1
|
Liu J, Li H, Hong C, Lu W, Zhang W, Gao H. Quantitative RUBY reporter assay for gene regulation analysis. PLANT, CELL & ENVIRONMENT 2024; 47:3701-3711. [PMID: 38757792 DOI: 10.1111/pce.14947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/21/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024]
Abstract
Various reporter genes have been developed to study gene expression pattern and gene regulation. The RUBY reporter gene was recently developed and widely used, because of its visible and noninvasive advantages. However, quantitative analysis of RUBY gene expression levels was lacking. In this study, we introduce a novel betalain quantification method in combination with the tobacco transient expression system. The betalain produced in tobacco leaves was extracted and purified, and its concentration was quantitatively measured. We successfully applied this approach in studying the transcriptional regulation of ARC5 gene by transcription factors CPD25 and CPD45. Furthermore, with this method, we showed that the gene expression of RCA and Rbcs1A gene were regulated by light, transcription factors HY5 and PIFs through G-box and I-box elements. The development of this betalain quantification approach with the tobacco transient expression system offers a cost-effective and intuitive strategy for studying the regulatory mechanism of gene expression.
Collapse
Affiliation(s)
- Jia Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hao Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Conghao Hong
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wanqing Lu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wei Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongbo Gao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
2
|
Peixoto ML, Madan E. Unraveling the complexity: Advanced methods in analyzing DNA, RNA, and protein interactions. Adv Cancer Res 2024; 163:251-302. [PMID: 39271265 DOI: 10.1016/bs.acr.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Exploring the intricate interplay within and between nucleic acids, as well as their interactions with proteins, holds pivotal significance in unraveling the molecular complexities steering cancer initiation and progression. To investigate these interactions, a diverse array of highly specific and sensitive molecular techniques has been developed. The selection of a particular technique depends on the specific nature of the interactions. Typically, researchers employ an amalgamation of these different techniques to obtain a comprehensive and holistic understanding of inter- and intramolecular interactions involving DNA-DNA, RNA-RNA, DNA-RNA, or protein-DNA/RNA. Examining nucleic acid conformation reveals alternative secondary structures beyond conventional ones that have implications for cancer pathways. Mutational hotspots in cancer often lie within sequences prone to adopting these alternative structures, highlighting the importance of investigating intra-genomic and intra-transcriptomic interactions, especially in the context of mutations, to deepen our understanding of oncology. Beyond these intramolecular interactions, the interplay between DNA and RNA leads to formations like DNA:RNA hybrids (known as R-loops) or even DNA:DNA:RNA triplex structures, both influencing biological processes that ultimately impact cancer. Protein-nucleic acid interactions are intrinsic cellular phenomena crucial in both normal and pathological conditions. In particular, genetic mutations or single amino acid variations can alter a protein's structure, function, and binding affinity, thus influencing cancer progression. It is thus, imperative to understand the differences between wild-type (WT) and mutated (MT) genes, transcripts, and proteins. The review aims to summarize the frequently employed methods and techniques for investigating interactions involving nucleic acids and proteins, highlighting recent advancements and diverse adaptations of each technique.
Collapse
Affiliation(s)
- Maria Leonor Peixoto
- Champalimaud Center for the Unknown, Lisbon, Portugal; Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Esha Madan
- Department of Surgery, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; VCU Institute of Molecular Medicine, Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
3
|
Becerra-García RE, Cruz-Valderrama JE, Cerbantez-Bueno VE, Marsch-Martínez N, de Folter S. A NanoLuc-Based Transactivation Assay in Plants. Methods Mol Biol 2023; 2686:553-565. [PMID: 37540377 DOI: 10.1007/978-1-0716-3299-4_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Protein-DNA interactions are determinant of the regulation of gene expression in living organisms. Luminescence studies have been used in a wide range of techniques to identify how gene transcription can be regulated by proteins such as transcription factors (TFs). Despite the great advances in the use of luciferases as reporters in the performance of this mechanism, some of them still have disadvantages that have been tried to be solved by the generation of new luciferases that induce a more stable and perfectly visualizable reaction. NanoLuc is a recently described luciferase that has been characterized by its efficient, stable, and powerful luminescence. These qualities have been considered to create a new and efficient reporter system to detect protein-DNA interactions. In this chapter, we take advantage of NanoLuc and describe its use in a reliable procedure to detect protein-DNA interactions in Nicotiana benthamiana extracts and entire leaves.
Collapse
Affiliation(s)
- Rosa Esmeralda Becerra-García
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, CINVESTAV-IPN, Irapuato, Guanajuato, Mexico
| | - José Erik Cruz-Valderrama
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
| | - Vincent E Cerbantez-Bueno
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
| | - Nayelli Marsch-Martínez
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico.
| |
Collapse
|
4
|
Lü H, Wang J. Annotation of signal transduction systems in living bacteria by monitoring the TF-promotor binding <italic>in situ</italic> based on intermolecular FRET. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Wang P, Zhang G, Xu Z, Chen Z, Liu X, Wang C, Zheng C, Wang J, Zhang H, Yan A. Whole-cell FRET monitoring of transcription factor activities enables functional annotation of signal transduction systems in living bacteria. J Biol Chem 2022; 298:102258. [PMID: 35839853 PMCID: PMC9396075 DOI: 10.1016/j.jbc.2022.102258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/24/2022] Open
Abstract
Bacteria adapt to their constantly changing environments largely by transcriptional regulation through the activities of various transcription factors (TFs). However, techniques that monitor TF–promoter interactions in situ in living bacteria are lacking. Herein, we developed a whole-cell TF–promoter binding assay based on the intermolecular FRET between an unnatural amino acid, l-(7-hydroxycoumarin-4-yl) ethylglycine, which labels TFs with bright fluorescence through genetic encoding (donor fluorophore) and the live cell nucleic acid stain SYTO 9 (acceptor fluorophore). We show that this new FRET pair monitors the intricate TF–promoter interactions elicited by various types of signal transduction systems, including one-component (CueR) and two-component systems (BasSR and PhoPQ), in bacteria with high specificity and sensitivity. We demonstrate that robust CouA incorporation and FRET occurrence is achieved in all these regulatory systems based on either the crystal structures of TFs or their simulated structures, if 3D structures of the TFs were unavailable. Furthermore, using CueR and PhoPQ systems as models, we demonstrate that the whole-cell FRET assay is applicable for the identification and validation of complex regulatory circuit and novel modulators of regulatory systems of interest. Finally, we show that the FRET system is applicable for single-cell analysis and monitoring TF activities in Escherichia coli colonizing a Caenorhabditis elegans host. In conclusion, we established a tractable and sensitive TF–promoter binding assay, which not only complements currently available approaches for DNA–protein interactions but also provides novel opportunities for functional annotation of bacterial signal transduction systems and studies of the bacteria–host interface.
Collapse
Affiliation(s)
- Pengchao Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Guangming Zhang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Zeling Xu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Zhe Chen
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xiaohong Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Chenyin Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jiangyun Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 15 Datun Road, Chaoyang District, Beijing 100101, China.
| | - Hongmin Zhang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| | - Aixin Yan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| |
Collapse
|
6
|
Thienoguanosine, a unique non-perturbing reporter for investigating rotational dynamics of DNA duplexes and their complexes with proteins. Int J Biol Macromol 2022; 213:210-225. [DOI: 10.1016/j.ijbiomac.2022.05.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/23/2022] [Indexed: 11/05/2022]
|
7
|
Ferraz RAC, Lopes ALG, da Silva JAF, Moreira DFV, Ferreira MJN, de Almeida Coimbra SV. DNA-protein interaction studies: a historical and comparative analysis. PLANT METHODS 2021; 17:82. [PMID: 34301293 PMCID: PMC8299673 DOI: 10.1186/s13007-021-00780-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/11/2021] [Indexed: 05/05/2023]
Abstract
DNA-protein interactions are essential for several molecular and cellular mechanisms, such as transcription, transcriptional regulation, DNA modifications, among others. For many decades scientists tried to unravel how DNA links to proteins, forming complex and vital interactions. However, the high number of techniques developed for the study of these interactions made the choice of the appropriate technique a difficult task. This review intends to provide a historical context and compile the methods that describe DNA-protein interactions according to the purpose of each approach, summarise the respective advantages and disadvantages and give some examples of recent uses for each technique. The final aim of this work is to help in deciding which technique to perform according to the objectives and capacities of each research team. Considering the DNA-binding proteins characterisation, filter binding assay and EMSA are easy in vitro methods that rapidly identify nucleic acid-protein binding interactions. To find DNA-binding sites, DNA-footprinting is indeed an easier, faster and reliable approach, however, techniques involving base analogues and base-site selection are more precise. Concerning binding kinetics and affinities, filter binding assay and EMSA are useful and easy methods, although SPR and spectroscopy techniques are more sensitive. Finally, relatively to genome-wide studies, ChIP-seq is the desired method, given the coverage and resolution of the technique. In conclusion, although some experiments are easier and faster than others, when designing a DNA-protein interaction study several concerns should be taken and different techniques may need to be considered, since different methods confer different precisions and accuracies.
Collapse
Affiliation(s)
- Ricardo André Campos Ferraz
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto, Portugal
| | - Ana Lúcia Gonçalves Lopes
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto, Portugal
| | - Jessy Ariana Faria da Silva
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto, Portugal
- Universidade do Minho, Braga, Portugal
| | - Diana Filipa Viana Moreira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto, Portugal
| | - Maria João Nogueira Ferreira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto, Portugal
| | - Sílvia Vieira de Almeida Coimbra
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
8
|
Cozzolino F, Iacobucci I, Monaco V, Monti M. Protein-DNA/RNA Interactions: An Overview of Investigation Methods in the -Omics Era. J Proteome Res 2021; 20:3018-3030. [PMID: 33961438 PMCID: PMC8280749 DOI: 10.1021/acs.jproteome.1c00074] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
The fields of application
of functional proteomics are not limited
to the study of protein–protein interactions; they also extend
to those involving protein complexes that bind DNA or RNA. These interactions
affect fundamental processes such as replication, transcription, and
repair in the case of DNA, as well as transport, translation, splicing,
and silencing in the case of RNA. Analytical or preparative experimental
approaches, both in vivo and in vitro, have been developed to isolate and identify DNA/RNA binding proteins
by exploiting the advantage of the affinity shown by these proteins
toward a specific oligonucleotide sequence. The present review proposes
an overview of the approaches most commonly employed in proteomics
applications for the identification of nucleic acid-binding proteins,
such as affinity purification (AP) protocols, EMSA, chromatin purification
methods, and CRISPR-based chromatin affinity purification, which are
generally associated with mass spectrometry methodologies for the
unbiased protein identification.
Collapse
Affiliation(s)
- Flora Cozzolino
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy.,CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| | - Ilaria Iacobucci
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy.,CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| | - Vittoria Monaco
- CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy.,Interuniversity Consortium National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d'Oro, 305-00136 Rome, Italy
| | - Maria Monti
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy.,CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| |
Collapse
|
9
|
Diether M, Nikolaev Y, Allain FHT, Sauer U. Systematic mapping of protein-metabolite interactions in central metabolism of Escherichia coli. Mol Syst Biol 2019; 15:e9008. [PMID: 31464375 PMCID: PMC6706640 DOI: 10.15252/msb.20199008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/18/2019] [Accepted: 07/31/2019] [Indexed: 01/30/2023] Open
Abstract
Metabolite binding to proteins regulates nearly all cellular processes, but our knowledge of these interactions originates primarily from empirical in vitro studies. Here, we report the first systematic study of interactions between water-soluble proteins and polar metabolites in an entire biological subnetwork. To test the depth of our current knowledge, we chose to investigate the well-characterized Escherichia coli central metabolism. Using ligand-detected NMR, we assayed 29 enzymes towards binding events with 55 intracellular metabolites. Focusing on high-confidence interactions at a false-positive rate of 5%, we detected 98 interactions, among which purine nucleotides accounted for one-third, while 50% of all metabolites did not interact with any enzyme. In contrast, only five enzymes did not exhibit any metabolite binding and some interacted with up to 11 metabolites. About 40% of the interacting metabolites were predicted to be allosteric effectors based on low chemical similarity to their target's reactants. For five of the eight tested interactions, in vitro assays confirmed novel regulatory functions, including ATP and GTP inhibition of the first pentose phosphate pathway enzyme. With 76 new candidate regulatory interactions that have not been reported previously, we essentially doubled the number of known interactions, indicating that the presently available information about protein-metabolite interactions may only be the tip of the iceberg.
Collapse
Affiliation(s)
- Maren Diether
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
- Life Science Zurich PhD Program on Systems BiologyZurichSwitzerland
| | - Yaroslav Nikolaev
- Institute of Molecular Biology and BiophysicsETH ZurichZurichSwitzerland
| | - Frédéric HT Allain
- Institute of Molecular Biology and BiophysicsETH ZurichZurichSwitzerland
| | - Uwe Sauer
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| |
Collapse
|
10
|
Emamjomeh A, Choobineh D, Hajieghrari B, MahdiNezhad N, Khodavirdipour A. DNA-protein interaction: identification, prediction and data analysis. Mol Biol Rep 2019; 46:3571-3596. [PMID: 30915687 DOI: 10.1007/s11033-019-04763-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/14/2019] [Indexed: 12/30/2022]
Abstract
Life in living organisms is dependent on specific and purposeful interaction between other molecules. Such purposeful interactions make the various processes inside the cells and the bodies of living organisms possible. DNA-protein interactions, among all the types of interactions between different molecules, are of considerable importance. Currently, with the development of numerous experimental techniques, diverse methods are convenient for recognition and investigating such interactions. While the traditional experimental techniques to identify DNA-protein complexes are time-consuming and are unsuitable for genome-scale studies, the current high throughput approaches are more efficient in determining such interaction at a large-scale, but they are clearly too costly to be practice for daily applications. Hence, according to the availability of much information related to different biological sequences and clearing different dimensions of conditions in which such interactions are formed, with the developments related to the computer, mathematics, and statistics motivate scientists to develop bioinformatics tools for prediction the interaction site(s). Until now, there has been much progress in this field. In this review, the factors and conditions governing the interaction and the laboratory techniques for examining such interactions are addressed. In addition, developed bioinformatics tools are introduced and compared for this reason and, in the end, several suggestions are offered for the promotion of such tools in prediction with much more precision.
Collapse
Affiliation(s)
- Abbasali Emamjomeh
- Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Plant Breeding and Biotechnology (PBB), University of Zabol, Zabol, 98615-538, Iran.
| | - Darush Choobineh
- Agricultural Biotechnology, Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Behzad Hajieghrari
- Department of Agricultural Biotechnology, College of Agriculture, Jahrom University, Jahrom, 74135-111, Iran.
| | - Nafiseh MahdiNezhad
- Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Plant Breeding and Biotechnology (PBB), University of Zabol, Zabol, 98615-538, Iran
| | - Amir Khodavirdipour
- Division of Human Genetics, Department of Anatomy, St. John's hospital, Bangalore, India
| |
Collapse
|
11
|
Liang Y, Heller RS, Wu JK, Heilman CB, Tischler AS, Arkun K. High p16 Expression Is Associated with Malignancy and Shorter Disease-Free Survival Time in Solitary Fibrous Tumor/Hemangiopericytoma. J Neurol Surg B Skull Base 2018; 80:232-238. [PMID: 31143564 DOI: 10.1055/s-0038-1669419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023] Open
Abstract
Objective Solitary fibrous tumors (SFT) and hemangiopericytomas (HPC) are now classified along a single spectrum of fibroblastic mesenchymal tumors with NAB2-STAT6 fusion. This fusion acts as a driver mutation that constitutively activates EGR1, which is known to be involved in the p16 pathway. Overexpression of p16 is associated with malignancy and worse prognosis in multiple mesenchymal tumors. The authors sought to investigate p16 immunoexpression in association with malignancy and prognosis of SFT/HPC tumors. Design Twenty-three SFT/HPC tumors (central nervous system [CNS]: 12, non CNS: 11) diagnosed at our institution from 2002 to 2016 were assigned into 3 grades. Data from microarray immunohistochemistry for STAT6, synaptophysin, CD56, chromogranin, SST2A, EGR1, Ki67, and p16, grade and survival were analyzed. Results CNS SFT/HPCs tend to be malignant (grade 3; 67 vs. 18%, p = 0.036) and more likely to express synaptophysin (33 vs. 0%, p = 0.035) than non CNS tumors. Overexpression of p16 (immunopositivity ≥ 50% tumor cells) was associated with malignant (grade 3) tumors, and has a sensitivity of 70% (7/10), and a specificity of 77% (10/13), as a predictive marker for malignancy. SFT/HPC patients with low p16 expression demonstrated significantly longer disease-free survival time (median survival > 113 months) than those with high p16 expression (median survival = 30 months, p = 0.045). Conclusions SFT/HPCs in the CNS are more likely to be malignant than the tumors in other sites. High p16 expression is also associated with malignancy and shorter disease-free survival time in SFT/HPC tumors in our study cohort. Clinically, p16 overexpression can be used as predictive marker for malignancy and prognosis and a possible therapeutic target.
Collapse
Affiliation(s)
- Yuanxin Liang
- Department of Pathology and Laboratory Medicine, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Robert S Heller
- Department of Neurosurgery, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Julian K Wu
- Department of Neurosurgery, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Carl B Heilman
- Department of Neurosurgery, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Arthur S Tischler
- Department of Pathology and Laboratory Medicine, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Knarik Arkun
- Department of Pathology and Laboratory Medicine, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
12
|
Abstract
Nucleoid-associated proteins (NAPs) are important factors in shaping bacterial nucleoid and regulating global gene expression. A great deal of insights into NAPs can be obtained through studies using single DNA molecule, which has been made possible owing to recent rapid development of single-DNA manipulation techniques. These studies provide information on modes of binding to DNA, which shed light on the mechanism underlying the regulatory function of NAPs. In addition, how NAPs organize DNA and thus their contribution to chromosomal DNA packaging can be determined. In this chapter, we introduce transverse magnetic tweezers that allows for convenient manipulation of long DNA molecules, and its applications in studies of NAPs as exemplified by the E. coli H-NS protein. We describe how transverse magnetic tweezers is a powerful tool that can be used to characterize the DNA binding and organization modes of NAPs and how such information leads to better understanding of its roles in DNA packaging of bacterial nucleoid and transcription regulation.
Collapse
|
13
|
Hu W, Qin L, Li M, Pu X, Guo Y. A structural dissection of protein–RNA interactions based on different RNA base areas of interfaces. RSC Adv 2018; 8:10582-10592. [PMID: 35540439 PMCID: PMC9078961 DOI: 10.1039/c8ra00598b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/05/2018] [Indexed: 11/21/2022] Open
Abstract
Protein–RNA interactions are very common cellular processes, but the mechanisms of interactions are not fully understood, mainly due to the complicated RNA structures. By the elaborate investigation on RNA structures of protein–RNA complexes, it was firstly found in this paper that RNAs in these complexes could be clearly classified into three classes (high, medium and low) based on the different levels of Pbase (the percentage of base area buried in the RNA interface). In view of the three RNA classes, more detailed analyses on protein–RNA interactions were comprehensively performed from various aspects, including interface area, structure, composition and interaction force, so as to achieve a deeper understanding of the recognition specificity for the three classes of protein–RNA interactions. According to our classification strategy, the three complex classes have significant differences in terms of almost all properties. Complexes in the high class have short and extended RNA structures and behave like protein–ssDNA interactions. Their hydrogen bonds and hydrophobic interactions are strong. For complexes in low class, their RNA structures are mainly double-stranded, like protein–dsDNA interactions, and electrostatic interactions frequently occur. The complexes in medium class have the longest RNA chains and largest average interface area. Meanwhile, they do not show any preference for the interaction force. On average, in terms of composition, secondary structures and intermolecular physicochemical properties, significant feature preferences can be observed in high and low complexes, but no highly specific features are found for medium complexes. We found that our proposed Pbase is an important parameter which can be used as a new determinant to distinguish protein–RNA complexes. For high and low complexes, we can more easily understand the specificity of the recognition process from the interface features than for medium complexes. In the future, medium complexes should be our research focus to further structurally analyze from more feature aspects. Overall, this study may contribute to further understanding of the mechanism of protein–RNA interactions on a more detailed level. Qualitative and quantitative measurements of the influence of structure and composition of RNA interfaces on protein–RNA interactions.![]()
Collapse
Affiliation(s)
- Wen Hu
- College of Chemistry
- Sichuan University
- Chengdu 610064
- People's Republic of China
| | - Liu Qin
- College of Chemistry
- Sichuan University
- Chengdu 610064
- People's Republic of China
| | - Menglong Li
- College of Chemistry
- Sichuan University
- Chengdu 610064
- People's Republic of China
| | - Xuemei Pu
- College of Chemistry
- Sichuan University
- Chengdu 610064
- People's Republic of China
| | - Yanzhi Guo
- College of Chemistry
- Sichuan University
- Chengdu 610064
- People's Republic of China
| |
Collapse
|
14
|
Hehl R. From experiment-driven database analyses to database-driven experiments in Arabidopsis thaliana transcription factor research. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 262:141-147. [PMID: 28716409 DOI: 10.1016/j.plantsci.2017.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/20/2017] [Accepted: 06/24/2017] [Indexed: 06/07/2023]
Abstract
Experiment-driven database analysis is employed in forward genetics to predict the function of genes assocíated with a mutant phenotype. These analyses subsequently lead to database-driven experiments involving reverse genetics to verify functional predictions based on bioinformatic analyses. Genomic transcription factors (TFs) are key regulators of gene expression by binding to short regulatory sequences and by interacting with other TFs. Currently more than 2400 TFs are predicted for A. thaliana. As DNA-binding proteins they are particularly amenable to database-driven experiments, especially when their binding site specificities are known. Databases are available for predicting binding sites for specific TFs in regulatory sequences. Since most of these bioinformatically identified binding sites may not be functional, additional experiments for identifying the actual in vivo binding sites for TFs are required. Recently, large scale approaches were employed to determine binding sites for many A. thaliana TFs. With these approaches binding sites for 984 unique TFs were determined experimentally. An area deserving further research is proposed for interacting TFs. Most of the A. thaliana genes are under combinatorial control, and in vivo interacting TFs, similar to mammalian TFs, may bind to combinatorial elements in which the binding sites vary from those detected with the single TFs.
Collapse
Affiliation(s)
- Reinhard Hehl
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany.
| |
Collapse
|
15
|
Kasas S, Dietler G. DNA-protein interactions explored by atomic force microscopy. Semin Cell Dev Biol 2017; 73:231-239. [PMID: 28716606 DOI: 10.1016/j.semcdb.2017.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 11/30/2022]
Abstract
DNA-protein interactions play an important role in all living organisms on Earth. The advent of atomic force microscopy permitted for the first time to follow and to characterize interaction forces between these two molecular species. After a short description of the AFM and its imaging modes we review, in a chronological order some of the studies that we think importantly contributed to the field.
Collapse
Affiliation(s)
- S Kasas
- Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Plateforme de Morphologie, Faculté de Médecine, Université de Lausanne, Bugnion 9, 1005 Lausanne, Switzerland.
| | - G Dietler
- Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Hehl R, Norval L, Romanov A, Bülow L. Boosting AthaMap Database Content with Data from Protein Binding Microarrays. PLANT & CELL PHYSIOLOGY 2016; 57:e4. [PMID: 26542109 DOI: 10.1093/pcp/pcv156] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/19/2015] [Indexed: 05/24/2023]
Abstract
The AthaMap database generates a map of predicted transcription factor binding sites (TFBS) and small RNA target sites for the whole Arabidopsis thaliana genome. With the advent of protein binding microarrays (PBM), the number of known TFBS for A. thaliana transcription factors (TFs) has increased dramatically. Using 113 positional weight matrices (PWMs) generated from a single PBM study and representing a total number of 68 different TFs, the number of predicted TFBS in AthaMap was now increased by about 3.8 × 10(7) to 4.9 × 10(7). The number of TFs with PWM-predicted TFBS annotated in AthaMap has increased to 126, representing a total of 29 TF families and newly including ARF, AT-Hook, YABBY, LOB/AS2 and SRS. Furthermore, links from all Arabidopsis TFs and genes to the newly established Arabidopsis Information Portal (AIP) have been implemented. With this qualitative and quantitative update, the improved AthaMap increases its value as a resource for the analysis of A. thaliana gene expression regulation at www.athamap.de.
Collapse
Affiliation(s)
- Reinhard Hehl
- Technische Universität Braunschweig, Institut für Genetik, Spielmannstr. 7, D-38106 Braunschweig, Germany
| | - Leo Norval
- Technische Universität Braunschweig, Institut für Genetik, Spielmannstr. 7, D-38106 Braunschweig, Germany
| | - Artyom Romanov
- Technische Universität Braunschweig, Institut für Genetik, Spielmannstr. 7, D-38106 Braunschweig, Germany
| | - Lorenz Bülow
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Erwin-Baur-Str. 27, D-06484 Quedlinburg, Germany
| |
Collapse
|
17
|
Probing DNA interactions with proteins using a single-molecule toolbox: inside the cell, in a test tube and in a computer. Biochem Soc Trans 2016; 43:139-45. [PMID: 26020443 DOI: 10.1042/bst20140253] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DNA-interacting proteins have roles in multiple processes, many operating as molecular machines which undergo dynamic meta-stable transitions to bring about their biological function. To fully understand this molecular heterogeneity, DNA and the proteins that bind to it must ideally be interrogated at a single molecule level in their native in vivo environments, in a time-resolved manner, fast enough to sample the molecular transitions across the free-energy landscape. Progress has been made over the past decade in utilizing cutting-edge tools of the physical sciences to address challenging biological questions concerning the function and modes of action of several different proteins which bind to DNA. These physiologically relevant assays are technically challenging but can be complemented by powerful and often more tractable in vitro experiments which confer advantages of the chemical environment with enhanced detection signal-to-noise of molecular signatures and transition events. In the present paper, we discuss a range of techniques we have developed to monitor DNA-protein interactions in vivo, in vitro and in silico. These include bespoke single-molecule fluorescence microscopy techniques to elucidate the architecture and dynamics of the bacterial replisome and the structural maintenance of bacterial chromosomes, as well as new computational tools to extract single-molecule molecular signatures from live cells to monitor stoichiometry, spatial localization and mobility in living cells. We also discuss recent developments from our laboratory made in vitro, complementing these in vivo studies, which combine optical and magnetic tweezers to manipulate and image single molecules of DNA, with and without bound protein, in a new super-resolution fluorescence microscope.
Collapse
|
18
|
Glick Y, Orenstein Y, Chen D, Avrahami D, Zor T, Shamir R, Gerber D. Integrated microfluidic approach for quantitative high-throughput measurements of transcription factor binding affinities. Nucleic Acids Res 2015; 44:e51. [PMID: 26635393 PMCID: PMC4824076 DOI: 10.1093/nar/gkv1327] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 11/14/2015] [Indexed: 01/16/2023] Open
Abstract
Protein binding to DNA is a fundamental process in gene regulation. Methodologies such as ChIP-Seq and mapping of DNase I hypersensitive sites provide global information on this regulation in vivo In vitro methodologies provide valuable complementary information on protein-DNA specificities. However, current methods still do not measure absolute binding affinities. There is a real need for large-scale quantitative protein-DNA affinity measurements. We developed QPID, a microfluidic application for measuring protein-DNA affinities. A single run is equivalent to 4096 gel-shift experiments. Using QPID, we characterized the different affinities of ATF1, c-Jun, c-Fos and AP-1 to the CRE consensus motif and CRE half-site in two different genomic sequences on a single device. We discovered that binding of ATF1, but not of AP-1, to the CRE half-site is highly affected by its genomic context. This effect was highly correlated with ATF1 ChIP-seq and PBM experiments. Next, we characterized the affinities of ATF1 and ATF3 to 128 genomic CRE and CRE half-site sequences. Our affinity measurements explained that in vivo binding differences between ATF1 and ATF3 to CRE and CRE half-sites are partially mediated by differences in the minor groove width. We believe that QPID would become a central tool for quantitative characterization of biophysical aspects affecting protein-DNA binding.
Collapse
Affiliation(s)
- Yair Glick
- Mina and Evrard Goodman life science faculty, Bar Ilan University, Ramat-Gan, 5290002, Israel
| | - Yaron Orenstein
- Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Dana Chen
- Mina and Evrard Goodman life science faculty, Bar Ilan University, Ramat-Gan, 5290002, Israel
| | - Dorit Avrahami
- Mina and Evrard Goodman life science faculty, Bar Ilan University, Ramat-Gan, 5290002, Israel
| | - Tsaffrir Zor
- Department of Biochemistry & Molecular Biology, Life Sciences Institute, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Ron Shamir
- Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Doron Gerber
- Mina and Evrard Goodman life science faculty, Bar Ilan University, Ramat-Gan, 5290002, Israel
| |
Collapse
|
19
|
Ma Y, Tomita Y, Preet A, Clarke R, Englund E, Grindrod S, Nathan S, De Oliveira E, Brown ML, Rosen EM. Small-molecule "BRCA1-mimetics" are antagonists of estrogen receptor-α. Mol Endocrinol 2015; 28:1971-86. [PMID: 25264941 DOI: 10.1210/me.2014-1146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
CONTEXT Resistance to conventional antiestrogens is a major cause of treatment failure and, ultimately, death in breast cancer. OBJECTIVE The objective of the study was to identify small-molecule estrogen receptor (ER)-α antagonists that work differently from tamoxifen and other selective estrogen receptor modulators. DESIGN Based on in silico screening of a pharmacophore database using a computed model of the BRCA1-ER-α complex (with ER-α liganded to 17β-estradiol), we identified a candidate group of small-molecule compounds predicted to bind to a BRCA1-binding interface separate from the ligand-binding pocket and the coactivator binding site of ER-α. Among 40 candidate compounds, six inhibited estradiol-stimulated ER-α activity by at least 50% in breast carcinoma cells, with IC50 values ranging between 3 and 50 μM. These ER-α inhibitory compounds were further studied by molecular and cell biological techniques. RESULTS The compounds strongly inhibited ER-α activity at concentrations that yielded little or no nonspecific toxicity, but they produced only a modest inhibition of progesterone receptor activity. Importantly, the compounds blocked proliferation and inhibited ER-α activity about equally well in antiestrogen-sensitive and antiestrogen-resistant breast cancer cells. Representative compounds disrupted the interaction of BRCA1 and ER-α in the cultured cells and blocked the interaction of ER-α with the estrogen response element. However, the compounds had no effect on the total cellular ER-α levels. CONCLUSIONS These findings suggest that we have identified a new class of ER-α antagonists that work differently from conventional antiestrogens (eg, tamoxifen and fulvestrant).
Collapse
Affiliation(s)
- Yongxian Ma
- Departments of Oncology (Y.M., Y.T., A.P., R.C., E.E., S.G., S.N., E.D.O., M.L.B., E.M.R.), Biochemistry and Molecular and Cellular Biology (E.M.R.), Radiation Medicine (E.M.R.), and Center for Drug Discovery (Y.T., E.E., S.G., E.D.O., M.L.B.), Georgetown University School of Medicine, Washington, DC 20057
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang B, Lou Z, Park B, Kwon Y, Zhang H, Xu B. Surface conformations of an anti-ricin aptamer and its affinity for ricin determined by atomic force microscopy and surface plasmon resonance. Phys Chem Chem Phys 2015; 17:307-14. [PMID: 25181753 DOI: 10.1039/c4cp03190c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We used atomic force microscopy (AFM) and surface plasmon resonance (SPR) to study the surface conformations of an anti-ricin aptamer and its specific binding affinity for ricin molecules. The effect of surface modification of the Au(111) substrate on the aptamer affinity was also estimated. The AFM topography images had a resolution high enough to distinguish different aptamer conformations. The specific binding site on the aptamer molecule was clearly located by the AFM recognition images. The aptamer on a Au(111) surface modified with carboxymethylated-dextran (CD) showed both similarities to and differences from the one without CD modification. The influence of CD modification was evaluated using AFM images of various aptamer conformations on the Au(111) surface. The affinity between ricin and the anti-ricin aptamer was estimated using the off-rate values measured using AFM and SPR. The SPR measurements of the ricin sample were conducted in the range from 83.3 pM to 8.33 nM, and the limit of detection was estimated as 25 pM (1.5 ng mL(-1)). The off-rate values of the ricin-aptamer interactions were estimated using both single-molecule dynamic force spectroscopy (DFS) and SPR as (7.3 ± 0.4) × 10(-4) s(-1) and (1.82 ± 0.067) × 10(-2) s(-1), respectively. The results show that single-molecule measurements can obtain different reaction parameters from bulk solution measurements. In AFM single-molecule measurements, the various conformations of the aptamer immobilized on the gold surface determined the availability of each specific binding site to the ricin molecules. The SPR bulk solution measurements averaged the signals from specific and non-specific interactions. AFM images and DFS measurements provide more specific information on the interactions of individual aptamer and ricin molecules.
Collapse
Affiliation(s)
- B Wang
- Single Molecule Study Laboratory, Faculty of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA 30602, USA.
| | | | | | | | | | | |
Collapse
|
21
|
FRET-based analysis of protein-nucleic acid interactions by genetically incorporating a fluorescent amino acid. Amino Acids 2014; 47:729-34. [PMID: 25540052 DOI: 10.1007/s00726-014-1900-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/12/2014] [Indexed: 10/24/2022]
Abstract
Protein-nucleic acid interaction is an important process in many biological phenomena. In this study, a fluorescence resonance energy transfer (FRET)-based protein-DNA binding assay has been developed, in which a fluorescent amino acid is genetically incorporated into a DNA-binding protein. A coumarin-containing amino acid was incorporated into a DNA-binding protein, and the mutant protein specifically produced a FRET signal upon binding to its cognate DNA labeled with a fluorophore. The protein-DNA binding affinity was then measured under equilibrium conditions. This method is advantageous for studying protein-nucleic acid interactions, because it is performed under equilibrium conditions, technically easy, and applicable to any nucleic acid-binding protein.
Collapse
|
22
|
Ordinario DD, Burke AM, Phan L, Jocson JM, Wang H, Dickson MN, Gorodetsky AA. Sequence specific detection of restriction enzymes at DNA-modified carbon nanotube field effect transistors. Anal Chem 2014; 86:8628-33. [PMID: 25137193 DOI: 10.1021/ac501441d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Protein-DNA interactions play a central role in many cellular processes, and their misregulation has been implicated in a number of human diseases. Thus, there is a pressing need for the development of analytical strategies for interrogating the binding of proteins to DNA. Herein, we report the electrical monitoring of a prototypical DNA-binding protein, the PvuII restriction enzyme, at microfluidic-encapsulated, DNA-modified carbon nanotube field effect transistors. Our integrated platform enables the sensitive, sequence specific detection of PvuII at concentrations as low as 0.5 pM in a volume of 0.025 μL (corresponding to ~7500 proteins). These figures of merit compare favorably to state of the art values reported for alternative fluorescent and electrical assays. The overall detection strategy represents a step toward the massively parallel electrical monitoring, identification, and quantification of protein-DNA interactions at arrayed nanoscale devices.
Collapse
Affiliation(s)
- David D Ordinario
- Department of Chemical Engineering and Materials Science, University of California, Irvine , Irvine, California 92697, United States
| | | | | | | | | | | | | |
Collapse
|
23
|
Oberemok VV, Skorokhod OA. Single-stranded DNA fragments of insect-specific nuclear polyhedrosis virus act as selective DNA insecticides for gypsy moth control. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2014; 113:1-7. [PMID: 25052520 DOI: 10.1016/j.pestbp.2014.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 06/03/2023]
Abstract
This paper focuses on the DNA insecticides as a novel preparation against gypsy moth (Lymantria dispar) based on DNA fragments of the anti-apoptotic gene of its nuclear polyhedrosis virus. It was found that the external application of a solution with two single-stranded DNA fragments from BIR and RING domains of LdMNPV (L.dispar multicapsid nuclear polyhedrosis virus) IAP-3 (inhibitor of apoptosis) gene induces a significantly higher mortality of gypsy moth caterpillars in comparison with the application of the control solutions. This effect does not depend on the infection of caterpillars with LdMNPV. The results also show that DNA insecticides based on LdMNPV IAP-3 gene fragments can be selective in action, and at least are not harmful to tobacco hornworm (Manduca sexta) and black cutworm (Agrotis ipsilon). Part of the gypsy moth genome cloned with the fragments of BIR and RING domains of LdMNPV IAP-3 gene as primers, has an overlap with the corresponding part of the LdMNPV IAP-3 gene and L.dispar IAP-1 mRNA for an inhibitor of apoptosis protein with the high cover by query, allows assuming that we cloned a part of gypsy moth anti-apoptosis gene. This finding gives the grounding that proposed here DNA insecticides might act through the blocking of the mechanisms involved in post transcriptional expression of insect anti-apoptosis genes. The results show the insecticidal potential of the viral genome fragments that can be used to create safe and relatively fast-acting DNA insecticides to control the quantity of gypsy moth populations, important task for forestry and agriculture.
Collapse
Affiliation(s)
- Volodymyr V Oberemok
- Taurida National V.I. Vernadsky University, Department of Biochemistry, Vernadsky Avenue 4, Simferopol 95007, Ukraine.
| | - Oleksii A Skorokhod
- University of Torino, Department of Oncology, via Santena 5 bis, Torino 10126, Italy.
| |
Collapse
|
24
|
Impact of Residual Impurities and Contaminants on Protein Stability. J Pharm Sci 2014; 103:1315-30. [DOI: 10.1002/jps.23931] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 02/03/2023]
|
25
|
Machens F, Becker M, Umrath F, Hehl R. Identification of a novel type of WRKY transcription factor binding site in elicitor-responsive cis-sequences from Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2014; 84:371-85. [PMID: 24104863 DOI: 10.1007/s11103-013-0136-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/25/2013] [Indexed: 05/22/2023]
Abstract
Using a combination of bioinformatics and synthetic promoters, novel elicitor-responsive cis-sequences were discovered in promoters of pathogen-upregulated genes from Arabidopsis thaliana. One group of functional sequences contains the conserved core sequence GACTTTT. This core sequence and adjacent nucleotides are essential for elicitor-responsive gene expression in a parsley protoplast system. By yeast one-hybrid screening, WRKY70 was selected with a cis-sequence harbouring the core sequence GACTTTT but no known WRKY binding site (W-box). Transactivation experiments, mutation analyses, and electrophoretic mobility shift assays demonstrate that the sequence CGACTTTT is the binding site for WRKY70 in the investigated cis-sequence and is required for WRKY70-activated gene expression. Using several cis-sequences in transactivation experiments and binding studies, the CGACTTTT sequence can be extended to propose YGACTTTT as WRKY70 binding site. This binding site, designated WT-box, is enriched in promoters of genes upregulated in a WRKY70 overexpressing line. Interestingly, functional WRKY70 binding sites are present in the promoter of WRKY30, supporting recent evidence that both factors play a role in the same regulatory network.
Collapse
Affiliation(s)
- Fabian Machens
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | | | | | | |
Collapse
|
26
|
The Genomics of an Adaptive Radiation: Insights Across the Heliconius Speciation Continuum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 781:249-71. [DOI: 10.1007/978-94-007-7347-9_13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Kumari S, Ware D. Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots. PLoS One 2013; 8:e79011. [PMID: 24205361 PMCID: PMC3812177 DOI: 10.1371/journal.pone.0079011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 09/18/2013] [Indexed: 01/22/2023] Open
Abstract
Transcription initiation, essential to gene expression regulation, involves recruitment of basal transcription factors to the core promoter elements (CPEs). The distribution of currently known CPEs across plant genomes is largely unknown. This is the first large scale genome-wide report on the computational prediction of CPEs across eight plant genomes to help better understand the transcription initiation complex assembly. The distribution of thirteen known CPEs across four monocots (Brachypodium distachyon, Oryza sativa ssp. japonica, Sorghum bicolor, Zea mays) and four dicots (Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera, Glycine max) reveals the structural organization of the core promoter in relation to the TATA-box as well as with respect to other CPEs. The distribution of known CPE motifs with respect to transcription start site (TSS) exhibited positional conservation within monocots and dicots with slight differences across all eight genomes. Further, a more refined subset of annotated genes based on orthologs of the model monocot (O. sativa ssp. japonica) and dicot (A. thaliana) genomes supported the positional distribution of these thirteen known CPEs. DNA free energy profiles provided evidence that the structural properties of promoter regions are distinctly different from that of the non-regulatory genome sequence. It also showed that monocot core promoters have lower DNA free energy than dicot core promoters. The comparison of monocot and dicot promoter sequences highlights both the similarities and differences in the core promoter architecture irrespective of the species-specific nucleotide bias. This study will be useful for future work related to genome annotation projects and can inspire research efforts aimed to better understand regulatory mechanisms of transcription.
Collapse
Affiliation(s)
- Sunita Kumari
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America,
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America,
- United States Department of Agriculture-Agriculture Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
| |
Collapse
|
28
|
Ye Z, Zhang W, Liu L, Chen G, Shen Z, Zhou N. Fabrication of a colorimetric biosensing platform for the detection of protein–DNA interaction. Biosens Bioelectron 2013; 46:108-12. [DOI: 10.1016/j.bios.2013.02.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/01/2013] [Accepted: 02/16/2013] [Indexed: 10/27/2022]
|
29
|
Tailoring the models of transcription. Int J Mol Sci 2013; 14:7583-97. [PMID: 23567272 PMCID: PMC3645704 DOI: 10.3390/ijms14047583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 03/22/2013] [Accepted: 03/26/2013] [Indexed: 11/17/2022] Open
Abstract
Molecular biology is a rapidly evolving field that has led to the development of increasingly sophisticated technologies to improve our capacity to study cellular processes in much finer detail. Transcription is the first step in protein expression and the major point of regulation of the components that determine the characteristics, fate and functions of cells. The study of transcriptional regulation has been greatly facilitated by the development of reporter genes and transcription factor expression vectors, which have become versatile tools for manipulating promoters, as well as transcription factors in order to examine their function. The understanding of promoter complexity and transcription factor structure offers an insight into the mechanisms of transcriptional control and their impact on cell behaviour. This review focuses on some of the many applications of molecular cut-and-paste tools for the manipulation of promoters and transcription factors leading to the understanding of crucial aspects of transcriptional regulation.
Collapse
|