ZCU improved soil health, water retention, and nutrient efficiency, leading to enhanced plant growth and yield. Statistical analysis confirmed significant differences among treatments.
Collapse
Affiliation(s)
- Shabir Hussain
- Institute of Agronomy, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Mehrab Khan
- Institute of Agronomy, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Muhammad Tanveer Altaf
- Department of Field Crops, Faculty of Agriculture, Recep Tayyip Erdoğan Üniversity, Pazar, Rize, Türkiye
| | - Muhammad Nadeem Shah
- Institute of Agronomy, Bahauddin Zakariya University, Multan, Punjab, Pakistan
- Department of Agriculture, Government College University, Lahore, Punjab, Pakistan
- North Florida Research and Education Centre (NFREC), University of Florida, Quincy, FL, United States
| | - Alanoud T Alfagham
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Ferioun M, Zouitane I, Bouhraoua S, Elouattassi Y, Belahcen D, Errabbani A, Louahlia S, Sayyed R, El Ghachtouli N. Applying microbial biostimulants and drought-tolerant genotypes to enhance barley growth and yield under drought stress. FRONTIERS IN PLANT SCIENCE 2025; 15:1494987. [PMID: 39840355 PMCID: PMC11747827 DOI: 10.3389/fpls.2024.1494987] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025]
Abstract
With climate change, the frequency of regions experiencing water scarcity is increasing annually, posing a significant challenge to crop yield. Barley, a staple crop consumed and cultivated globally, is particularly susceptible to the detrimental effects of drought stress, leading to reduced yield production. Water scarcity adversely affects multiple aspects of barley growth, including seed germination, biomass production, shoot and root characteristics, water and osmotic status, photosynthesis, and induces oxidative stress, resulting in considerable losses in grain yield and its components. In this context, the present review aims to underscore the importance of selecting drought-tolerant barley genotypes and utilizing bio-inoculants constructed from beneficial microorganisms as an agroecological approach to enhance barley growth and production resilience under varying environmental conditions. Selecting barley genotypes with robust physiological and agronomic tolerance can mitigate losses under diverse environmental conditions. Plant Growth Promoting Rhizobacteria (PGPR) play a crucial role in promoting plant growth through nutrient solubilization, nitrogen fixation, phytohormone production, exopolysaccharide secretion, enzyme activity enhancement, and many other mechanisms. Applying drought-tolerant genotypes with bio-inoculants containing PGPR, improves barley's drought tolerance thereby minimizing losses caused by water scarcity.
Collapse
Affiliation(s)
- Mohamed Ferioun
- Natural Resources and Environmental Laboratory, Taza Polydisciplinary Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ilham Zouitane
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Said Bouhraoua
- Natural Resources and Environmental Laboratory, Taza Polydisciplinary Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Yasmine Elouattassi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Douae Belahcen
- Natural Resources and Environmental Laboratory, Taza Polydisciplinary Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Abdellatif Errabbani
- Natural Resources and Environmental Laboratory, Taza Polydisciplinary Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Said Louahlia
- Natural Resources and Environmental Laboratory, Taza Polydisciplinary Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Riyaz Sayyed
- Department of Biological Science and Chemistry, College of Arts and Science, University of Nizwa, Nizwa, Oman
| | - Naïma El Ghachtouli
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
3
|
Ramanan M, Bettenhausen H, Grigorean G, Diepenbrock C, Fox GP. Barley Grain Proteome Assessment Using Multi-Environment Trial Data and Machine Learning. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26416-26430. [PMID: 39536264 DOI: 10.1021/acs.jafc.4c07017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Proteomics can be used to assess individual protein abundances, which could reflect genotypic and environmental effects and potentially predict grain/malt quality. In this study, 79 barley grain samples (genotype-location-year combinations) from Californian multi-environment trials (2017-2022) were assessed using liquid chromatography-mass spectrometry. In total, 3104 proteins were identified across all of the samples. Location, genotype, and year explained 26.7, 17.1, and 14.3% of the variance in the relative abundance of individual proteins, respectively. Sixteen proteins with storage, DNA/RNA binding, or enzymatic functions were significantly higher/lower in abundance (compared to the overall mean) in the Yolo 3 and Imperial Valley locations, Butta 12 and LCS Odyssey genotypes, and the 2017-18 and 2021-22 years. Individual protein abundances were reasonably predictive (RMSECV = 1.25-2.04%) for total, alcohol-soluble, and malt protein content and malt fine extract. This study illustrates the role of the environment in the barley proteome and the utility of proteomics and machine learning to predict grain/malt quality.
Collapse
Affiliation(s)
- Maany Ramanan
- Department of Food Science & Technology, University of California, Davis, California 95616-5270, United States
| | - Harmonie Bettenhausen
- Hartwick College Center for Craft Food & Beverage, Hartwick College, Oneonta, New York 13820, United States
| | - Gabriela Grigorean
- Proteomics Core Facility, University of California, Davis, California 95616, United States
| | - Christine Diepenbrock
- Department of Plant Sciences, University of California, Davis, California 95616-5270, United States
| | - Glen Patrick Fox
- Department of Food Science & Technology, University of California, Davis, California 95616-5270, United States
| |
Collapse
|
4
|
Gao H, Ge W, Bai L, Zhang T, Zhao L, Li J, Shen J, Xu N, Zhang H, Wang G, Lin X. Proteomic analysis of leaves and roots during drought stress and recovery in Setaria italica L. FRONTIERS IN PLANT SCIENCE 2023; 14:1240164. [PMID: 37885665 PMCID: PMC10598781 DOI: 10.3389/fpls.2023.1240164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/13/2023] [Indexed: 10/28/2023]
Abstract
Drought is a major environmental factor that limits agricultural crop productivity and threatens food security. Foxtail millet is a model crop with excellent abiotic stress tolerance and is consequently an important subject for obtaining a better understanding of the molecular mechanisms underlying plant responses to drought and recovery. Here the physiological and proteomic responses of foxtail millet (cultivar Yugu1) leaves and roots to drought treatments and recovery were evaluated. Drought-treated foxtail millet exhibited increased relative electrolyte leakage and decreased relative water content and chlorophyll content compared to control and rewatering plants. A global analysis of protein profiles was evaluated for drought-treated and recovery treatment leaves and roots. We also identified differentially abundant proteins in drought and recovery groups, enabling comparisons between leaf and root tissue responses to the conditions. The principal component analysis suggested a clear distinction between leaf and root proteomes for the drought-treated and recovery treatment plants. Gene Ontology enrichment and co-expression analyses indicated that the biological responses of leaves differed from those in roots after drought and drought recovery. These results provide new insights and data resources to investigate the molecular basis of tissue-specific functional responses of foxtail millet during drought and recovery, thereby significantly informing crop breeding.
Collapse
Affiliation(s)
- Hui Gao
- Hebei Key Laboratory of Crop Stress Biology, Department of Life Science and Technology, College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Weina Ge
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Lin Bai
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ting Zhang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Ling Zhao
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Jingshi Li
- Hebei Key Laboratory of Crop Stress Biology, Department of Life Science and Technology, College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Jiangjie Shen
- Hebei Key Laboratory of Crop Stress Biology, Department of Life Science and Technology, College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Ningwei Xu
- College of Landscape and Tourism, Hebei Agricultural University, Baoding, China
| | - Haoshan Zhang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Genping Wang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Xiaohu Lin
- Hebei Key Laboratory of Crop Stress Biology, Department of Life Science and Technology, College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| |
Collapse
|
5
|
Mikołajczak K, Kuczyńska A, Krajewski P, Kempa M, Witaszak N. Global Proteome Profiling Revealed the Adaptive Reprogramming of Barley Flag Leaf to Drought and Elevated Temperature. Cells 2023; 12:1685. [PMID: 37443719 PMCID: PMC10340373 DOI: 10.3390/cells12131685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Plants, as sessile organisms, have developed sophisticated mechanisms to survive in changing environments. Recent advances in omics approaches have facilitated the exploration of plant genomes; however, the molecular mechanisms underlying the responses of barley and other cereals to multiple abiotic stresses remain largely unclear. Exposure to stress stimuli affects many proteins with regulatory and protective functions. In the present study, we employed liquid chromatography coupled with high-resolution mass spectrometry to identify stress-responsive proteins on the genome-wide scale of barley flag leaves exposed to drought, heat, or both. Profound alterations in the proteome of genotypes with different flag leaf sizes were found. The role of stress-inducible proteins was discussed and candidates underlying the universal stress response were proposed, including dehydrins. Moreover, the putative functions of several unknown proteins that can mediate responses to stress stimuli were explored using Pfam annotation, including calmodulin-like proteins. Finally, the confrontation of protein and mRNA abundances was performed. A correlation network between transcripts and proteins performance revealed several components of the stress-adaptive pathways in barley flag leaf. Taking the findings together, promising candidates for improving the tolerance of barley and other cereals to multivariate stresses were uncovered. The presented proteomic landscape and its relationship to transcriptomic remodeling provide novel insights for understanding the molecular responses of plants to environmental cues.
Collapse
Affiliation(s)
- Krzysztof Mikołajczak
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (A.K.); (P.K.); (M.K.); (N.W.)
| | | | | | | | | |
Collapse
|
6
|
Yang Z, Qin F. The battle of crops against drought: Genetic dissection and improvement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:496-525. [PMID: 36639908 DOI: 10.1111/jipb.13451] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
With ongoing global climate change, water scarcity-induced drought stress remains a major threat to agricultural productivity. Plants undergo a series of physiological and morphological changes to cope with drought stress, including stomatal closure to reduce transpiration and changes in root architecture to optimize water uptake. Combined phenotypic and multi-omics studies have recently identified a number of drought-related genetic resources in different crop species. The functional dissection of these genes using molecular techniques has enriched our understanding of drought responses in crops and has provided genetic targets for enhancing resistance to drought. Here, we review recent advances in the cloning and functional analysis of drought resistance genes and the development of technologies to mitigate the threat of drought to crop production.
Collapse
Affiliation(s)
- Zhirui Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Feng Qin
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
7
|
Licaj I, Di Meo MC, Fiorillo A, Samperna S, Marra M, Rocco M. Comparative Analysis of the Response to Polyethylene Glycol-Simulated Drought Stress in Roots from Seedlings of "Modern" and "Ancient" Wheat Varieties. PLANTS (BASEL, SWITZERLAND) 2023; 12:428. [PMID: 36771510 PMCID: PMC9921267 DOI: 10.3390/plants12030428] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Durum wheat is widely cultivated in the Mediterranean, where it is the basis for the production of high added-value food derivatives such as pasta. In the next few years, the detrimental effects of global climate change will represent a serious challenge to crop yields. For durum wheat, the threat of climate change is worsened by the fact that cultivation relies on a few genetically uniform, elite varieties, better suited to intensive cultivation than "traditional" ones but less resistant to environmental stress. Hence, the renewed interest in "ancient" traditional varieties are expected to be more tolerant to environmental stress as a source of genetic resources to be exploited for the selection of useful agronomic traits such as drought tolerance. The aim of this study was to perform a comparative analysis of the effect and response of roots from the seedlings of two durum wheat cultivars: Svevo, a widely cultivated elite variety, and Saragolla, a traditional variety appreciated for its organoleptic characteristics, to Polyethylene glycol-simulated drought stress. The effect of water stress on root growth was analyzed and related to biochemical data such as hydrogen peroxide production, electrolyte leakage, membrane lipid peroxidation, proline synthesis, as well as to molecular data such as qRT-PCR analysis of drought responsive genes and proteomic analysis of changes in the protein repertoire of roots from the two cultivars.
Collapse
Affiliation(s)
- Ilva Licaj
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Maria Chiara Di Meo
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Anna Fiorillo
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy
| | - Simone Samperna
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy
| | - Mauro Marra
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy
| | - Mariapina Rocco
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| |
Collapse
|
8
|
Alluqmani SM, Alabdallah NM. Preparation and application of nanostructured carbon from oil fly ash for growth promotion and improvement of agricultural crops with different doses. Sci Rep 2022; 12:17033. [PMID: 36220848 PMCID: PMC9553923 DOI: 10.1038/s41598-022-21639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/29/2022] [Indexed: 12/29/2022] Open
Abstract
Application of carbon nanomaterials (CNMs) in agricultural production has piqued the interest of researchers. However, despite the enormous importance of CNMs in plant development, little is known about the effects of carbon nanoparticle (CNP) doses on plant physiological responses. Therefore, the aim of the current study was to check the effects of nanostructured carbon derived from oil fly ash (COFA), which was derived for the first time from high-energy ball-milling followed by a sonication process, on Phaseolus vulgaris L. and Cicer arietinum L. plants. We evaluated the plant physiological and biochemical parameters of the COFA-treated seedlings. Two different doses (4 mg L-1 and 8 mg L-1) of COFA and a control were studied. The results indicated that the germination rate (%), shoot length, root length, pod length, leaf area, fresh weight and dry weight were increased with the addition of COFA. Likewise, COFA increased the contents of chlorophyll pigments (Chla, Chlb, carotenoids), proteins, and carbohydrates in both species compared to the control. Finally, these findings showed that a COFA treatment at 4 mg L-1 after ball milled-sonication in water (BMW4) constituted the best dose for growth and physiology. Our findings reveal that the novel strategy of COFA engineering led to a boost in the growth of Phaseolus vulgaris and Cicer arietinum. Our results have high potential for agricultural research and provide an impact on food security.
Collapse
Affiliation(s)
- Saleh M. Alluqmani
- grid.412832.e0000 0000 9137 6644Department of Physics, Faculty of Applied Science, Umm Al-Qura University, Makkah, 21955 Saudi Arabia
| | - Nadiyah M. Alabdallah
- grid.411975.f0000 0004 0607 035XDepartment of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
| |
Collapse
|
9
|
Zhang Z, Jatana BS, Campbell BJ, Gill J, Suseela V, Tharayil N. Cross-inoculation of rhizobiome from a congeneric ruderal plant imparts drought tolerance in maize (Zea mays) through changes in root morphology and proteome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:54-71. [PMID: 35426964 PMCID: PMC9542220 DOI: 10.1111/tpj.15775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Rhizobiome confer stress tolerance to ruderal plants, yet their ability to alleviate stress in crops is widely debated, and the associated mechanisms are poorly understood. We monitored the drought tolerance of maize (Zea mays) as influenced by the cross-inoculation of rhizobiota from a congeneric ruderal grass Andropogon virginicus (andropogon-inoculum), and rhizobiota from organic farm maintained under mesic condition (organic-inoculum). Across drought treatments (40% field capacity), maize that received andropogon-inoculum produced two-fold greater biomass. This drought tolerance translated to a similar leaf metabolomic composition as that of the well-watered control (80% field capacity) and reduced oxidative damage, despite a lower activity of antioxidant enzymes. At a morphological-level, drought tolerance was associated with an increase in specific root length and surface area facilitated by the homeostasis of phytohormones promoting root branching. At a proteome-level, the drought tolerance was associated with upregulation of proteins related to glutathione metabolism and endoplasmic reticulum-associated degradation process. Fungal taxa belonging to Ascomycota, Mortierellomycota, Archaeorhizomycetes, Dothideomycetes, and Agaricomycetes in andropogon-inoculum were identified as potential indicators of drought tolerance. Our study provides a mechanistic understanding of the rhizobiome-facilitated drought tolerance and demonstrates a better path to utilize plant-rhizobiome associations to enhance drought tolerance in crops.
Collapse
Affiliation(s)
- Ziliang Zhang
- Department of Plant & Environmental SciencesClemson UniversityClemsonSCUSA
| | | | | | - Jasmine Gill
- Department of Plant & Environmental SciencesClemson UniversityClemsonSCUSA
| | - Vidya Suseela
- Department of Plant & Environmental SciencesClemson UniversityClemsonSCUSA
| | - Nishanth Tharayil
- Department of Plant & Environmental SciencesClemson UniversityClemsonSCUSA
| |
Collapse
|
10
|
Bahmani M, O’Lone CE, Juhász A, Nye-Wood M, Dunn H, Edwards IB, Colgrave ML. Application of Mass Spectrometry-Based Proteomics to Barley Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8591-8609. [PMID: 34319719 PMCID: PMC8389776 DOI: 10.1021/acs.jafc.1c01871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Barley (Hordeum vulgare) is the fourth most cultivated crop in the world in terms of production volume, and it is also the most important raw material of the malting and brewing industries. Barley belongs to the grass (Poaceae) family and plays an important role in food security and food safety for both humans and livestock. With the global population set to reach 9.7 billion by 2050, but with less available and/or suitable land for agriculture, the use of biotechnology tools in breeding programs are of considerable importance in the quest to meet the growing food gap. Proteomics as a member of the "omics" technologies has become popular for the investigation of proteins in cereal crops and particularly barley and its related products such as malt and beer. This technology has been applied to study how proteins in barley respond to adverse environmental conditions including abiotic and/or biotic stresses, how they are impacted during food processing including malting and brewing, and the presence of proteins implicated in celiac disease. Moreover, proteomics can be used in the future to inform breeding programs that aim to enhance the nutritional value and broaden the application of this crop in new food and beverage products. Mass spectrometry analysis is a valuable tool that, along with genomics and transcriptomics, can inform plant breeding strategies that aim to produce superior barley varieties. In this review, recent studies employing both qualitative and quantitative mass spectrometry approaches are explored with a focus on their application in cultivation, manufacturing, processing, quality, and the safety of barley and its related products.
Collapse
Affiliation(s)
- Mahya Bahmani
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Clare E. O’Lone
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Angéla Juhász
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Mitchell Nye-Wood
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Hugh Dunn
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Ian B. Edwards
- Edstar
Genetics Pty Ltd, SABC - Loneragan Building, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| | - Michelle L. Colgrave
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
- CSIRO
Agriculture and Food, 306 Carmody Road, St. Lucia, Queensland 4067, Australia
- Phone: +61-7-3214-2697. . Fax: +61-7-3214-2900
| |
Collapse
|
11
|
Mohd Amnan MA, Pua TL, Lau SE, Tan BC, Yamaguchi H, Hitachi K, Tsuchida K, Komatsu S. Osmotic stress in banana is relieved by exogenous nitric oxide. PeerJ 2021; 9:e10879. [PMID: 33614294 PMCID: PMC7879939 DOI: 10.7717/peerj.10879] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
Drought is one of the severe environmental stresses threatening agriculture around the globe. Nitric oxide plays diverse roles in plant growth and defensive responses. Despite a few studies supporting the role of nitric oxide in plants under drought responses, little is known about its pivotal molecular amendment in the regulation of stress signaling. In this study, a label-free nano-liquid chromatography-mass spectrometry approach was used to determine the effects of sodium nitroprusside (SNP) on polyethylene glycol (PEG)-induced osmotic stress in banana roots. Plant treatment with SNP improved plant growth and reduced the percentage of yellow leaves. A total of 30 and 90 proteins were differentially identified in PEG+SNP against PEG and PEG+SNP against the control, respectively. The majority of proteins differing between them were related to carbohydrate and energy metabolisms. Antioxidant enzyme activities, such as superoxide dismutase and ascorbate peroxidase, decreased in SNP-treated banana roots compared to PEG-treated banana. These results suggest that the nitric oxide-induced osmotic stress tolerance could be associated with improved carbohydrate and energy metabolism capability in higher plants.
Collapse
Affiliation(s)
| | - Teen-Lee Pua
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
| | - Su-Ee Lau
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
| | - Hisateru Yamaguchi
- Department of Medical Technology, Yokkaichi Nursing and Medical Care University, Yokkaichi, Japan
| | - Keisuke Hitachi
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Kunihiro Tsuchida
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Setsuko Komatsu
- Faculty of Life and Environmental and Information Sciences, Fukui University of Technology, Fukui, Japan
| |
Collapse
|
12
|
Moazzami Farida SH, Karamian R, Albrectsen BR. Silver nanoparticle pollutants activate oxidative stress responses and rosmarinic acid accumulation in sage. PHYSIOLOGIA PLANTARUM 2020; 170:415-432. [PMID: 32705693 DOI: 10.1111/ppl.13172] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/06/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
In this study, physiological and molecular responses of sage (Salvia officinalis) to silver nanoparticles (SNPs) were studied. It is supposed that sage oxidative responses can be activated to overcome the negative effects of SNPs. Results showed the penetration of SNPs via leaf epidermis into the parenchyma cells after foliar application. A significant decrease of photosynthetic pigments and increase of cell injury indicators, the activity of enzymatic antioxidants and also the content of non-enzymatic antioxidants were observed after exposure of sage plants to 50 and 1000 mg l-1 SNPs compared to control plants. Phenolic compounds generally increased, but not in linear response to the dose level. The most abundant phenolic acid, rosmarinic acid (RA), increased more than eightfold at 100 mg l-1 SNPs. Furthermore, the content of RA, salvianolic acid A and B was positively correlated with the activity of phenylalanine ammonia-lyase and RA synthase, but not with tyrosine aminotransferase. It could be concluded that the content of phenolic compounds increased in response to lower SNPs concentrations (50 and 100 mg l-1 ). However, the oxidative stress responses continued above these concentrations.
Collapse
Affiliation(s)
| | - Roya Karamian
- Department of Biology, Faculty of Science, Bu-Ali Sina University, 65175/4161, Hamedan, Iran
| | - Benedicte R Albrectsen
- Department of Plant Physiology, Umeå University (Umeå Plant Science Centre), 90187, Umeå, Sweden
| |
Collapse
|
13
|
Proteomic analyses unraveling water stress response in two Eucalyptus species originating from contrasting environments for aridity. Mol Biol Rep 2020; 47:5191-5205. [PMID: 32564226 DOI: 10.1007/s11033-020-05594-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022]
Abstract
Eucalyptus are widely cultivated in several regions of the world due to their adaptability to different climatic conditions and amenable to tree breeding programs. With changes in environmental conditions pointing to an increase in aridity in many areas of the globe, the demand for genetic materials that adapt to this situation is required. Therefore, the aim of this work was to identify contrasting differences between two Eucalyptus species under water stress through the identification of differentially abundant proteins. For this, total protein extraction was proceeded from leaves of both species maintained at 40 and 80% of field capacity (FC). The 80% FC water regime was considered as the control and the 40% FC, severe water stress. The proteins were separated by 2-DE with subsequent identification of those differentially abundant by liquid nanocromatography coupled to high resolution MS (Q-Exactive). Comparative proteomics allowed to identify four proteins (ATP synthase gamma and alpha, glutamine synthetase and a vacuolar protein) that were more abundant in drought-tolerant species and simultaneously less abundant or unchanged in the drought- sensitive species, an uncharacterized protein found exclusively in plants under drought stress and also 10 proteins (plastid-lipid, ruBisCO activase, ruBisCO, protease ClpA, transketolase, isoflavone reductase, ferredoxin-NADP reductase, malate dehydrogenase, aminobutyrate transaminase and sedoheptulose-1-bisphosphatase) induced exclusively in the drought-tolerant species in response to water stress. These results suggest that such proteins may play a crucial role as potential markers of water stress tolerance through the identification of species-specific proteins, and future targets for genetic engineering.
Collapse
|
14
|
Vanani FR, Shabani L, Sabzalian MR, Dehghanian F, Winner L. Comparative physiological and proteomic analysis indicates lower shock response to drought stress conditions in a self-pollinating perennial ryegrass. PLoS One 2020; 15:e0234317. [PMID: 32555744 PMCID: PMC7302502 DOI: 10.1371/journal.pone.0234317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 05/22/2020] [Indexed: 12/05/2022] Open
Abstract
We investigated the physiological and proteomic changes in the leaves of three Lolium perenne genotypes, one Iranian putative self-pollinating genotype named S10 and two commercial genotypes of Vigor and Speedy, subjected to drought stress conditions. The results of this study indeed showed higher RWC (relative water content), SDW (shoot dry weight), proline, ABA (abscisic acid), nitrogen and amino acid contents, and antioxidant enzymes activities of S10 under drought stress in comparison with the two other genotypes. A total of 915 proteins were identified using liquid chromatography-mass spectrometry (LC/MS) analysis, and the number of differentially abundant proteins between normal and stress conditions was 467, 456, and 99 in Vigor, Speedy, and S10, respectively. Proteins involved in carbon and energy metabolism, photosynthesis, TCA cycle, redox, and transport categories were up-regulated in the two commercial genotypes. We also found that some protein inductions, including those involved in amino acid and ABA metabolisms, aquaporin, HSPs, photorespiration, and increases in the abundance of antioxidant enzymes, are essential responses of the two commercial genotypes to drought stress. In contrast, we observed only slight changes in the protein profile of the S10 genotype under drought stress. Higher homozygosity due to self-pollination in the genetic background of the S10 genotype may have led to a lower variation in response to drought stress conditions.
Collapse
Affiliation(s)
- Fatemeh Raeisi Vanani
- Department of Plant Science, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Leila Shabani
- Department of Plant Science, Faculty of Science, Shahrekord University, Shahrekord, Iran
- Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Mohammad R. Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Fariba Dehghanian
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Lisa Winner
- Core Facility Proteomics, Center for Biological Systems Analysis (ZBSA), University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Mohl JE, Fetcher N, Stunz E, Tang J, Moody ML. Comparative transcriptomics of an arctic foundation species, tussock cottongrass (Eriophorum vaginatum), during an extreme heat event. Sci Rep 2020; 10:8990. [PMID: 32488082 PMCID: PMC7265556 DOI: 10.1038/s41598-020-65693-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 05/05/2020] [Indexed: 11/25/2022] Open
Abstract
Tussock cottongrass (Eriophorum vaginatum) is a foundation species for much of the arctic moist acidic tundra, which is currently experiencing extreme effects of climate change. The Arctic is facing higher summer temperatures and extreme weather events are becoming more common. We used Illumina RNA-Seq to analyse cDNA libraries for differential expression of genes from leaves of ecologically well-characterized ecotypes of tussock cottongrass found along a latitudinal gradient in the Alaskan Arctic and transplanted into a common garden. Plant sampling was performed on a typical summer day and during an extreme heat event. We obtained a de novo assembly that contained 423,353 unigenes. There were 363 unigenes up-regulated and 1,117 down-regulated among all ecotypes examined during the extreme heat event. Of these, 26 HSP unigenes had >log2-fold up-regulation. Several TFs associated with heat stress in previous studies were identified that had >log2-fold up- or down-regulation during the extreme heat event (e.g., DREB, NAC). There was consistent variation in DEGs among ecotypes, but not specifically related to whether plants originated from taiga or tundra ecosystems. As the climate changes it is essential to determine ecotypic diversity at the genomic level, especially for widespread species that impact ecosystem function.
Collapse
Affiliation(s)
- Jonathon E Mohl
- Bioinformatics Program, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Ned Fetcher
- Institute for Environmental Science and Sustainability, Wilkes University, Wilkes-Barre, PA, 18766, USA
| | - Elizabeth Stunz
- Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Jianwu Tang
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Michael L Moody
- Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
16
|
Rahmani N, Radjabian T, Soltani BM. Impacts of foliar exposure to multi-walled carbon nanotubes on physiological and molecular traits of Salvia verticillata L., as a medicinal plant. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 150:27-38. [PMID: 32109787 DOI: 10.1016/j.plaphy.2020.02.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Owing to the growing applications of the multi-walled carbon nanotubes (MWCNTs) in the communications and energy industries, they have attracted increasing attention for their effects on the environment and plants. Therefore, we investigated the impact of foliar exposure to MWCNTs on the oxidative stress responses in the Salvia verticillata as a medicinal plant. Furthermore, we evaluated the possible correlations between gene expression and activity of the key enzymes in the phenolic acids biosynthesis pathways and their accumulation in the treated leaves. The leaves of two-month-old plants were sprayed with different concentrations (0-1000 mg L-1) of MWCNTs. Raman's data and Transmission Electron Microscopy images have confirmed the absorption of MWCNTs via epidermal cells layer into the parenchymal cells of the exposed leaves. The results showed that exposure to MWCNTs led to a decrease in the photosynthetic pigments and increases in the oxidative stress indices (enzymatic and non-enzymatic antioxidants) in the leaves with a dose-dependent manner. The content of rosmarinic acid as a main phenolic acid was increased in the MWCNTs-exposed leaves to 50 and 1000 mg L-1, nearly four times relative to the control. Unlike with other examined enzymes, a positive correlation was deduced between the activity and gene expression patterns of the rosmarinic acid synthase with the rosmarinic acid accumulation in the treatments. Overall, MWCNTs at the low concentrations could promote the production of the pharmaceutical metabolites by the changes in the ROS generation. However, at the higher concentrations, MWCNTs were toxic and induced the oxidative damages in S. verticillata.
Collapse
Affiliation(s)
- Nosrat Rahmani
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Tayebeh Radjabian
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran.
| | - Bahram Mohammad Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
17
|
Rodziewicz P, Chmielewska K, Sawikowska A, Marczak Ł, Łuczak M, Bednarek P, Mikołajczak K, Ogrodowicz P, Kuczyńska A, Krajewski P, Stobiecki M. Identification of drought responsive proteins and related proteomic QTLs in barley. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2823-2837. [PMID: 30816960 PMCID: PMC6506773 DOI: 10.1093/jxb/erz075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/11/2019] [Indexed: 05/08/2023]
Abstract
Drought is a major abiotic stress that negatively influences crop yield. Breeding strategies for improved drought resistance require an improved knowledge of plant drought responses. We therefore applied drought to barley recombinant inbred lines and their parental genotypes shortly before tillering. A large-scale proteomic analysis of leaf and root tissue revealed proteins that respond to drought in a genotype-specific manner. Of these, Rubisco activase in chloroplast, luminal binding protein in endoplasmic reticulum, phosphoglycerate mutase, glutathione S-transferase, heat shock proteins and enzymes involved in phenylpropanoid biosynthesis showed strong genotype×environment interactions. These data were subjected to genetic linkage analysis and the identification of proteomic QTLs that have potential value in marker-assisted breeding programs.
Collapse
Affiliation(s)
- Paweł Rodziewicz
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61–704 Poznań, Poland
| | - Klaudia Chmielewska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61–704 Poznań, Poland
| | - Aneta Sawikowska
- Institute of Plant Genetics Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, Poznań, Poland
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61–704 Poznań, Poland
| | - Magdalena Łuczak
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61–704 Poznań, Poland
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61–704 Poznań, Poland
| | - Krzysztof Mikołajczak
- Institute of Plant Genetics Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Piotr Ogrodowicz
- Institute of Plant Genetics Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Anetta Kuczyńska
- Institute of Plant Genetics Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
- Correspondence: or
| | - Maciej Stobiecki
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61–704 Poznań, Poland
- Correspondence: or
| |
Collapse
|
18
|
Luan H, Shen H, Pan Y, Guo B, Lv C, Xu R. Elucidating the hypoxic stress response in barley (Hordeum vulgare L.) during waterlogging: A proteomics approach. Sci Rep 2018; 8:9655. [PMID: 29941955 PMCID: PMC6018542 DOI: 10.1038/s41598-018-27726-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 06/08/2018] [Indexed: 12/25/2022] Open
Abstract
Waterlogging is one of the major abiotic stresses that affects barley production and yield quality. Proteomics techniques have been widely utilized to explore the mechanisms involved in the responses to abiotic stress. In this study, two barley genotypes with contrasting responses to waterlogging stress were analyzed with proteomic technology. The waterlogging treatment caused a greater reduction in biomass and photosynthetic performance in the waterlogging-sensitive genotype TF57 than that in the waterlogging-tolerant genotype TF58. Under waterlogging stress, 30, 30, 20 and 20 differentially expressed proteins were identified through tandem mass spectrometry analysis in the leaves, adventitious roots, nodal roots and seminal roots, respectively. Among these proteins, photosynthesis-, metabolism- and energy-related proteins were differentially expressed in the leaves, with oxygen-evolving enhancer protein 1, ATP synthase subunit and heat shock protein 70 being up-regulated in TF58. Pyruvate decarboxylase (PDC), 1-amino cyclopropane 1-carboxylic acid oxidase (ACO), glutamine synthetase (GS), glutathione S-transferases (GST) and beta-1, 3-glucanase in adventitious, nodal and seminal roots were more abundant in TF58 than those in TF57 under waterlogging stress. Ten representative genes were selected for validation by qRT-PCR in different genotypes with known waterlogging tolerance, and the expression levels of three candidate genes (PDC, ACO and GST) increased in the roots of all genotypes in response to the waterlogging stress. These three genes might play a significant role in the adaptation process of barley under waterlogging stress. The current results partially determined the mechanisms of waterlogging tolerance and provided valuable information for the breeding of barley with enhanced tolerance to waterlogging.
Collapse
Affiliation(s)
- Haiye Luan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou University, Yangzhou, 225009, China
- Institute of Agricultural Science in Jiangsu Coastal Areas, Yancheng, 224002, China
| | - Huiquan Shen
- Institute of Agricultural Science in Jiangsu Coastal Areas, Yancheng, 224002, China
| | - Yuhan Pan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou University, Yangzhou, 225009, China
| | - Baojian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou University, Yangzhou, 225009, China
| | - Chao Lv
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou University, Yangzhou, 225009, China
| | - Rugen Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
19
|
Rurek M, Czołpińska M, Pawłowski TA, Staszak AM, Nowak W, Krzesiński W, Spiżewski T. Mitochondrial Biogenesis in Diverse Cauliflower Cultivars under Mild and Severe Drought. Impaired Coordination of Selected Transcript and Proteomic Responses, and Regulation of Various Multifunctional Proteins. Int J Mol Sci 2018; 19:ijms19041130. [PMID: 29642585 PMCID: PMC5979313 DOI: 10.3390/ijms19041130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/09/2018] [Accepted: 04/04/2018] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial responses under drought within Brassica genus are poorly understood. The main goal of this study was to investigate mitochondrial biogenesis of three cauliflower (Brassica oleracea var. botrytis) cultivars with varying drought tolerance. Diverse quantitative changes (decreases in abundance mostly) in the mitochondrial proteome were assessed by two-dimensional gel electrophoresis (2D PAGE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Respiratory (e.g., complex II, IV (CII, CIV) and ATP synthase subunits), transporter (including diverse porin isoforms) and matrix multifunctional proteins (e.g., components of RNA editing machinery) were diversely affected in their abundance under two drought levels. Western immunoassays showed additional cultivar-specific responses of selected mitochondrial proteins. Dehydrin-related tryptic peptides (found in several 2D spots) immunopositive with dehydrin-specific antisera highlighted the relevance of mitochondrial dehydrin-like proteins for the drought response. The abundance of selected mRNAs participating in drought response was also determined. We conclude that mitochondrial biogenesis was strongly, but diversely affected in various cauliflower cultivars, and associated with drought tolerance at the proteomic and functional levels. However, discussed alternative oxidase (AOX) regulation at the RNA and protein level were largely uncoordinated due to the altered availability of transcripts for translation, mRNA/ribosome interactions, and/or miRNA impact on transcript abundance and translation.
Collapse
Affiliation(s)
- Michał Rurek
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | - Magdalena Czołpińska
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | | | - Aleksandra Maria Staszak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland.
- Present address: Department of Plant Physiology, Institute of Biology, Faculty of Biology and Chemistry, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Witold Nowak
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | - Włodzimierz Krzesiński
- Department of Vegetable Crops, Poznan University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland.
| | - Tomasz Spiżewski
- Department of Vegetable Crops, Poznan University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland.
| |
Collapse
|
20
|
Michaletti A, Naghavi MR, Toorchi M, Zolla L, Rinalducci S. Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat. Sci Rep 2018; 8:5710. [PMID: 29632386 PMCID: PMC5890255 DOI: 10.1038/s41598-018-24012-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/20/2018] [Indexed: 12/21/2022] Open
Abstract
To reveal the integrative biochemical networks of wheat leaves in response to water deficient conditions, proteomics and metabolomics were applied to two spring-wheat cultivars (Bahar, drought-susceptible; Kavir, drought-tolerant). Drought stress induced detrimental effects on Bahar leaf proteome, resulting in a severe decrease of total protein content, with impairments mainly in photosynthetic proteins and in enzymes involved in sugar and nitrogen metabolism, as well as in the capacity of detoxifying harmful molecules. On the contrary, only minor perturbations were observed at the protein level in Kavir stressed leaves. Metabolome analysis indicated amino acids, organic acids, and sugars as the main metabolites changed in abundance upon water deficiency. In particular, Bahar cv showed increased levels in proline, methionine, arginine, lysine, aromatic and branched chain amino acids. Tryptophan accumulation via shikimate pathway seems to sustain auxin production (indoleacrylic acid), whereas glutamate reduction is reasonably linked to polyamine (spermine) synthesis. Kavir metabolome was affected by drought stress to a less extent with only two pathways significantly changed, one of them being purine metabolism. These results comprehensively provide a framework for better understanding the mechanisms that govern plant cell response to drought stress, with insights into molecules that can be used for crop improvement projects.
Collapse
Affiliation(s)
- Anna Michaletti
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | | | - Mahmoud Toorchi
- Department of Biotechnology and Plant Breeding, University of Tabriz, Tabriz, Iran
| | - Lello Zolla
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE), University of Tuscia, Viterbo, Italy.
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy.
| |
Collapse
|
21
|
Kosová K, Vítámvás P, Urban MO, Prášil IT, Renaut J. Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome. FRONTIERS IN PLANT SCIENCE 2018; 9:122. [PMID: 29472941 PMCID: PMC5810178 DOI: 10.3389/fpls.2018.00122] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/23/2018] [Indexed: 05/19/2023]
Abstract
HIGHLIGHTS: Major environmental and genetic factors determining stress-related protein abundance are discussed.Major aspects of protein biological function including protein isoforms and PTMs, cellular localization and protein interactions are discussed.Functional diversity of protein isoforms and PTMs is discussed. Abiotic stresses reveal profound impacts on plant proteomes including alterations in protein relative abundance, cellular localization, post-transcriptional and post-translational modifications (PTMs), protein interactions with other protein partners, and, finally, protein biological functions. The main aim of the present review is to discuss the major factors determining stress-related protein accumulation and their final biological functions. A dynamics of stress response including stress acclimation to altered ambient conditions and recovery after the stress treatment is discussed. The results of proteomic studies aimed at a comparison of stress response in plant genotypes differing in stress adaptability reveal constitutively enhanced levels of several stress-related proteins (protective proteins, chaperones, ROS scavenging- and detoxification-related enzymes) in the tolerant genotypes with respect to the susceptible ones. Tolerant genotypes can efficiently adjust energy metabolism to enhanced needs during stress acclimation. Stress tolerance vs. stress susceptibility are relative terms which can reflect different stress-coping strategies depending on the given stress treatment. The role of differential protein isoforms and PTMs with respect to their biological functions in different physiological constraints (cellular compartments and interacting partners) is discussed. The importance of protein functional studies following high-throughput proteome analyses is presented in a broader context of plant biology. In summary, the manuscript tries to provide an overview of the major factors which have to be considered when interpreting data from proteomic studies on stress-treated plants.
Collapse
Affiliation(s)
- Klára Kosová
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Pavel Vítámvás
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Milan O. Urban
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Ilja T. Prášil
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
| | - Jenny Renaut
- Environmental Research and Technology Platform, Environmental Research and Innovation, Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg
| |
Collapse
|
22
|
Khodadadi E, Fakheri BA, Aharizad S, Emamjomeh A, Norouzi M, Komatsu S. Leaf proteomics of drought-sensitive and -tolerant genotypes of fennel. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1433-1444. [PMID: 28887228 DOI: 10.1016/j.bbapap.2017.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/29/2017] [Accepted: 08/10/2017] [Indexed: 12/29/2022]
Abstract
Fennel is attracted attention as a useful resource as researching medicinal plant for drought tolerance. To elucidate the response mechanism in drought-sensitive and -tolerant genotypes of fennel leaf, a gel-free/label-free proteomic technique was used. Fifty-day-old plants were subjected to drought stress for 60days. The relative water and proline contents were decreased and increased in sensitive genotypes, respectively; however, they were not a big change in tolerant genotypes. Photosynthesis was decreased in the sensitive genotypes under drought; however, it was increased in the tolerant genotype. In both drought-sensitive and -tolerant genotypes, proteins related to protein metabolism and cell organization were predominately affected under drought stress. The abundance of phosphoribulokinase and phosphoglycerate kinase enzymes were decreased and increased in drought-sensitive and -tolerant genotypes, respectively; however, the abundance of RuBisCO and glyceraldehyde-3-phosphate dehydrogenase enzymes were increased and decreased in drought-sensitive and -tolerant genotypes, respectively. Under drought stress, the abundance of glycolysis-related proteins was decreased in sensitive genotypes; however, they were increased in tolerance genotypes. Commonly changed proteins with polyethylene glycol fractionation such as cobalamin-independent methionine synthase were decreased and increased in drought-sensitive and -tolerant genotypes, respectively. These results suggest that cobalamin-independent methionine synthetase is involved in the tolerance of drought-tolerant fennel leaf under drought stress.
Collapse
Affiliation(s)
- Ehsaneh Khodadadi
- Department of Plant Breeding and Biotechnology, University of Zabol, Zabol 98613-35856, Iran; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Barat Ali Fakheri
- Department of Plant Breeding and Biotechnology, University of Zabol, Zabol 98613-35856, Iran
| | - Saeed Aharizad
- Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz 51666-16471, Iran
| | - Abbasali Emamjomeh
- Department of Plant Breeding and Biotechnology, University of Zabol, Zabol 98613-35856, Iran
| | - Majid Norouzi
- Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz 51666-16471, Iran
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan; University of Tsukuba, Tsukuba 305-8572, Japan.
| |
Collapse
|
23
|
Hatami M. Toxicity assessment of multi-walled carbon nanotubes on Cucurbita pepo L. under well-watered and water-stressed conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:274-283. [PMID: 28433592 DOI: 10.1016/j.ecoenv.2017.04.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 05/13/2023]
Abstract
The rapid increase in the production and application of various types of nanomaterials increases the possibility of their presence in total environment, which subsequently raises concerns about their potential threats to the first trophic level of organisms, specifically under varying environmental constraints. In this work, seeds of Cucurbita pepo L. were cultured in MS basal medium exposed to multi-walled carbon nanotubes (MWCNTs) at different concentrations (0, 125, 250, 500 and 1000μgmL-1) under two levels of water potential, well-watered (0MPa) and water stress (-1.5MPa) induced by polyethylene glycol (PEG 6000) for 14 days. Seeds exposed to MWCNTs showed reduction in germination percentage, root and shoot length, biomass accumulation and vigor index in a dose-dependent manner. However, seedlings germinated in MWCNTs-fortified media had significantly lower germination and growth attributes than those of control under water stress conditions. This happened due to increased oxidative injury indices including hydrogen peroxide (H2O2), and malondialdehyde (MDA) contents, as well as electrolyte leakage index (ELI) of tissues. The impaired morpho-physiological and biochemical processes of seedlings exposed to different concentrations of MWCNTs under both PEG-induced stress and non-stress growing conditions were consequence of changes in the activation of various cellular antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (POD). Taken together, our findings reveal that MWCNTs played negative role on seed germination and subsequent growth of C. pepo L. seedlings under both levels of water potential.
Collapse
Affiliation(s)
- Mehrnaz Hatami
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran.
| |
Collapse
|
24
|
Gołębiowska-Pikania G, Kopeć P, Surówka E, Janowiak F, Krzewska M, Dubas E, Nowicka A, Kasprzyk J, Ostrowska A, Malaga S, Hura T, Żur I. Changes in protein abundance and activity induced by drought during generative development of winter barley (Hordeum vulgare L.). J Proteomics 2017; 169:73-86. [PMID: 28751243 DOI: 10.1016/j.jprot.2017.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/20/2017] [Accepted: 07/22/2017] [Indexed: 11/18/2022]
Abstract
The present study investigated drought-induced changes in proteome profiles of ten DH lines of winter barley, relatively varied in water deficit tolerance level. Additionally, the parameters describing the functioning of the photosynthetic apparatus and the activity of the antioxidative system were analysed. Water deficit (3-week growth in soil with water content reduced to ca. 35%) induced significant changes in leaf water relations and reduced photosynthetic activity, probably due to decreased stomatal conductance. It was associated with changes in protein abundance and altered activity of antioxidative enzymes. From 47 MS-identified proteins discriminating more tolerant from drought-sensitive genotypes, only two revealed distinctly higher while seven revealed lower abundance in drought-treated plants of tolerant DH lines in comparison to sensitive ones. The majority were involved in the dark phase of photosynthesis. Another factor of great importance seems to be the ability to sustain, during drought stress, relatively high activity of enzymes (SOD and CAT) decomposing reactive oxygen species and protecting plant cell from oxidative damages. Low molecular weight antioxidants seem to play less important roles. Our findings also suggest that high tolerance to drought stress in barley is a constitutively controlled trait regulated by the rate of protein synthesis and their activity level. BIOLOGICAL SIGNIFICANCE According to our knowledge, this is the first comparative proteomic analysis of drought tolerance performed for the model set of several winter barley doubled haploid (DH) lines. We analysed both the drought impact on the protein pattern of individual winter barley DH lines as well as comparisons between them according to their level of drought tolerance. We have identified 47 proteins discriminating drought-tolerant from drought-sensitive genotypes. The majority was involved in the dark phase of photosynthesis. Another factor of great importance in our opinion seems to be the ability to sustain, during drought stress, relatively high activity of antioxidative enzymes (SOD and CAT) decomposing reactive oxygen species and protecting plant cell from oxidative damages. Our findings also suggest that high tolerance to drought stress in barley is a constitutively-controlled trait regulated by the rate of protein synthesis and their activity level.
Collapse
Affiliation(s)
- Gabriela Gołębiowska-Pikania
- Dept. of Cell Biology and Genetics, Institute of Biology, Pedagogical University, Podchorążych 2, 31-054 Krakow, Poland.
| | - Przemysław Kopeć
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Ewa Surówka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Franciszek Janowiak
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Monika Krzewska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Ewa Dubas
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Anna Nowicka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Joanna Kasprzyk
- Laboratory of High Resolution Mass Spectrometry, Faculty of Chemistry, Jagiellonian University, R. Ingardena 3, 30-060 Krakow, Poland
| | - Agnieszka Ostrowska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Sabina Malaga
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Tomasz Hura
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Iwona Żur
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland.
| |
Collapse
|
25
|
Tan BC, Lim YS, Lau SE. Proteomics in commercial crops: An overview. J Proteomics 2017; 169:176-188. [PMID: 28546092 DOI: 10.1016/j.jprot.2017.05.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/21/2017] [Accepted: 05/19/2017] [Indexed: 02/06/2023]
Abstract
Proteomics is a rapidly growing area of biological research that is positively affecting plant science. Recent advances in proteomic technology, such as mass spectrometry, can now identify a broad range of proteins and monitor their modulation during plant growth and development, as well as during responses to abiotic and biotic stresses. In this review, we highlight recent proteomic studies of commercial crops and discuss the advances in understanding of the proteomes of these crops. We anticipate that proteomic-based research will continue to expand and contribute to crop improvement. SIGNIFICANCE Plant proteomics study is a rapidly growing area of biological research that is positively impacting plant science. With the recent advances in new technologies, proteomics not only allows us to comprehensively analyses crop proteins, but also help us to understand the functions of the genes. In this review, we highlighted recent proteomic studies in commercial crops and updated the advances in our understanding of the proteomes of these crops. We believe that proteomic-based research will continue to grow and contribute to the improvement of crops.
Collapse
Affiliation(s)
- Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia.
| | - Yin Sze Lim
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Su-Ee Lau
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Sharma M, Gupta SK, Majumder B, Maurya VK, Deeba F, Alam A, Pandey V. Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress. J Proteomics 2017; 163:28-51. [PMID: 28511789 DOI: 10.1016/j.jprot.2017.05.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/13/2017] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
Abstract
Salicylic acid (SA) induced drought tolerance can be a key trait for increasing and stabilizing wheat production. These SA induced traits were studied in two Triticum aestivum L. varieties; drought tolerant, Kundan and drought sensitive, Lok1 under two different water deficit regimes: and rehydration at vegetative and flowering stages. SA alleviated the negative effects of water stress on photosynthesis more in Kundan. SA induced defense responses against drought by increasing antioxidative enzymes and osmolytes (proline and total soluble sugars). Differential proteomics revealed major role of carbon metabolism and signal transduction in enhancing drought tolerance in Kundan which was shifted towards defense, energy production and protection in Lok1. Thioredoxins played important role between SA and redox signaling in activating defense responses. SA showed substantial impact on physiology and carbon assimilation in tolerant variety for better growth under drought. Lok1 exhibited SA induced drought tolerance through enhanced defense system and energy metabolism. Plants after rehydration showed complete recovery of physiological functions under SA treatment. SA mediated constitutive defense against water stress did not compromise yield. These results suggest that exogenously applied SA under drought stress confer growth promoting and stress priming effects on wheat plants thus alleviating yield limitation. BIOLOGICAL SIGNIFICANCE Studies have shown morphological, physiological and biochemical aspects associated with the SA mediated drought tolerance in wheat while understanding of molecular mechanism is limited. Herein, proteomics approach has identified significantly changed proteins and their potential relevance to SA mediated drought stress responses in drought tolerant and sensitive wheat varieties. SA regulates wide range of processes such as photosynthesis, carbon assimilation, protein metabolism, amino acid and energy metabolism, redox homeostasis and signal transduction under drought. Proteome response to SA during vegetative and reproductive growth gave an insight on mechanism related water stress acclimation for growth and development to attain potential yield under drought. The knowledge gained can be potentially applied to provide fundamental basis for new strategies aiming towards improved crop drought tolerance and productivity.
Collapse
Affiliation(s)
- Marisha Sharma
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Department of Bioscience and Biotechnology, Banasthali University, P.O. Banasthali Vidyapith, 304022, Rajasthan, India
| | - Sunil K Gupta
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Baisakhi Majumder
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Vivek K Maurya
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Farah Deeba
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Afroz Alam
- Department of Bioscience and Biotechnology, Banasthali University, P.O. Banasthali Vidyapith, 304022, Rajasthan, India
| | - Vivek Pandey
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow 226001, India.
| |
Collapse
|
27
|
Hatami M, Hadian J, Ghorbanpour M. Mechanisms underlying toxicity and stimulatory role of single-walled carbon nanotubes in Hyoscyamus niger during drought stress simulated by polyethylene glycol. JOURNAL OF HAZARDOUS MATERIALS 2017; 324:306-320. [PMID: 27810325 DOI: 10.1016/j.jhazmat.2016.10.064] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/18/2016] [Accepted: 10/24/2016] [Indexed: 05/12/2023]
Abstract
In this study, seeds of Hyoscyamus niger were exposed to different concentrations (50-800μgmL-1) of single-walled carbon nanotubes (SWCNTs) under different levels of drought stress (0.5-1.5MPa) for 14days. Germinated seeds were subsequently allowed to grow in the same culture media for 7 more days to test the further response of the seedlings in terms of biochemical changes to the employed treatments. Seeds subjected to drought showed reduction in germination percentage, vigor and lengths of roots and shoots. However, inclusion of SWCNTs at the two lowest concentrations significantly alleviated the drought stress (up to moderate levels only)-induced reduction in germination and growth attributes. This happened due to increased water uptake, up-regulation of mechanisms involved in starch hydrolysis, and reduction in oxidative injury indices including H2O2, malondialdehyde contents and electrolyte leakage. The improved plant performance under PEG-induced drought stress was a consequence of changes in the expression of various antioxidant enzymes including SOD, POD, CAT, and APX, and also biosynthesis of proteins, phenolics, and specific metabolites such as proline. Results demonstrate that treatment by low concentrations of SWCNTs can induce tolerance in seedlings against low to moderate levels of drought through enhancing water uptake and activating plant defense system.
Collapse
Affiliation(s)
- Mehrnaz Hatami
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, 38156-8-8349, Arak, Iran.
| | - Javad Hadian
- Medicinal Plants and Drug Research Institute, Shahid Beheshti University, G.C., Evin, 1483963113 Tehran, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, 38156-8-8349, Arak, Iran.
| |
Collapse
|
28
|
Cantalapiedra CP, García-Pereira MJ, Gracia MP, Igartua E, Casas AM, Contreras-Moreira B. Large Differences in Gene Expression Responses to Drought and Heat Stress between Elite Barley Cultivar Scarlett and a Spanish Landrace. FRONTIERS IN PLANT SCIENCE 2017; 8:647. [PMID: 28507554 PMCID: PMC5410667 DOI: 10.3389/fpls.2017.00647] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 04/10/2017] [Indexed: 05/05/2023]
Abstract
Drought causes important losses in crop production every season. Improvement for drought tolerance could take advantage of the diversity held in germplasm collections, much of which has not been incorporated yet into modern breeding. Spanish landraces constitute a promising resource for barley breeding, as they were widely grown until last century and still show good yielding ability under stress. Here, we study the transcriptome expression landscape in two genotypes, an outstanding Spanish landrace-derived inbred line (SBCC073) and a modern cultivar (Scarlett). Gene expression of adult plants after prolonged stresses, either drought or drought combined with heat, was monitored. Transcriptome of mature leaves presented little changes under severe drought, whereas abundant gene expression changes were observed under combined mild drought and heat. Developing inflorescences of SBCC073 exhibited mostly unaltered gene expression, whereas numerous changes were found in the same tissues for Scarlett. Genotypic differences in physiological traits and gene expression patterns confirmed the different behavior of landrace SBCC073 and cultivar Scarlett under abiotic stress, suggesting that they responded to stress following different strategies. A comparison with related studies in barley, addressing gene expression responses to drought, revealed common biological processes, but moderate agreement regarding individual differentially expressed transcripts. Special emphasis was put in the search of co-expressed genes and underlying common regulatory motifs. Overall, 11 transcription factors were identified, and one of them matched cis-regulatory motifs discovered upstream of co-expressed genes involved in those responses.
Collapse
Affiliation(s)
- Carlos P. Cantalapiedra
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
| | - María J. García-Pereira
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
| | - María P. Gracia
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
| | - Ernesto Igartua
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
| | - Ana M. Casas
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
| | - Bruno Contreras-Moreira
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
- Fundación ARAIDZaragoza, Spain
- *Correspondence: Bruno Contreras-Moreira
| |
Collapse
|
29
|
Ghatak A, Chaturvedi P, Weckwerth W. Cereal Crop Proteomics: Systemic Analysis of Crop Drought Stress Responses Towards Marker-Assisted Selection Breeding. FRONTIERS IN PLANT SCIENCE 2017; 8:757. [PMID: 28626463 PMCID: PMC5454074 DOI: 10.3389/fpls.2017.00757] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Sustainable crop production is the major challenge in the current global climate change scenario. Drought stress is one of the most critical abiotic factors which negatively impact crop productivity. In recent years, knowledge about molecular regulation has been generated to understand drought stress responses. For example, information obtained by transcriptome analysis has enhanced our knowledge and facilitated the identification of candidate genes which can be utilized for plant breeding. On the other hand, it becomes more and more evident that the translational and post-translational machinery plays a major role in stress adaptation, especially for immediate molecular processes during stress adaptation. Therefore, it is essential to measure protein levels and post-translational protein modifications to reveal information about stress inducible signal perception and transduction, translational activity and induced protein levels. This information cannot be revealed by genomic or transcriptomic analysis. Eventually, these processes will provide more direct insight into stress perception then genetic markers and might build a complementary basis for future marker-assisted selection of drought resistance. In this review, we survey the role of proteomic studies to illustrate their applications in crop stress adaptation analysis with respect to productivity. Cereal crops such as wheat, rice, maize, barley, sorghum and pearl millet are discussed in detail. We provide a comprehensive and comparative overview of all detected protein changes involved in drought stress in these crops and have summarized existing knowledge into a proposed scheme of drought response. Based on a recent proteome study of pearl millet under drought stress we compare our findings with wheat proteomes and another recent study which defined genetic marker in pearl millet.
Collapse
Affiliation(s)
- Arindam Ghatak
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
| | - Palak Chaturvedi
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
- Vienna Metabolomics Center, University of ViennaVienna, Austria
- *Correspondence: Wolfram Weckwerth
| |
Collapse
|
30
|
Barkla BJ. Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity. Proteomes 2016; 4:proteomes4030026. [PMID: 28248236 PMCID: PMC5217352 DOI: 10.3390/proteomes4030026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/01/2016] [Accepted: 09/03/2016] [Indexed: 12/11/2022] Open
Abstract
Modern day agriculture practice is narrowing the genetic diversity in our food supply. This may compromise the ability to obtain high yield under extreme climactic conditions, threatening food security for a rapidly growing world population. To identify genetic diversity, tolerance mechanisms of cultivars, landraces and wild relatives of major crops can be identified and ultimately exploited for yield improvement. Quantitative proteomics allows for the identification of proteins that may contribute to tolerance mechanisms by directly comparing protein abundance under stress conditions between genotypes differing in their stress responses. In this review, a summary is provided of the data accumulated from quantitative proteomic comparisons of crop genotypes/cultivars which present different stress tolerance responses when exposed to various abiotic stress conditions, including drought, salinity, high/low temperature, nutrient deficiency and UV-B irradiation. This field of research aims to identify molecular features that can be developed as biomarkers for crop improvement, however without accurate phenotyping, careful experimental design, statistical robustness and appropriate biomarker validation and verification it will be challenging to deliver what is promised.
Collapse
Affiliation(s)
- Bronwyn J Barkla
- Southern Cross Plant Sciences, Southern Cross University, Lismore 2481, NSW, Australia.
| |
Collapse
|
31
|
Khan MN, Komatsu S. Proteomic analysis of soybean root including hypocotyl during recovery from drought stress. J Proteomics 2016; 144:39-50. [PMID: 27292084 DOI: 10.1016/j.jprot.2016.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 01/24/2023]
Abstract
UNLABELLED Soybean is a nutritionally important crop that exhibits reductions in growth and yield under drought stress. To investigate soybean responses during post-drought recovery, a gel-free proteomic technique was used. Two-day-old soybeans were treated with drought stress for 4days and recovered for 4days. Root including hypocotyl was collected during the drought treatment and recovery stage. Seedling growth was suppressed by drought stress, but recovered following stress removal. The malondialdehyde content increased under drought stress, but decreased during the recovery stage. A total of 792 and 888 proteins were identified from the control and recovering seedlings, respectively. The identified proteins were related to functional categories of stress, hormone metabolism, cell wall, secondary metabolism, and fermentation. Cluster analysis indicated that abundances of peroxidase and aldehyde dehydrogenase were highly changed in the seedlings during the post-drought recovery. The activity of peroxidase decreased under drought conditions, but increased during recovery. In contrast, the activity of aldehyde dehydrogenase was increased in response to drought stress, but decreased during the recovery stage. These results suggest that peroxidase and aldehyde dehydrogenase play key roles in post-drought recovery in soybean by scavenging toxic reactive oxygen species and reducing the load of harmful aldehydes. BIOLOGICAL SIGNIFICANCE Post-drought recovery response mechanisms in soybean root including hypocotyl were analyzed using gel-free proteomic technique. A total of 643 common proteins between control and drought-stressed soybeans changed significantly in abundance over time. The proteins that changed during post-drought recovery were assigned to protein, stress, hormone metabolism, secondary metabolism, cell wall, redox, and glycolysis categories. The analysis revealed that peroxidase and aldehyde dehydrogenase were increased in protein abundance under drought stress. The enzyme activity of peroxidase decreased under drought but increased during recovery. The activity of aldehyde dehydrogenase was increased under drought stress but decreased during recovery stage. Peroxidase and aldehyde dehydrogenase reduce the toxic reactive oxygen species and aldehydes from the plant, respectively, and help to recover from drought stress. The study provides information about post-drought recovery mechanism in soybean.
Collapse
Affiliation(s)
- Mudassar Nawaz Khan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
32
|
Ghatak A, Chaturvedi P, Nagler M, Roustan V, Lyon D, Bachmann G, Postl W, Schröfl A, Desai N, Varshney RK, Weckwerth W. Comprehensive tissue-specific proteome analysis of drought stress responses in Pennisetum glaucum (L.) R. Br. (Pearl millet). J Proteomics 2016; 143:122-135. [DOI: 10.1016/j.jprot.2016.02.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/21/2016] [Accepted: 02/26/2016] [Indexed: 01/07/2023]
|
33
|
de Miguel M, Guevara MÁ, Sánchez-Gómez D, de María N, Díaz LM, Mancha JA, Fernández de Simón B, Cadahía E, Desai N, Aranda I, Cervera MT. Organ-specific metabolic responses to drought in Pinus pinaster Ait. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 102:17-26. [PMID: 26897116 DOI: 10.1016/j.plaphy.2016.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 02/01/2016] [Accepted: 02/09/2016] [Indexed: 05/06/2023]
Abstract
Drought is an important driver of plant survival, growth, and distribution. Water deficit affects different pathways of metabolism, depending on plant organ. While previous studies have mainly focused on the metabolic drought response of a single organ, analysis of metabolic differences between organs is essential to achieve an integrated understanding of the whole plant response. In this work, untargeted metabolic profiling was used to examine the response of roots, stems, adult and juvenile needles from Pinus pinaster Ait. full-sib individuals, subjected to a moderate and long lasting drought period. Cyclitols content showed a significant alteration, in response to drought in all organs examined, but other metabolites increased or decreased differentially depending on the analyzed organ. While a high number of flavonoids were only detected in aerial organs, an induction of the glutathione pathway was mainly detected in roots. This result may reflect different antioxidant mechanisms activated in aerial organs and roots. Metabolic changes were more remarkable in roots than in the other organs, highlighting its prominent role in the response to water stress. Significant changes in flavonoids and ascorbate metabolism were also observed between adult and juvenile needles, consistent with previously proven differential functional responses between the two developmental stages. Genetic polymorphisms in candidate genes coding for a Myb1 transcription factor and a malate dehydrogenase (EC 1.1.1.37) were associated with different concentration of phenylalanine, phenylpropanoids and malate, respectively. The results obtained will support further research on metabolites and genes potentially involved in functional mechanisms related to drought tolerance in trees.
Collapse
Affiliation(s)
- Marina de Miguel
- INIA-CIFOR, Departamento de Ecología y Genética Forestal, Carretera de la Coruña Km 7.5, 28040, Madrid, Spain; Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, Madrid, Spain.
| | - M Ángeles Guevara
- INIA-CIFOR, Departamento de Ecología y Genética Forestal, Carretera de la Coruña Km 7.5, 28040, Madrid, Spain; Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, Madrid, Spain.
| | - David Sánchez-Gómez
- INIA-CIFOR, Departamento de Ecología y Genética Forestal, Carretera de la Coruña Km 7.5, 28040, Madrid, Spain.
| | - Nuria de María
- INIA-CIFOR, Departamento de Ecología y Genética Forestal, Carretera de la Coruña Km 7.5, 28040, Madrid, Spain; Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, Madrid, Spain.
| | - Luis Manuel Díaz
- INIA-CIFOR, Departamento de Ecología y Genética Forestal, Carretera de la Coruña Km 7.5, 28040, Madrid, Spain; Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, Madrid, Spain.
| | - Jose A Mancha
- INIA-CIFOR, Departamento de Ecología y Genética Forestal, Carretera de la Coruña Km 7.5, 28040, Madrid, Spain.
| | | | - Estrella Cadahía
- INIA-CIFOR, Departamento de Industrias Forestales, Carretera de La Coruña Km 7.5, 28040, Madrid, Spain.
| | - Nalini Desai
- Metabolon, Inc. 617 Davis Drive, Suite 400, Durham, 27713, NC, USA.
| | - Ismael Aranda
- INIA-CIFOR, Departamento de Ecología y Genética Forestal, Carretera de la Coruña Km 7.5, 28040, Madrid, Spain.
| | - María-Teresa Cervera
- INIA-CIFOR, Departamento de Ecología y Genética Forestal, Carretera de la Coruña Km 7.5, 28040, Madrid, Spain; Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, Madrid, Spain.
| |
Collapse
|
34
|
Chmielewska K, Rodziewicz P, Swarcewicz B, Sawikowska A, Krajewski P, Marczak Ł, Ciesiołka D, Kuczyńska A, Mikołajczak K, Ogrodowicz P, Krystkowiak K, Surma M, Adamski T, Bednarek P, Stobiecki M. Analysis of Drought-Induced Proteomic and Metabolomic Changes in Barley (Hordeum vulgare L.) Leaves and Roots Unravels Some Aspects of Biochemical Mechanisms Involved in Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:1108. [PMID: 27512399 PMCID: PMC4962459 DOI: 10.3389/fpls.2016.01108] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/12/2016] [Indexed: 05/17/2023]
Abstract
In this study, proteomic and metabolomic changes in leaves and roots of two barley (Hordeum vulgare L.) genotypes, with contrasting drought tolerance, subjected to water deficit were investigated. Our two-dimensional electrophoresis (2D-PAGE) combined with matrix-assisted laser desorption time of flight mass spectrometry (MALDI-TOF and MALDI-TOF/TOF) analyses revealed 121 drought-responsive proteins in leaves and 182 in roots of both genotypes. Many of the identified drought-responsive proteins were associated with processes that are typically severely affected during water deficit, including photosynthesis and carbon metabolism. However, the highest number of identified leaf and root proteins represented general defense mechanisms. In addition, changes in the accumulation of proteins that represent processes formerly unassociated with drought response, e.g., phenylpropanoid metabolism, were also identified. Our tandem gas chromatography - time of flight mass spectrometry (GC/MS TOF) analyses revealed approximately 100 drought-affected low molecular weight compounds representing various metabolite types with amino acids being the most affected metabolite class. We compared the results from proteomic and metabolomic analyses to search for existing relationship between these two levels of molecular organization. We also uncovered organ specificity of the observed changes and revealed differences in the response to water deficit of drought susceptible and tolerant barley lines. Particularly, our results indicated that several of identified proteins and metabolites whose accumulation levels were increased with drought in the analyzed susceptible barley variety revealed elevated constitutive accumulation levels in the drought-resistant line. This may suggest that constitutive biochemical predisposition represents a better drought tolerance mechanism than inducible responses.
Collapse
Affiliation(s)
- Klaudia Chmielewska
- Institute of Bioorganic Chemistry – Polish Academy of Sciences, PoznańPoland
| | - Paweł Rodziewicz
- Institute of Bioorganic Chemistry – Polish Academy of Sciences, PoznańPoland
| | - Barbara Swarcewicz
- Institute of Bioorganic Chemistry – Polish Academy of Sciences, PoznańPoland
| | - Aneta Sawikowska
- Institute of Plant Genetics – Polish Academy of Sciences, PoznańPoland
| | - Paweł Krajewski
- Institute of Plant Genetics – Polish Academy of Sciences, PoznańPoland
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry – Polish Academy of Sciences, PoznańPoland
| | - Danuta Ciesiołka
- Institute of Bioorganic Chemistry – Polish Academy of Sciences, PoznańPoland
| | - Anetta Kuczyńska
- Institute of Plant Genetics – Polish Academy of Sciences, PoznańPoland
| | | | - Piotr Ogrodowicz
- Institute of Plant Genetics – Polish Academy of Sciences, PoznańPoland
| | | | - Maria Surma
- Institute of Plant Genetics – Polish Academy of Sciences, PoznańPoland
| | - Tadeusz Adamski
- Institute of Plant Genetics – Polish Academy of Sciences, PoznańPoland
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry – Polish Academy of Sciences, PoznańPoland
- *Correspondence: Maciej Stobiecki, Paweł Bednarek,
| | - Maciej Stobiecki
- Institute of Bioorganic Chemistry – Polish Academy of Sciences, PoznańPoland
- *Correspondence: Maciej Stobiecki, Paweł Bednarek,
| |
Collapse
|
35
|
Physiological, Ultrastructural and Proteomic Responses in the Leaf of Maize Seedlings to Polyethylene Glycol-Stimulated Severe Water Deficiency. Int J Mol Sci 2015; 16:21606-25. [PMID: 26370980 PMCID: PMC4613270 DOI: 10.3390/ijms160921606] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 08/24/2015] [Indexed: 12/13/2022] Open
Abstract
After maize seedlings grown in full-strength Hoagland solution for 20 days were exposed to 20% polyethylene glycol (PEG)-stimulated water deficiency for two days, plant height, shoot fresh and dry weights, and pigment contents significantly decreased, whereas malondialdehyde (MDA) content greatly increased. Using transmission electron microscopy, we observed that chloroplasts of mesophyll cells in PEG-treated maize seedlings were swollen, with a disintegrating envelope and disrupted grana thylakoid lamellae. Using two-dimensional gel electrophoresis (2-DE) method, we were able to identify 22 protein spots with significantly altered abundance in the leaves of treated seedlings in response to water deficiency, 16 of which were successfully identified. These protein species were functionally classified into signal transduction, stress defense, carbohydrate metabolism, protein metabolism, and unknown categories. The change in the abundance of the identified protein species may be closely related to the phenotypic and physiological changes due to PEG-stimulated water deficiency. Most of the identified protein species were putatively located in chloroplasts, indicating that chloroplasts may be prone to damage by PEG stimulated-water deficiency in maize seedlings. Our results help clarify the molecular mechanisms of the responses of higher plants to severe water deficiency.
Collapse
|
36
|
Kosová K, Vítámvás P, Urban MO, Klíma M, Roy A, Prášil IT. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops--A Proteomic Perspective. Int J Mol Sci 2015; 16:20913-42. [PMID: 26340626 PMCID: PMC4613235 DOI: 10.3390/ijms160920913] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/16/2015] [Accepted: 08/10/2015] [Indexed: 12/26/2022] Open
Abstract
Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum), durum wheat (Triticum durum), barley (Hordeum vulgare), maize (Zea mays); leguminous plants: alfalfa (Medicago sativa), soybean (Glycine max), common bean (Phaseolus vulgaris), pea (Pisum sativum); oilseed rape (Brassica napus); potato (Solanum tuberosum); tobacco (Nicotiana tabaccum); tomato (Lycopersicon esculentum); and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals) are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton) are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed.
Collapse
Affiliation(s)
- Klára Kosová
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, Drnovská 507/73, 16106 Prague, Czech Republic.
| | - Pavel Vítámvás
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, Drnovská 507/73, 16106 Prague, Czech Republic.
| | - Milan Oldřich Urban
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, Drnovská 507/73, 16106 Prague, Czech Republic.
| | - Miroslav Klíma
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, Drnovská 507/73, 16106 Prague, Czech Republic.
| | - Amitava Roy
- Research Institute of Agricultural Engineering, Drnovská 507, 16106 Prague, Czech Republic.
| | - Ilja Tom Prášil
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, Drnovská 507/73, 16106 Prague, Czech Republic.
| |
Collapse
|
37
|
Chakraborty S, Salekdeh GH, Yang P, Woo SH, Chin CF, Gehring C, Haynes PA, Mirzaei M, Komatsu S. Proteomics of Important Food Crops in the Asia Oceania Region: Current Status and Future Perspectives. J Proteome Res 2015; 14:2723-44. [DOI: 10.1021/acs.jproteome.5b00211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | | | - Pingfang Yang
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Sun Hee Woo
- Chungbuk National University, Cheongju 362-763, Korea
| | - Chiew Foan Chin
- University of Nottingham Malaysia Campus, 43500 Semenyih, Selangor, Malaysia
| | - Chris Gehring
- King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | | | | - Setsuko Komatsu
- National Institute of Crop Science, Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
38
|
Wang N, Zhao J, He X, Sun H, Zhang G, Wu F. Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype. BMC Genomics 2015; 16:432. [PMID: 26044796 PMCID: PMC4456048 DOI: 10.1186/s12864-015-1657-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 05/28/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Drought is one of major abiotic stresses constraining crop productivity worldwide. To adapt to drought stress, plants have evolved sophisticated defence mechanisms. Wild barley germplasm is a treasure trove of useful genes and offers rich sources of genetic variation for crop improvement. In this study, a proteome analysis was performed to identify the genetic resources and to understand the mechanisms of drought tolerance in plants that could result in high levels of tolerance to drought stress. RESULTS A greenhouse pot experiment was performed to compare proteomic characteristics of two contrasting Tibetan wild barley genotypes (drought-tolerant XZ5 and drought-sensitive XZ54) and cv. ZAU3, in response to drought stress at soil moisture content 10% (SMC10) and 4% (SMC4) and subsequently 2 days (R1) and 5 days (R2) of recovery. More than 1700 protein spots were identified that are involved in each gel, wherein 132, 92, 86, 242 spots in XZ5 and 261, 137, 156, 187 in XZ54 from SMC10, SMC4, R1 and R2 samples were differentially expressed by drought over the control, respectively. Thirty-eight drought-tolerance-associated proteins were identified using mass spectrometry and data bank analysis. These proteins were categorized mainly into photosynthesis, stress response, metabolic process, energy and amino-acid biosynthesis. Among them, 6 protein spots were exclusively expressed or up-regulated under drought stress in XZ5 but not in XZ54, including melanoma-associated antigen p97, type I chlorophyll a/b-binding protein b, glutathione S-transferase 1, ribulosebisphosphate carboxylase large chain. Moreover, type I chlorophyll a/b-binding protein b was specifically expressed in XZ5 (Spots A4, B1 and C3) but not in both of XZ54 and ZAU3. These proteins may play crucial roles in drought-tolerance in XZ5. Coding Sequences (CDS) of rbcL and Trx-M genes from XZ5, XZ54 and ZAU3 were cloned and sequenced. CDS length of rbcL and Trx-M was 1401 bp (the partial-length CDS region) and 528 bp (full-length CDS region), respectively, encoding 467 and 176 amino acids. Comparison of gene sequences among XZ5, XZ54 and ZAU3 revealed 5 and 2 SNPs for rbcL and Trx-M, respectively, with two 2 SNPs of missense mutation in the both genes. CONCLUSIONS Our findings highlight the significance of specific-proteins associated with drought tolerance, and verified the potential value of Tibetan wild barley in improving drought tolerance of barley as well as other cereal crops.
Collapse
Affiliation(s)
- Nanbo Wang
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Jing Zhao
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Xiaoyan He
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Hongyan Sun
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Guoping Zhang
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Feibo Wu
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China. .,Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
39
|
Oliveira TM, da Silva FR, Bonatto D, Neves DM, Morillon R, Maserti BE, Filho MAC, Costa MGC, Pirovani CP, Gesteira AS. Comparative study of the protein profiles of Sunki mandarin and Rangpur lime plants in response to water deficit. BMC PLANT BIOLOGY 2015; 15:69. [PMID: 25849288 PMCID: PMC4355367 DOI: 10.1186/s12870-015-0416-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/06/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND Rootstocks play a major role in the tolerance of citrus plants to water deficit by controlling and adjusting the water supply to meet the transpiration demand of the shoots. Alterations in protein abundance in citrus roots are crucial for plant adaptation to water deficit. We performed two-dimensional electrophoresis (2-DE) separation followed by LC/MS/MS to assess the proteome responses of the roots of two citrus rootstocks, Rangpur lime (Citrus limonia Osbeck) and 'Sunki Maravilha' (Citrus sunki) mandarin, which show contrasting tolerances to water deficits at the physiological and molecular levels. RESULTS Changes in the abundance of 36 and 38 proteins in Rangpur lime and 'Sunki Maravilha' mandarin, respectively, were observed via LC/MS/MS in response to water deficit. Multivariate principal component analysis (PCA) of the data revealed major changes in the protein profile of 'Sunki Maravilha' in response to water deficit. Additionally, proteomics and systems biology analyses allowed for the general elucidation of the major mechanisms associated with the differential responses to water deficit of both varieties. The defense mechanisms of Rangpur lime included changes in the metabolism of carbohydrates and amino acids as well as in the activation of reactive oxygen species (ROS) detoxification and in the levels of proteins involved in water stress defense. In contrast, the adaptation of 'Sunki Maravilha' to stress was aided by the activation of DNA repair and processing proteins. CONCLUSIONS Our study reveals that the levels of a number of proteins involved in various cellular pathways are affected during water deficit in the roots of citrus plants. The results show that acclimatization to water deficit involves specific responses in Rangpur lime and 'Sunki Maravilha' mandarin. This study provides insights into the effects of drought on the abundance of proteins in the roots of two varieties of citrus rootstocks. In addition, this work allows for a better understanding of the molecular basis of the response to water deficit in citrus. Further analysis is needed to elucidate the behaviors of the key target proteins involved in this response.
Collapse
Affiliation(s)
- Tahise M Oliveira
- />Universidade Estadual de Santa Cruz-UESC, Rodovia Ilhéus-Itabuna, Km 16, Salobrinho, Bahia Brazil
| | - Fernanda R da Silva
- />Centro de Biotecnologia, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul-UFGRS, Avenida Bento Goncalves, 9500 Porto Alegre, Rio Grande do Sul Brazil
| | - Diego Bonatto
- />Centro de Biotecnologia, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul-UFGRS, Avenida Bento Goncalves, 9500 Porto Alegre, Rio Grande do Sul Brazil
| | - Diana M Neves
- />Universidade Estadual de Santa Cruz-UESC, Rodovia Ilhéus-Itabuna, Km 16, Salobrinho, Bahia Brazil
| | - Raphael Morillon
- />IVIA; Centro de Genomica, Ctra. Moncada-Náquera Km 5, 46113 Moncada, Valencia Spain
- />CIRAD, UMR AGAP, Avenue Agropolis - TA A-75/02 – 34398, Montpellier Cedex 5, France
| | - Bianca E Maserti
- />Dipartimento di Scienze BioAgroAlimentari, CNR-IPSP, Istituto per la Protezione Sostenibile delle Piante, Area della Ricerca CNR, Via Madonna del Piano 10, Via Madonna del Piano n 10, 50019 Sesto Fiorentino, FI Italy
| | | | - Marcio GC Costa
- />Universidade Estadual de Santa Cruz-UESC, Rodovia Ilhéus-Itabuna, Km 16, Salobrinho, Bahia Brazil
| | - Carlos P Pirovani
- />Universidade Estadual de Santa Cruz-UESC, Rodovia Ilhéus-Itabuna, Km 16, Salobrinho, Bahia Brazil
| | - Abelmon S Gesteira
- />Embrapa Mandioca e Fruticultura, Rua Embrapa, s/n, Cruz das Almas, 44380-000 Bahia Brazil
| |
Collapse
|
40
|
Ashoub A, Baeumlisberger M, Neupaertl M, Karas M, Brüggemann W. Characterization of common and distinctive adjustments of wild barley leaf proteome under drought acclimation, heat stress and their combination. PLANT MOLECULAR BIOLOGY 2015; 87:459-71. [PMID: 25647426 DOI: 10.1007/s11103-015-0291-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/24/2015] [Indexed: 05/18/2023]
Abstract
In nature, plants are often exposed to combinations of different stresses at the same time, while in many laboratory studies of molecular stress induction phenomena, single stress responses are analyzed. This study aims to identify the common (i.e. more general stress-responsive) and the stress-specific adjustments of the leaf proteome of wild barley to two often co-occurring stress phenomena, i.e. in response to (long-term) drought acclimation (DA) or to (transient) heat stress (HS). In addition, we analyzed those alterations which are specific for the combination of both stresses. Leaf proteome analysis was performed using 2D difference gel electrophoresis followed by protein identification via mass spectrometry with a 1.5 threshold value of changes in relative protein contents. DA resulted in specific upregulation of proteins with cell detoxification functions, water homeostasis maintenance, amino acids synthesis and lipid metabolism and distinct forms of heat shock proteins (HSPs) and proteins with chaperon functions while proteins related to nitrogen metabolism were downregulated. This response was distinguished from the response to transient HS, which included upregulation of a broad range of HSP products. The common response to both stressors revealed upregulation of additional forms of HSPs and the downregulation of enzymes of the photosynthetic apparatus and chlorophyll binding proteins. The simultaneous exposure to both stress conditions resulted mostly in a combination of both stress responses and to unique abundance changes of proteins with yet unclear functions.
Collapse
Affiliation(s)
- Ahmed Ashoub
- Institute of Ecology, Evolution, and Diversity, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue Str. 13, 60438, Frankfurt am Main, Germany,
| | | | | | | | | |
Collapse
|
41
|
Vítámvás P, Urban MO, Škodáček Z, Kosová K, Pitelková I, Vítámvás J, Renaut J, Prášil IT. Quantitative analysis of proteome extracted from barley crowns grown under different drought conditions. FRONTIERS IN PLANT SCIENCE 2015; 6:479. [PMID: 26175745 PMCID: PMC4485253 DOI: 10.3389/fpls.2015.00479] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/15/2015] [Indexed: 05/21/2023]
Abstract
Barley cultivar Amulet was used to study the quantitative proteome changes through different drought conditions utilizing two-dimensional difference gel electrophoresis (2D-DIGE). Plants were cultivated for 10 days under different drought conditions. To obtain control and differentially drought-treated plants, the soil water content was kept at 65, 35, and 30% of soil water capacity (SWC), respectively. Osmotic potential, water saturation deficit, (13)C discrimination, and dehydrin accumulation were monitored during sampling of the crowns for proteome analysis. Analysis of the 2D-DIGE gels revealed 105 differentially abundant spots; most were differentially abundant between the controls and drought-treated plants, and 25 spots displayed changes between both drought conditions. Seventy-six protein spots were successfully identified by tandem mass spectrometry. The most frequent functional categories of the identified proteins can be put into the groups of: stress-associated proteins, amino acid metabolism, carbohydrate metabolism, as well as DNA and RNA regulation and processing. Their possible role in the response of barley to drought stress is discussed. Our study has shown that under drought conditions barley cv. Amulet decreased its growth and developmental rates, displayed a shift from aerobic to anaerobic metabolism, and exhibited increased levels of several protective proteins. Comparison of the two drought treatments revealed plant acclimation to milder drought (35% SWC); but plant damage under more severe drought treatment (30% SWC). The results obtained revealed that cv. Amulet is sensitive to drought stress. Additionally, four spots revealing a continuous and significant increase with decreasing SWC (UDP-glucose 6-dehydrogenase, glutathione peroxidase, and two non-identified) could be good candidates for testing of their protein phenotyping capacity together with proteins that were significantly distinguished in both drought treatments.
Collapse
Affiliation(s)
- Pavel Vítámvás
- Division of Crop Genetics and Breeding, Plant Stress Biology and Biotechnology, Crop Research InstitutePrague, Czech Republic
- *Correspondence: Pavel Vítámvás, Division of Crop Genetics and Breeding, Plant Stress Biology and Biotechnology, Crop Research Institute, Drnovská 507/73, 161 06 Prague 6, Czech Republic
| | - Milan O. Urban
- Division of Crop Genetics and Breeding, Plant Stress Biology and Biotechnology, Crop Research InstitutePrague, Czech Republic
| | - Zbynek Škodáček
- Division of Crop Genetics and Breeding, Plant Stress Biology and Biotechnology, Crop Research InstitutePrague, Czech Republic
| | - Klára Kosová
- Division of Crop Genetics and Breeding, Plant Stress Biology and Biotechnology, Crop Research InstitutePrague, Czech Republic
| | - Iva Pitelková
- Division of Crop Genetics and Breeding, Plant Stress Biology and Biotechnology, Crop Research InstitutePrague, Czech Republic
| | - Jan Vítámvás
- Division of Crop Genetics and Breeding, Plant Stress Biology and Biotechnology, Crop Research InstitutePrague, Czech Republic
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences PraguePrague, Czech Republic
| | - Jenny Renaut
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and TechnologyBelvaux, Luxembourg
| | - Ilja T. Prášil
- Division of Crop Genetics and Breeding, Plant Stress Biology and Biotechnology, Crop Research InstitutePrague, Czech Republic
| |
Collapse
|
42
|
Wang X, Vignjevic M, Jiang D, Jacobsen S, Wollenweber B. Improved tolerance to drought stress after anthesis due to priming before anthesis in wheat (Triticum aestivum L.) var. Vinjett. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6441-56. [PMID: 25205581 PMCID: PMC4246180 DOI: 10.1093/jxb/eru362] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Drought stress occurring during the reproductive growth stage leads to considerable reductions in crop production and has become an important limiting factor for food security globally. In order to explore the possible role of drought priming (pre-exposure of the plants to mild drought stress) on the alleviation of a severe drought stress event later in development, wheat plants were subjected to single or double mild drought episodes (soil relative water content around 35-40%) before anthesis and/or to a severe drought stress event (soil relative water content around 20-25%) 15 d after anthesis. Here, single or double drought priming before anthesis resulted in higher grain yield than in non-primed plants under drought stress during grain filling. The photosynthesis rate and ascorbate peroxidase activity were higher while malondialdehyde content was lower in primed plants than in the non-primed plants under drought stress during grain filling. Proteins in flag leaves differently expressed by the priming and drought stress were mainly related to photosynthesis, stress defence, metabolism, molecular chaperone, and cell structure. Furthermore, the protein abundance of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit, Rubisco activase and ascorbate peroxidase were upregulated in primed plants compared with non-primed plants under drought stress during grain filling. In conclusion, the altered protein expression and upregulated activities of photosynthesis and ascorbate peroxidase in primed plants may indicate their potential roles in alleviating a later-occurring drought stress episode, thereby contributing to higher wheat grain yield under drought stress during grain filling.
Collapse
Affiliation(s)
- Xiao Wang
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/Hi-Tech Key Laboratory of Information Agriculture of Jiangsu Province, Nanjing Agricultural University, PR China Aarhus University, Faculty of Science and Technology, Institute of Agroecology, Research Centre Flakkebjerg, DK-4200 Slagelse, Denmark Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Building 224, DK-2800 Kgs. Lyngby, Denmark
| | - Marija Vignjevic
- Aarhus University, Faculty of Science and Technology, Institute of Agroecology, Research Centre Flakkebjerg, DK-4200 Slagelse, Denmark
| | - Dong Jiang
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/Hi-Tech Key Laboratory of Information Agriculture of Jiangsu Province, Nanjing Agricultural University, PR China
| | - Susanne Jacobsen
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Building 224, DK-2800 Kgs. Lyngby, Denmark
| | - Bernd Wollenweber
- Aarhus University, Faculty of Science and Technology, Institute of Agroecology, Research Centre Flakkebjerg, DK-4200 Slagelse, Denmark
| |
Collapse
|
43
|
Faghani E, Gharechahi J, Komatsu S, Mirzaei M, Khavarinejad RA, Najafi F, Farsad LK, Salekdeh GH. Comparative physiology and proteomic analysis of two wheat genotypes contrasting in drought tolerance. J Proteomics 2014; 114:1-15. [PMID: 25449836 DOI: 10.1016/j.jprot.2014.10.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/28/2014] [Accepted: 10/26/2014] [Indexed: 10/24/2022]
Abstract
UNLABELLED Comparative physiology and proteomic analyses were conducted to monitor the stress response of two wheat genotypes (SERI M 82 (SE) and SW89.5193/kAu2 (SW)) with contrasting responses to drought stress. Under stress condition, the tolerant genotype (SE) produced higher shoot and root biomasses, longer roots and accumulated higher level of ABA in leaves. Physiological measurements suggested that the SE genotype was more efficient in water absorption and could preserve more water presumably by controlling stomata closure. Proteomic analysis showed an increased abundance of proteins related to defense and oxidative stress responses such as GLPs, GST, and SOD, and those related to protein processing such as small HSPs in roots of both genotypes in response to drought stress. Interestingly, the abundance of proteins such as endo-1,3-beta-glucosidase, peroxidase, SAMS, and MDH significantly increased in roots or leaves of the SE genotype and decreased in that of the SW one. In addition, an increased abundance of APX was detected in leaves and roots of the SE genotype and a decreased abundance of 14-3-3 and ribosomal proteins were noted in the SW one in response to drought stress. Our findings led to a better understanding about the integrated physiology and proteome responses of wheat genotypes with nearly contrasting responses to drought stress. BIOLOGICAL SIGNIFICANCE We applied a comparative physiology and proteomic analysis to decipher the differential responses of two contrasting wheat genotypes to drought stress. Based on physiological measurements the tolerant genotype (SE) showed better drought response by developing deep root system, higher root and shoot biomasses, and higher level of ABA in leaves. Proteomic analysis showed an increased abundance of proteins related to defense and oxidative stress responses such as GLPs, GST, and SOD, and those related to protein processing such as small HSPs in roots of both genotypes in response to drought stress. In addition, the abundance of proteins such as glucan endo-1,3-beta-glucosidase, peroxidases, SAMS, and MDH increased in roots or leaves of the tolerant genotype (SE) and decreased in that of the sensitive genotype (SW). Overall, proteins related to oxidative stress, protein processing and photosynthesis showed decreased abundance to a greater extent in the sensitive genotype (SW).
Collapse
Affiliation(s)
- Elham Faghani
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| | - Javad Gharechahi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| | - Setsuko Komatsu
- National Institute of Crop Science, Kannondai 2-1-18, Tsukuba 305-8518, Japan
| | - Mehdi Mirzaei
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | | | | | - Laleh Karimi Farsad
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran; Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
44
|
Protein profiles reveal diverse responsive signaling pathways in kernels of two maize inbred lines with contrasting drought sensitivity. Int J Mol Sci 2014; 15:18892-918. [PMID: 25334062 PMCID: PMC4227252 DOI: 10.3390/ijms151018892] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/30/2014] [Accepted: 10/08/2014] [Indexed: 01/18/2023] Open
Abstract
Drought stress is a major factor that contributes to disease susceptibility and yield loss in agricultural crops. To identify drought responsive proteins and explore metabolic pathways involved in maize tolerance to drought stress, two maize lines (B73 and Lo964) with contrasting drought sensitivity were examined. The treatments of drought and well water were applied at 14 days after pollination (DAP), and protein profiles were investigated in developing kernels (35 DAP) using iTRAQ (isobaric tags for relative and absolute quantitation). Proteomic analysis showed that 70 and 36 proteins were significantly altered in their expression under drought treatments in B73 and Lo964, respectively. The numbers and levels of differentially expressed proteins were generally higher in the sensitive genotype, B73, implying an increased sensitivity to drought given the function of the observed differentially expressed proteins, such as redox homeostasis, cell rescue/defense, hormone regulation and protein biosynthesis and degradation. Lo964 possessed a more stable status with fewer differentially expressed proteins. However, B73 seems to rapidly initiate signaling pathways in response to drought through adjusting diverse defense pathways. These changes in protein expression allow for the production of a drought stress-responsive network in maize kernels.
Collapse
|
45
|
Abreu IA, Farinha AP, Negrão S, Gonçalves N, Fonseca C, Rodrigues M, Batista R, Saibo NJM, Oliveira MM. Coping with abiotic stress: proteome changes for crop improvement. J Proteomics 2013; 93:145-68. [PMID: 23886779 DOI: 10.1016/j.jprot.2013.07.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 07/02/2013] [Accepted: 07/08/2013] [Indexed: 12/20/2022]
Abstract
Plant breeders need new and more precise tools to accelerate breeding programs that address the increasing needs for food, feed, energy and raw materials, while facing a changing environment in which high salinity and drought have major impacts on crop losses worldwide. This review covers the achievements and bottlenecks in the identification and validation of proteins with relevance in abiotic stress tolerance, also mentioning the unexpected consequences of the stress in allergen expression. While addressing the key pathways regulating abiotic stress plant adaptation, comprehensive data is presented on the proteins confirmed as relevant to confer tolerance. Promising candidates still to be confirmed are also highlighted, as well as the specific protein families and protein modifications for which detection and characterization is still a challenge. This article is part of a Special Issue entitled: Translational Plant Proteomics.
Collapse
Affiliation(s)
- Isabel A Abreu
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Genomics of Plant Stress Laboratory (GPlantS Lab), Av. da República, 2780-157 Oeiras, Portugal; iBET, Apartado 12, 2781-901 Oeiras, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|