1
|
Bao S, Yin T, Liu S. Ovarian aging: energy metabolism of oocytes. J Ovarian Res 2024; 17:118. [PMID: 38822408 PMCID: PMC11141068 DOI: 10.1186/s13048-024-01427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/30/2024] [Indexed: 06/03/2024] Open
Abstract
In women who are getting older, the quantity and quality of their follicles or oocytes and decline. This is characterized by decreased ovarian reserve function (DOR), fewer remaining oocytes, and lower quality oocytes. As more women choose to delay childbirth, the decline in fertility associated with age has become a significant concern for modern women. The decline in oocyte quality is a key indicator of ovarian aging. Many studies suggest that age-related changes in oocyte energy metabolism may impact oocyte quality. Changes in oocyte energy metabolism affect adenosine 5'-triphosphate (ATP) production, but how related products and proteins influence oocyte quality remains largely unknown. This review focuses on oocyte metabolism in age-related ovarian aging and its potential impact on oocyte quality, as well as therapeutic strategies that may partially influence oocyte metabolism. This research aims to enhance our understanding of age-related changes in oocyte energy metabolism, and the identification of biomarkers and treatment methods.
Collapse
Affiliation(s)
- Shenglan Bao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, , Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China.
| |
Collapse
|
2
|
Xuan M, Gu X, Li J, Huang D, Xue C, He Y. Polyamines: their significance for maintaining health and contributing to diseases. Cell Commun Signal 2023; 21:348. [PMID: 38049863 PMCID: PMC10694995 DOI: 10.1186/s12964-023-01373-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/29/2023] [Indexed: 12/06/2023] Open
Abstract
Polyamines are essential for the growth and proliferation of mammalian cells and are intimately involved in biological mechanisms such as DNA replication, RNA transcription, protein synthesis, and post-translational modification. These mechanisms regulate cellular proliferation, differentiation, programmed cell death, and the formation of tumors. Several studies have confirmed the positive effect of polyamines on the maintenance of health, while others have demonstrated that their activity may promote the occurrence and progression of diseases. This review examines a variety of topics, such as polyamine source and metabolism, including metabolism, transport, and the potential impact of polyamines on health and disease. In addition, a brief summary of the effects of oncogenes and signaling pathways on tumor polyamine metabolism is provided. Video Abstract.
Collapse
Affiliation(s)
- Mengjuan Xuan
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xinyu Gu
- Department of Oncology, College of Clinical Medicine, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Juan Li
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chen Xue
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
3
|
Oral Supplementation with the Polyamine Spermidine Affects Hepatic but Not Pulmonary Lipid Metabolism in Lean but Not Obese Mice. Nutrients 2022; 14:nu14204318. [PMID: 36297003 PMCID: PMC9611404 DOI: 10.3390/nu14204318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The polyamine spermidine is discussed as a caloric restriction mimetic and therapeutic option for obesity and related comorbidities. This study tested oral spermidine supplementation with regard to the systemic, hepatic and pulmonary lipid metabolism under different diet conditions. Male C57BL/6 mice were fed a purified control (CD), high sucrose (HSD) or high fat (HFD) diet with (-S) or without spermidine for 30 weeks. In CD-fed mice, spermidine decreased body and adipose tissue weights and reduced hepatic lipid content. The HSD induced hepatic lipid synthesis and accumulation and hypercholesterolemia. This was not affected by spermidine supplementation, but body weight and blood glucose were lower in HSD-S compared to HSD. HFD-fed mice showed higher body and fat depot weights, prediabetes, hypercholesterolemia and severe liver steatosis, which were not altered by spermidine. Within the liver, spermidine diminished hepatic expression of lipogenic transcription factors SREBF1 and 2 under HSD and HFD and affected the expression of other lipid-related enzymes. In contrast, diet and spermidine exerted only minor effects on pulmonary parameters. Thus, oral spermidine supplementation affects lipid metabolism in a diet-dependent manner, with significant reductions in body fat and weight under physiological nutrition and positive effects on weight and blood glucose under high sucrose intake, but no impact on dietary fat-related parameters.
Collapse
|
4
|
Polyamines and Their Metabolism: From the Maintenance of Physiological Homeostasis to the Mediation of Disease. MEDICAL SCIENCES (BASEL, SWITZERLAND) 2022; 10:medsci10030038. [PMID: 35893120 PMCID: PMC9326668 DOI: 10.3390/medsci10030038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022]
Abstract
The polyamines spermidine and spermine are positively charged aliphatic molecules. They are critical in the regulation of nucleic acid and protein structures, protein synthesis, protein and nucleic acid interactions, oxidative balance, and cell proliferation. Cellular polyamine levels are tightly controlled through their import, export, de novo synthesis, and catabolism. Enzymes and enzymatic cascades involved in polyamine metabolism have been well characterized. This knowledge has been used for the development of novel compounds for research and medical applications. Furthermore, studies have shown that disturbances in polyamine levels and their metabolic pathways, as a result of spontaneous mutations in patients, genetic engineering in mice or experimentally induced injuries in rodents, are associated with multiple maladaptive changes. The adverse effects of altered polyamine metabolism have also been demonstrated in in vitro models. These observations highlight the important role these molecules and their metabolism play in the maintenance of physiological normalcy and the mediation of injury. This review will attempt to cover the extensive and diverse knowledge of the biological role of polyamines and their metabolism in the maintenance of physiological homeostasis and the mediation of tissue injury.
Collapse
|
5
|
Dysregulation of S-adenosylmethionine Metabolism in Nonalcoholic Steatohepatitis Leads to Polyamine Flux and Oxidative Stress. Int J Mol Sci 2022; 23:ijms23041986. [PMID: 35216100 PMCID: PMC8878801 DOI: 10.3390/ijms23041986] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the number one cause of chronic liver disease worldwide, with 25% of these patients developing nonalcoholic steatohepatitis (NASH). NASH significantly increases the risk of cirrhosis and decompensated liver failure. Past studies in rodent models have shown that glycine-N-methyltransferase (GNMT) knockout results in rapid steatosis, fibrosis, and hepatocellular carcinoma progression. However, the attenuation of GNMT in subjects with NASH and the molecular basis for its impact on the disease process is still unclear. To address this knowledge gap, we show the reduction of GNMT protein levels in the liver of NASH subjects compared to healthy controls. To gain insight into the impact of decreased GNMT in the disease process, we performed global label-free proteome studies on the livers from a murine modified amylin diet-based model of NASH. Histological and molecular characterization of the animal model demonstrate a high resemblance to human disease. We found that a reduction of GNMT leads to a significant increase in S-adenosylmethionine (AdoMet), an essential metabolite for transmethylation reactions and a substrate for polyamine synthesis. Further targeted proteomic and metabolomic studies demonstrated a decrease in GNMT transmethylation, increased flux through the polyamine pathway, and increased oxidative stress production contributing to NASH pathogenesis.
Collapse
|
6
|
Muñoz-Esparza NC, Vásquez-Garibay EM, Guzmán-Mercado E, Larrosa-Haro A, Comas-Basté O, Latorre-Moratalla ML, Veciana-Nogués MT, Vidal-Carou MC. Influence of the Type of Breastfeeding and Human Milk Polyamines on Infant Anthropometric Parameters. Front Nutr 2022; 8:815477. [PMID: 35071304 PMCID: PMC8770740 DOI: 10.3389/fnut.2021.815477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/09/2021] [Indexed: 11/22/2022] Open
Abstract
Feeding choices in the early months of life are key determinants of growth during infancy. Polyamines participate in cell proliferation and differentiation, and it has also been suggested that polyamine metabolism plays a role in adipogenesis. As the main exogenous source of polyamines in the infant is human milk, the aim of this work was to study if the type of breastfeeding received and the polyamine intake from human milk has an influence on infant anthropometric parameters. A cohort of 78 full-term healthy newborns was followed up until 4 months of age; 55 were fully and 23 partially breastfed. Anthropometric measurements were taken at 2 and 4 months, when human milk samples were also collected for analysis of polyamine content by UHPLC-FL. Fully breastfed infants had a better anthropometric profile than those partially breastfed (p < 0.05). Furthermore, polyamine intake in partially breastfed infants was significantly lower compared to those fully breastfed. However, only two of the 15 anthropometric indicators evaluated (triceps skinfold and mean upper arm circumference) showed a significant inverse association with polyamine content in human milk and intake (p < 0.05). Infant growth and body composition differ according to the type of breastfeeding received. Based on the weak associations between polyamines and anthropometric indicators, it is not possible to conclude the influence of polyamines in infant growth and body composition.
Collapse
Affiliation(s)
- Nelly C Muñoz-Esparza
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l'Alimentació, Campus de l'Alimentació de Torribera, Universitat de Barcelona, Santa Coloma de Gramenet, Spain.,Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona, Santa Coloma de Gramenet, Spain.,Xarxa d'Innovació Alimentària (XIA), Barcelona, Spain.,Instituto de Nutrición Humana, Universidad de Guadalajara, Guadalajara, Mexico
| | | | | | | | - Oriol Comas-Basté
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l'Alimentació, Campus de l'Alimentació de Torribera, Universitat de Barcelona, Santa Coloma de Gramenet, Spain.,Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona, Santa Coloma de Gramenet, Spain.,Xarxa d'Innovació Alimentària (XIA), Barcelona, Spain
| | - M Luz Latorre-Moratalla
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l'Alimentació, Campus de l'Alimentació de Torribera, Universitat de Barcelona, Santa Coloma de Gramenet, Spain.,Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona, Santa Coloma de Gramenet, Spain.,Xarxa d'Innovació Alimentària (XIA), Barcelona, Spain
| | - M Teresa Veciana-Nogués
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l'Alimentació, Campus de l'Alimentació de Torribera, Universitat de Barcelona, Santa Coloma de Gramenet, Spain.,Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona, Santa Coloma de Gramenet, Spain.,Xarxa d'Innovació Alimentària (XIA), Barcelona, Spain
| | - M Carmen Vidal-Carou
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l'Alimentació, Campus de l'Alimentació de Torribera, Universitat de Barcelona, Santa Coloma de Gramenet, Spain.,Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona, Santa Coloma de Gramenet, Spain.,Xarxa d'Innovació Alimentària (XIA), Barcelona, Spain
| |
Collapse
|
7
|
Bourgin M, Derosa L, Silva CAC, Goubet AG, Dubuisson A, Danlos FX, Grajeda-Iglesias C, Cerbone L, Geraud A, Laparra A, Aprahamian F, Nirmalathasan N, Madeo F, Zitvogel L, Kroemer G, Durand S. Circulating acetylated polyamines correlate with Covid-19 severity in cancer patients. Aging (Albany NY) 2021; 13:20860-20885. [PMID: 34517343 PMCID: PMC8457559 DOI: 10.18632/aging.203525] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022]
Abstract
Cancer patients are particularly susceptible to the development of severe Covid-19, prompting us to investigate the serum metabolome of 204 cancer patients enrolled in the ONCOVID trial. We previously described that the immunosuppressive tryptophan/kynurenine metabolite anthranilic acid correlates with poor prognosis in non-cancer patients. In cancer patients, we observed an elevation of anthranilic acid at baseline (without Covid-19 diagnosis) and no further increase with mild or severe Covid-19. We found that, in cancer patients, Covid-19 severity was associated with the depletion of two bacterial metabolites, indole-3-proprionate and 3-phenylproprionate, that both positively correlated with the levels of several inflammatory cytokines. Most importantly, we observed that the levels of acetylated polyamines (in particular N1-acetylspermidine, N1,N8-diacetylspermidine and N1,N12-diacetylspermine), alone or in aggregate, were elevated in severe Covid-19 cancer patients requiring hospitalization as compared to uninfected cancer patients or cancer patients with mild Covid-19. N1-acetylspermidine and N1,N8-diacetylspermidine were also increased in patients exhibiting prolonged viral shedding (>40 days). An abundant literature indicates that such acetylated polyamines increase in the serum from patients with cancer, cardiovascular disease or neurodegeneration, associated with poor prognosis. Our present work supports the contention that acetylated polyamines are associated with severe Covid-19, both in the general population and in patients with malignant disease. Severe Covid-19 is characterized by a specific metabolomic signature suggestive of the overactivation of spermine/spermidine N1-acetyl transferase-1 (SAT1), which catalyzes the first step of polyamine catabolism.
Collapse
Affiliation(s)
- Mélanie Bourgin
- Gustave Roussy Comprehensive Cancer Institute, Villejuif 94805, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris 75006, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif 94805, France
| | - Lisa Derosa
- Gustave Roussy Comprehensive Cancer Institute, Villejuif 94805, France
- Inserm U1015, Villejuif 94805, France
- Center of Clinical Investigations in Biotherapies of Cancer (Biotheris), Villejuif 94805, France
| | - Carolina Alves Costa Silva
- Gustave Roussy Comprehensive Cancer Institute, Villejuif 94805, France
- Inserm U1015, Villejuif 94805, France
- Center of Clinical Investigations in Biotherapies of Cancer (Biotheris), Villejuif 94805, France
- Faculty of Medicine, Université Paris Saclay, Le Kremlin-Bicêtre 94270, France
| | - Anne-Gaëlle Goubet
- Gustave Roussy Comprehensive Cancer Institute, Villejuif 94805, France
- Inserm U1015, Villejuif 94805, France
- Center of Clinical Investigations in Biotherapies of Cancer (Biotheris), Villejuif 94805, France
- Faculty of Medicine, Université Paris Saclay, Le Kremlin-Bicêtre 94270, France
| | - Agathe Dubuisson
- Gustave Roussy Comprehensive Cancer Institute, Villejuif 94805, France
- Inserm U1015, Villejuif 94805, France
| | - François-Xavier Danlos
- Gustave Roussy Comprehensive Cancer Institute, Villejuif 94805, France
- Faculty of Medicine, Université Paris Saclay, Le Kremlin-Bicêtre 94270, France
| | - Claudia Grajeda-Iglesias
- Gustave Roussy Comprehensive Cancer Institute, Villejuif 94805, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris 75006, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif 94805, France
| | - Luigi Cerbone
- Cancer Medicine Department, Gustave Roussy, Villejuif 94805, France
- Inserm U981, Villejuif 94805, France
| | - Arthur Geraud
- Department of Drug Development (DITEP), Gustave Roussy, Villejuif 94805, France
- Cancer Medicine Department, Gustave Roussy, Villejuif 94805, France
| | - Ariane Laparra
- Department of Drug Development (DITEP), Gustave Roussy, Villejuif 94805, France
| | - Fanny Aprahamian
- Gustave Roussy Comprehensive Cancer Institute, Villejuif 94805, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris 75006, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif 94805, France
| | - Nitharsshini Nirmalathasan
- Gustave Roussy Comprehensive Cancer Institute, Villejuif 94805, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris 75006, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif 94805, France
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz 8010, Austria
- BioTechMed-Graz, Graz 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz 8010, Austria
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif 94805, France
- Inserm U1015, Villejuif 94805, France
- Center of Clinical Investigations in Biotherapies of Cancer (Biotheris), Villejuif 94805, France
- Faculty of Medicine, Université Paris Saclay, Le Kremlin-Bicêtre 94270, France
| | - Guido Kroemer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif 94805, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris 75006, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif 94805, France
- Pôle De Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris 75015, France
| | - Sylvère Durand
- Gustave Roussy Comprehensive Cancer Institute, Villejuif 94805, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris 75006, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif 94805, France
| |
Collapse
|
8
|
Choksomngam Y, Pattanakuhar S, Chattipakorn N, Chattipakorn SC. The metabolic role of spermidine in obesity: Evidence from cells to community. Obes Res Clin Pract 2021; 15:315-326. [PMID: 34217652 DOI: 10.1016/j.orcp.2021.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 05/15/2021] [Accepted: 06/20/2021] [Indexed: 01/07/2023]
Abstract
Spermidine is a natural polyamine existing in all living cells known to play an important role in cellular functions. Recently, several studies have reported the effect of alterations in the spermidine pool on metabolic pathways. It has been shown that activation of spermidine/spermine N-1-acetyl-transferase (SSAT), the rate-limiting enzyme in polyamine catabolism, improved glucose and lipid metabolism. In addition, spermidine supplementation has been shown to protect against diet-induced obesity in animal models. However, some clinical studies demonstrated that polyamine levels are increased in childhood obesity and metabolic syndrome patients with type 2 diabetes (T2DM), while polyamine-rich food is associated with a lower incidence of cardiovascular disease (CVD). Therefore, this review aims to summarize and discuss the evidence from in vitro, in vivo and clinical studies on the possible roles of spermidine on metabolic pathways under physiological and obese conditions. All consistent and inconsistent findings are discussed and further studies aiming to fill any gaps in the knowledge are proposed.
Collapse
Affiliation(s)
- Yanee Choksomngam
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sintip Pattanakuhar
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand; Department of Rehabilitation Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
9
|
Ahrendt N, Steingrüber T, Rajces A, Lopez-Rodriguez E, Eisenberg T, Magnes C, Madeo F, Sedej S, Schmiedl A, Ochs M, Mühlfeld C, Schipke J. Spermidine supplementation and voluntary activity differentially affect obesity-related structural changes in the mouse lung. Am J Physiol Lung Cell Mol Physiol 2020; 319:L312-L324. [PMID: 32521164 DOI: 10.1152/ajplung.00423.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Obesity is associated with lung function impairment and respiratory diseases; however, the underlying pathophysiological mechanisms are still elusive, and therapeutic options are limited. This study examined the effects of prolonged excess fat intake on lung mechanics and microstructure and tested spermidine supplementation and physical activity as intervention strategies. C57BL/6N mice fed control diet (10% fat) or high-fat diet (HFD; 60% fat) were left untreated or were supplemented with 3 mM spermidine, had access to running wheels for voluntary activity, or a combination of both. After 30 wk, lung mechanics was assessed, and left lungs were analyzed by design-based stereology. HFD exerted minor effects on lung mechanics and resulted in higher body weight and elevated lung, air, and septal volumes. The number of alveoli was higher in HFD-fed animals. This was accompanied by an increase in epithelial, but not endothelial, surface area. Moreover, air-blood barrier and endothelium were significantly thicker. Neither treatment affected HFD-related body weights. Spermidine lowered lung volumes as well as endothelial and air-blood barrier thicknesses toward control levels and substantially increased the endothelial surface area under HFD. Activity resulted in decreased volumes of lung, septa, and septal compartments but did not affect vascular changes in HFD-fed mice. The combination treatment showed no additive effect. In conclusion, excess fat consumption induced alveolar capillary remodeling indicative of impaired perfusion and gas diffusion. Spermidine alleviated obesity-related endothelial alterations, indicating a beneficial effect, whereas physical activity reduced lung volumes apparently by other, possibly systemic effects.
Collapse
Affiliation(s)
- Nancy Ahrendt
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Tobias Steingrüber
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Alexandra Rajces
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany.,Institute of Vegetative Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Christoph Magnes
- Joanneum Research, HEALTH-Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Andreas Schmiedl
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany.,Institute of Vegetative Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Julia Schipke
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| |
Collapse
|
10
|
Leon KE, Fruin AM, Nowotarski SL, DiAngelo JR. The regulation of triglyceride storage by ornithine decarboxylase (Odc1) in Drosophila. Biochem Biophys Res Commun 2019; 523:429-433. [PMID: 31870547 DOI: 10.1016/j.bbrc.2019.12.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022]
Abstract
Polyamines are low molecular weight, organic cations that play a critical role in many major cellular processes including cell cycle regulation and apoptosis, cellular division, tissue proliferation, and cellular differentiation; however, the functions of polyamines in regulating the storage of metabolic fuels such as triglycerides and glycogen is poorly understood. To address this question, we focused on the Drosophila homolog of ornithine decarboxylase (Odc1), the first rate-limiting enzyme in the synthesis of polyamines. Mutants in Odc1 are lethal, but heterozygotes were viable to adulthood. Odc1 heterozygotes appeared larger than their genetic background control flies and consistent with this observation, weighed more than the controls. However, the increased weight was not due to increased food consumption as heterozygotes ate less than the controls. Interestingly, Odc1 heterozygous flies had augmented triglyceride storage, and this lipid phenotype was due to increased triglyceride storage per cell and an increase in the number of fat cells produced. Odc1 heterozygous flies also displayed increased expression of the lipid synthesis genes fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC), suggesting increased lipid synthesis was the cause of the augmented triglyceride phenotype. These results provide a link between the expression of Odc1 and triglyceride storage suggesting that the polyamine pathway plays a role in regulating lipid metabolism.
Collapse
Affiliation(s)
- Kelly E Leon
- Division of Science, Pennsylvania State University, Berks Campus, Reading, PA, 19610, USA
| | - Austin M Fruin
- Division of Science, Pennsylvania State University, Berks Campus, Reading, PA, 19610, USA
| | - Shannon L Nowotarski
- Division of Science, Pennsylvania State University, Berks Campus, Reading, PA, 19610, USA.
| | - Justin R DiAngelo
- Division of Science, Pennsylvania State University, Berks Campus, Reading, PA, 19610, USA.
| |
Collapse
|
11
|
What if? Mouse proteomics after gene inactivation. J Proteomics 2019; 199:102-122. [DOI: 10.1016/j.jprot.2019.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 12/17/2022]
|
12
|
Schipke J, Vital M, Schnapper-Isl A, Pieper DH, Mühlfeld C. Spermidine and Voluntary Activity Exert Differential Effects on Sucrose- Compared with Fat-Induced Systemic Changes in Male Mice. J Nutr 2019; 149:451-462. [PMID: 30715385 DOI: 10.1093/jn/nxy272] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/06/2018] [Accepted: 09/21/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Excess dietary fat and sugar are linked to obesity and metabolic syndrome. Polyamines such as spermidine are implicated in fat accumulation and may support activity-induced weight loss. OBJECTIVE This study tested interventional spermidine supplementation and voluntary activity against fat- and sucrose-induced systemic and gut microbiota changes. METHODS A 3-factorial study design (3 × 2 × 2) was used to test the factors diet, activity, and spermidine. Male 6-wk-old C57BL/6N mice were fed a control diet (CD; carbohydrate:protein:fat, 70%:20%:10% of energy; 7% sucrose), a high-fat diet (HFD; carbohydrate:protein:fat, 20%:20%:60% of energy; 7% sucrose), or a high-sucrose diet (HSD; carbohydrate:protein:fat, 70%:20%:10% of energy; 35% sucrose). Diet groups were left untreated (+0) or had unlimited access to running wheels (+A) or were supplemented with 3 mM spermidine via drinking water (+S) or a combination of both (+A+S) for 30 wk (n = 7-10). RESULTS In comparison to the CD, the HFD enhanced body weights (by 36%, P < 0.001), plasma lipids (cholesterol by 24%, P < 0.001; triglycerides by 27%, P = 0.004), and glucose concentrations (by 18%, P < 0.001), whereas the HSD increased weight by 13% (P < 0.001) and fasting glucose by 17% (P < 0.001) but did not increase plasma lipids. Microbiota taxonomic composition changed upon the HFD and HSD (both P < 0.001); however, only the HSD increased microbial diversity (P < 0.001) compared with the CD. Activity influenced microbiota composition (P < 0.01) and reduced glucose concentrations in HSD-fed (P = 0.021) and HFD-fed (P < 0.001) mice compared with nonactive mice. The combination of activity and spermidine affected energy intake (P-interaction = 0.037) and reduced body weights of HSD+A+S mice compared with HSD+0 mice (P = 0.024). CONCLUSIONS In male C57BL/6N mice, dietary sucrose and fat caused diverse metabolic and microbiota changes that were differentially susceptible to physical exercise. Spermidine has the potential to augment activity-induced beneficial effects, particularly for sucrose-induced obesity.
Collapse
Affiliation(s)
- Julia Schipke
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Marius Vital
- Microbial Interactions and Processes, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | - Anke Schnapper-Isl
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
13
|
Yuan F, Zhang L, Cao Y, Gao W, Zhao C, Fang Y, Zahedi K, Soleimani M, Lu X, Fang Z, Yang Q. Spermidine/spermine N1-acetyltransferase-mediated polyamine catabolism regulates beige adipocyte biogenesis. Metabolism 2018; 85:298-304. [PMID: 29715464 PMCID: PMC7269456 DOI: 10.1016/j.metabol.2018.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Cold and β3-adrenergic receptor (AR) agonists activate beige adipocyte biogenesis in white adipose tissue (WAT). The two stimuli also induce expression of inflammatory cytokines in WAT. The low-grade inflammation may further promote WAT browning. However, the mechanisms to reconcile these two biological processes remain to be elucidated. In this study, we aim to investigate the roles of the rate-limiting polyamine catabolic enzyme spermidine/spermine N1-acetyltransferase (SAT1) in regulating beige adipocyte biogenesis and inflammation. METHODS Adipose-specific SAT1 knockout mice (SAT1-aKO) were generated by crossing adiponectin-cre to SAT1-lox/lox mice. Metabolic phenotype was investigated. Primary pre-adipocytes were isolated from inguinal WAT (iWAT) and differentiated to adipocytes for studying beige adipocyte biogenesis. RESULT The expression and enzymatic activity of SAT1 were up-regulated in iWAT upon cold and β3-AR stimulation. SAT1-aKO mice developed late-onset obesity on a high-fat diet with impaired cold-induced beige adipocyte biogenesis and energy expenditure. RNA-seq analysis of iWAT from cold-challenged SAT1-aKO mice revealed that, in addition to beige adipocyte biogenesis signatures, the immune response markers were highly enriched among reduced genes. In cultured adipocytes, SAT1 overexpression or pharmacological activation with N1, N11-diethylnorspermine (DENSpm) elevated oxygen consumption and increased the expression of beige adipocyte marker UCP1 and PGC-1α. DENSpm treatment of adipocytes also increased the expression of inflammatory genes. SAT1 activation enhanced hydrogen peroxide production in adipocytes. Antioxidant N-acetylcysteine abrogated the elevated UCP1 expression and reversed some inflammatory genes induced by SAT1 activation. CONCLUSIONS SAT1 activation plays a key role in cold and β3-AR agonist-induced beige adipocyte biogenesis and low-grade inflammation.
Collapse
Affiliation(s)
- Fang Yuan
- First Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Department of Medicine, Physiology and Biophysics, Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Lin Zhang
- Department of Medicine, Physiology and Biophysics, Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA; College of Animal Science, South China Agricultural University, Guangzhou 512642, China
| | - Yang Cao
- Department of Medicine, Physiology and Biophysics, Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Wei Gao
- Department of Medicine, Physiology and Biophysics, Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA; Department of Geriatrics, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Can Zhao
- Department of Medicine, Physiology and Biophysics, Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA; Department of Geriatrics, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Yuan Fang
- First Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Department of Medicine, Physiology and Biophysics, Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Kamyar Zahedi
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Cincinnati College of Medicine, USA
| | - Manoocher Soleimani
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Cincinnati College of Medicine, USA
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Zhuyuan Fang
- First Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| | - Qin Yang
- Department of Medicine, Physiology and Biophysics, Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
14
|
Martinez B, Khudyakov J, Rutherford K, Crocker DE, Gemmell N, Ortiz RM. Adipose transcriptome analysis provides novel insights into molecular regulation of prolonged fasting in northern elephant seal pups. Physiol Genomics 2018; 50:495-503. [PMID: 29625017 DOI: 10.1152/physiolgenomics.00002.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The physiological and cellular adaptations to extreme fasting in northern elephant seals ( Mirounga angustirostris, NES) are remarkable and may help to elucidate endocrine mechanisms that regulate lipid metabolism and energy homeostasis in mammals. Recent studies have highlighted the importance of thyroid hormones in the maintenance of a lipid-based metabolism during prolonged fasting in weaned NES pups. To identify additional molecular regulators of fasting, we used a transcriptomics approach to examine changes in global gene expression profiles before and after 6-8 wk of fasting in weaned NES pups. We produced a de novo assembly and identified 98 unique protein-coding genes that were differentially expressed between early and late fasting. Most of the downregulated genes were associated with lipid, carbohydrate, and protein metabolism. A number of downregulated genes were also associated with maintenance of the extracellular matrix, consistent with tissue remodeling during weight loss and the multifunctional nature of blubber tissue, which plays both metabolic and structural roles in marine mammals. Using this data set, we predict potential mechanisms by which NES pups sustain metabolism and regulate adipose stores throughout the fast, and provide a valuable resource for additional studies of extreme metabolic adaptations in mammals.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Molecular & Cellular Biology, University of California, Merced, California.,Department of Medicine, St. George's University School of Medicine, St. George, Grenada.,Department of Anatomy, University of Otago , Dunedin , New Zealand.,Department of Physics and Engineering, Los Alamos National Laboratory , Los Alamos, New Mexico
| | - Jane Khudyakov
- Department of Biological Sciences, University of the Pacific , Stockton, California
| | - Kim Rutherford
- Department of Anatomy, University of Otago , Dunedin , New Zealand
| | - Daniel E Crocker
- Department of Biology, Sonoma State University , Rohnert Park, California
| | - Neil Gemmell
- Department of Anatomy, University of Otago , Dunedin , New Zealand
| | - Rudy M Ortiz
- Department of Molecular & Cellular Biology, University of California, Merced, California
| |
Collapse
|
15
|
Arruabarrena-Aristorena A, Zabala-Letona A, Carracedo A. Oil for the cancer engine: The cross-talk between oncogenic signaling and polyamine metabolism. SCIENCE ADVANCES 2018; 4:eaar2606. [PMID: 29376126 PMCID: PMC5783676 DOI: 10.1126/sciadv.aar2606] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/28/2017] [Indexed: 05/09/2023]
Abstract
The study of metabolism has provided remarkable information about the biological basis and therapeutic weaknesses of cancer cells. Classic biochemistry established the importance of metabolic alterations in tumor biology and revealed the importance of various metabolite families to the tumorigenic process. We have evidence of the central role of polyamines, small polycatonic metabolites, in cell proliferation and cancer growth from these studies. However, how cancer cells activate this metabolic pathway and the molecular cues behind the oncogenic action of polyamines has remained largely obscure. In contrast to the view of metabolites as fuel (anabolic intermediates) for cancer cells, polyamines are better defined as the oil that lubricates the cancer engine because they affect the activity of biological processes. Modern research has brought back to the limelight this metabolic pathway, providing a strong link between genetic, metabolic, and signaling events in cancer. In this review, we enumerate and discuss current views of the regulation and activity of polyamine metabolism in tumor cell biology.
Collapse
Affiliation(s)
| | - Amaia Zabala-Letona
- CIC bioGUNE, Bizkaia Technology Park, 801A Building, 48160 Derio, Bizkaia, Spain
- CIBERONC Centro de Investigación Biomédica en Red de Cáncer, Avenida Monforte de Lemos, Madrid, Spain
| | - Arkaitz Carracedo
- CIC bioGUNE, Bizkaia Technology Park, 801A Building, 48160 Derio, Bizkaia, Spain
- CIBERONC Centro de Investigación Biomédica en Red de Cáncer, Avenida Monforte de Lemos, Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Spain
| |
Collapse
|
16
|
Bonhoure N, Byrnes A, Moir RD, Hodroj W, Preitner F, Praz V, Marcelin G, Chua SC, Martinez-Lopez N, Singh R, Moullan N, Auwerx J, Willemin G, Shah H, Hartil K, Vaitheesvaran B, Kurland I, Hernandez N, Willis IM. Loss of the RNA polymerase III repressor MAF1 confers obesity resistance. Genes Dev 2015; 29:934-47. [PMID: 25934505 PMCID: PMC4421982 DOI: 10.1101/gad.258350.115] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
MAF1 is a global repressor of RNA polymerase III transcription that regulates the expression of highly abundant noncoding RNAs in response to nutrient availability and cellular stress. Thus, MAF1 function is thought to be important for metabolic economy. Here we show that a whole-body knockout of Maf1 in mice confers resistance to diet-induced obesity and nonalcoholic fatty liver disease by reducing food intake and increasing metabolic inefficiency. Energy expenditure in Maf1(-/-) mice is increased by several mechanisms. Precursor tRNA synthesis was increased in multiple tissues without significant effects on mature tRNA levels, implying increased turnover in a futile tRNA cycle. Elevated futile cycling of hepatic lipids was also observed. Metabolite profiling of the liver and skeletal muscle revealed elevated levels of many amino acids and spermidine, which links the induction of autophagy in Maf1(-/-) mice with their extended life span. The increase in spermidine was accompanied by reduced levels of nicotinamide N-methyltransferase, which promotes polyamine synthesis, enables nicotinamide salvage to regenerate NAD(+), and is associated with obesity resistance. Consistent with this, NAD(+) levels were increased in muscle. The importance of MAF1 for metabolic economy reveals the potential for MAF1 modulators to protect against obesity and its harmful consequences.
Collapse
Affiliation(s)
- Nicolas Bonhoure
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ashlee Byrnes
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robyn D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Wassim Hodroj
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Frédéric Preitner
- Mouse Metabolic Evaluation Facility, Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Viviane Praz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Genevieve Marcelin
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Streamson C Chua
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA; Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Nuria Martinez-Lopez
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Rajat Singh
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA; Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Norman Moullan
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Gilles Willemin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; Mouse Metabolic Evaluation Facility, Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Hardik Shah
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Kirsten Hartil
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Bhavapriya Vaitheesvaran
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Irwin Kurland
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA; Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland;
| | - Ian M Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA; Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA;
| |
Collapse
|
17
|
Merali S, Barrero CA, Sacktor NC, Haughey NJ, Datta PK, Langford D, Khalili K. Polyamines: Predictive Biomarker for HIV-Associated Neurocognitive Disorders. ACTA ACUST UNITED AC 2014; 5:1000312. [PMID: 25893137 PMCID: PMC4397651 DOI: 10.4172/2155-6113.1000312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objectives Spermidine/spermine-N1-acetytransferase (SSAT) is the key enzyme in the catabolism of polyamines that are involved in regulating NMDA functioning. Over expression of SSAT leads to abnormal metabolic cycling and may disrupt NMDA receptor signaling. In fact, the HIV protein Tat induces neurotoxicity involving polyamine/NMDA receptor interactions. Thus, we investigated abnormal polyamine cycling in HIV+ participants with varying degrees of HIV-associated neurocognitive disorders. Methods Acetyl-polyamine (SSAT products) levels were assessed by HPLC in CSF from 99 HIV-infected participants (no cognitive impairment (NCI, n=25), asymptomatic neurocognitive impairment (ANI, n=25), mild cognitive and motor disorders (MCMD, n=24), and HIV-associated dementia (HAD, n=25)). Polyamine levels in brain tissues from a subset of participants (uninfected (n=3), NCI (n=3), and MNCD (n=3)) were also assessed. Human primary astrocytes expressing HIV Tat were assessed for levels of the SSAT activity. Results Activation of the polyamine catabolic enzyme, SSAT increases polyamine flux in brain and CSF of HIV infected individuals with HIV-associated neurocognitive disorders. CSF levels of acetylated polyamine increase with the degree of HAND severity as indicated by significantly increased acetylpolyamine levels in HAD participants compared to NCI and ANI (p<0.0001) and between MCMD and NCI and ANI (p<0.0001). In vitro studies suggest that the HIV protein Tat may be responsible in part for astrocyte-derived acetyl polyamine release. Interpretation Our data suggest that polyamine metabolism may play a pivotal role in the neurodegeneration process among HAND patients. Changes in polyamine flux may serve as a potential predictive diagnostic biomarker for different severities of HAND.
Collapse
Affiliation(s)
- Salim Merali
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania, USA
| | - Carlos A Barrero
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania, USA
| | - Ned C Sacktor
- Department of Neurology, Johns Hopkins Memory and Alzheimer's Disease Treatment Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Norman J Haughey
- Department of Neurology, Richard T Johnson Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Prasun K Datta
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dianne Langford
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|