1
|
Chen X, Jin J, Chang R, Yang X, Li N, Zhu X, Ma L, Li Y. Targeting the sulfur-containing amino acid pathway in leukemia. Amino Acids 2024; 56:47. [PMID: 39060524 PMCID: PMC11281984 DOI: 10.1007/s00726-024-03402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/16/2024] [Indexed: 07/28/2024]
Abstract
sulfur-containing amino acids have been reported to patriciate in gene regulation, DNA methylation, protein synthesis and other physiological or pathological processes. In recent years, metabolism-related molecules of sulfur-containing amino acids affecting the occurrence, development and treatment of tumors have been implicated in various disorders, especially in leukemia. Here, we summarize current knowledge on the sulfur-containing amino acid metabolism pathway in leukemia and examine ongoing efforts to target this pathway, including treatment strategies targeting (a) sulfur-containing amino acids, (b) metabolites of sulfur-containing amino acids, and (c) enzymes and cofactors related to sulfur-containing amino acid metabolism in leukemia. Future leukemia therapy will likely involve innovative strategies targeting the sulfur-containing amino acid metabolism pathway.
Collapse
Affiliation(s)
- Xiaoyan Chen
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jiahui Jin
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Rui Chang
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xing Yang
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Na Li
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xi Zhu
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong new area, Shanghai, 201318, China
| | - Linlin Ma
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Yanfei Li
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong new area, Shanghai, 201318, China.
| |
Collapse
|
2
|
Ommati MM, Mobasheri A, Ma Y, Xu D, Tang Z, Manthari RK, Abdoli N, Azarpira N, Lu Y, Sadeghian I, Mousavifaraz A, Nadgaran A, Nikoozadeh A, Mazloomi S, Mehrabani PS, Rezaei M, Xin H, Mingyu Y, Niknahad H, Heidari R. Taurine mitigates the development of pulmonary inflammation, oxidative stress, and histopathological alterations in a rat model of bile duct ligation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1557-1572. [PMID: 36097067 DOI: 10.1007/s00210-022-02291-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Lung injury is a significant complication associated with cholestasis/cirrhosis. This problem significantly increases the risk of cirrhosis-related morbidity and mortality. Hence, finding effective therapeutic options in this field has significant clinical value. Severe inflammation and oxidative stress are involved in the mechanism of cirrhosis-induced lung injury. Taurine (TAU) is an abundant amino acid with substantial anti-inflammatory and antioxidative properties. The current study was designed to evaluate the role of TAU in cholestasis-related lung injury. For this purpose, bile duct ligated (BDL) rats were treated with TAU (0.5 and 1% w: v in drinking water). Significant increases in the broncho-alveolar lavage fluid (BALF) level of inflammatory cells (lymphocytes, neutrophils, basophils, monocytes, and eosinophils), increased IgG, and TNF-α were detected in the BDL animals (14 and 28 days after the BDL surgery). Alveolar congestion, hemorrhage, and fibrosis were the dominant pulmonary histopathological changes in the BDL group. Significant increases in the pulmonary tissue biomarkers of oxidative stress, including reactive oxygen species formation, lipid peroxidation, increased oxidized glutathione levels, and decreased reduced glutathione, were also detected in the BDL rats. Moreover, significant myeloperoxidase activity and nitric oxide levels were seen in the lung of BDL rats. It was found that TAU significantly blunted inflammation, alleviated oxidative stress, and mitigated lung histopathological changes in BDL animals. These data suggest TAU as a potential protective agent against cholestasis/cirrhosis-related lung injury.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mobasheri
- Physics, and Technology, Faculty of Medicine, Research Unit of Medical Imaging, University of Oulu, 90014, Oulu, Finland
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
- Department of Regenerative Medicine, State Research Institute Center for Innovative Medicine, 08406, Vilnius, Lithuania
| | - Yanqin Ma
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Dongmei Xu
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zhongwei Tang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM Institute of Science, Gandhi Institute of Technology and Management, Visakhapatnam-530045, Andhra Pradesh, India
| | - Narges Abdoli
- Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Negar Azarpira
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yu Lu
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolghasem Mousavifaraz
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Nadgaran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Nikoozadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahra Mazloomi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooria Sayar Mehrabani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Rezaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hu Xin
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yang Mingyu
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Naddafi M, Eghbal MA, Ghazi Khansari M, Sattari MR, Azarmi Y, Samadi M, Mehrizi AA. Sensing of oxidative stress biomarkers: The cardioprotective effect of taurine & grape seed extract against the poisoning induced by an agricultural pesticide aluminum phosphide. CHEMOSPHERE 2022; 287:132245. [PMID: 34543908 DOI: 10.1016/j.chemosphere.2021.132245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/24/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Aluminum phosphide is a well-known hazardous agent used as an agricultural pesticide to protect stored grains from insect damage. However, accidental consumption of a trivial amount of it caused irreversible damage to the human body or even death in acute cases. The present study used taurine and grape seed extract as a natural cardioprotective medicine against aluminum phosphide poisoning by decreasing oxidative stress. The activity of oxidative stress biomarkers (Malondialdehyde, Catalase, Protein carbonyl, and Superoxide dismutase) were evaluated in the cell line model on Human Cardiac Myocyte cells. In the beginning, to clarify the pure impact of aluminum phosphide poison, taurine, and grape seed extract on the human heart cells, their effects on the biomarkers quantity in cell line were measured. Subsequently, the effect of taurine and grape seed extract with various concentrations as a treatment on the oxidative stress biomarkers of the poisoned heart cells were studied. Data analysis reveals that taurine and grape seed extract treatment can successfully diminish the poisoning effect by their antioxidant properties. The oxidative markers values of the poisoned cells were recovered by taurine and grape seed extracts treatment. Taurine (2 g/l) can recover Malondialdehyde, Catalase, Protein carbonyl, and Superoxide dismutase by 56%, 78%, 88%, 78%, when the recovering power of grape seed extract (100 g/l) for the aforementioned enzymes are 56%, 0.71%,74%, 51%, respectively. Therefore, it is clear that the performance of taurine in the recovery of the biomarkers' value is better than grape seed extract.
Collapse
Affiliation(s)
- Mastoureh Naddafi
- Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ali Eghbal
- Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahmoud Ghazi Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Sattari
- Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Azarmi
- Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahedeh Samadi
- Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbasali Abouei Mehrizi
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
4
|
Zhang L, Duan W, Huang Y, Zhang Y, Sun B, Pu D, Tang Y, Liu C. Sensory taste properties of chicken (Hy-Line brown) soup as prepared with five different parts of the chicken. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1828455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lili Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Wen Duan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Yan Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Yuyu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Dandan Pu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Yizhuang Tang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Chao Liu
- Biotech research department, DadHank (Chengdu) Biotech Corp., Chengdu, China
| |
Collapse
|
5
|
Ommati MM, Farshad O, Jamshidzadeh A, Heidari R. Taurine enhances skeletal muscle mitochondrial function in a rat model of resistance training. PHARMANUTRITION 2019. [DOI: 10.1016/j.phanu.2019.100161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Heidari R, Behnamrad S, Khodami Z, Ommati MM, Azarpira N, Vazin A. The nephroprotective properties of taurine in colistin-treated mice is mediated through the regulation of mitochondrial function and mitigation of oxidative stress. Biomed Pharmacother 2019; 109:103-111. [DOI: 10.1016/j.biopha.2018.10.093] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022] Open
|
7
|
Mitochondria protecting amino acids: Application against a wide range of mitochondria-linked complications. PHARMANUTRITION 2018. [DOI: 10.1016/j.phanu.2018.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Um JH, Kim EA, Lee W, Kang N, Han EJ, Oh JY, Park SY, Jeon YJ, Lee SH, Ahn G. Protective Effects of An Enzymatic Hydrolysate from Octopus ocellatus Meat against Hydrogen Peroxide-Induced Oxidative Stress in Chang Liver Cells and Zebrafish Embryo. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:603-620. [PMID: 28849485 DOI: 10.1007/978-94-024-1079-2_47] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Octopus ocellatus, a marine cephalopod distributed in the coast of South Korea, China, Japan and tropical sea, contains high amounts of taurine. In this study, an enzymatic hydrolysate obtained from O. ocellatus meat was evaluated for its antioxidant effects using a human liver cell line and zebrafish embryo model. Enzymatic hydrolysates of the O. ocellatus meat (OOM) were prepared using six different enzymes. Among the enzymatic hydrolysates, Alcalase hydrolysate of OOM (OOMAH) showed the highest scavenging effects against 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) radicals and hydrogen peroxide (H2O2). Moreover, it showed a high oxygen radical absorbance capacity (ORAC). OOMAH treatment effectively reduced the hydroxyl radical-induced DNA damage. OOMAH reduced the production of reactive oxygen species (ROS) in H2O2-treated hepatocytes without cytotoxicity. Furthermore, OOMAH improved the survival rate and reduced the intracellular ROS levels in H2O2-treated zebrafish embryos. Compositional analysis of amino acids indicated a high content of taurine in OOMAH. Current results suggest that OOMAH possesses antioxidant bioactivities and could provide protective effects against H2O2-induced oxidative stress. Therefore, OOMAH might be used as a potential resource of functional foods.
Collapse
Affiliation(s)
- Ju Hyung Um
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, South Korea
| | - Eun-A Kim
- Department of Marine Life Science, Jeju National University, Jeju, South Korea
| | - WonWoo Lee
- Department of Marine Life Science, Jeju National University, Jeju, South Korea
| | - Nalae Kang
- Department of Marine Life Science, Jeju National University, Jeju, South Korea
| | - Eui Jeong Han
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, South Korea
| | - Jae Young Oh
- Department of Marine Life Science, Jeju National University, Jeju, South Korea
| | - Soo Yeon Park
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, South Korea
| | - You-Jin Jeon
- Division of Food Bioscience and Korea Nokyong Research Center, Konkuk University, Chungju, South Korea
| | - Seung-Hong Lee
- Division of Food Bioscience and Korea Nokyong Research Center, Konkuk University, Chungju, South Korea
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, South Korea.
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, South Korea.
| |
Collapse
|
9
|
Han EJ, Um JH, Kim EA, Lee W, Kang N, Oh JY, Park SY, Jeon YJ, Ahn CB, Lee SH, Ahn G. Protective Effects of An Water Extracts Prepared from Loliolus beka Gray Meat Against H 2O 2-Induced Oxidative Stress in Chang Liver Cells and Zebrafish Embryo Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:585-601. [PMID: 28849484 DOI: 10.1007/978-94-024-1079-2_46] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, we first evaluated protective effects of Loliolus beka in a human liver cell line and zebrafish embryo model with its anti-oxidant activity. First, we prepared the water extract from L. beka meat (LBMW) at room temperature for 24 h and revealed it consisted of a rich taurine. LBMW exhibited the scavenging effects against 2,2-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and hydrogen peroxide (H2O2) as well as the high value of oxygen radical absorbance capacity (ORAC). Also, the hydroxyl radical-induced DNA damage was dose-dependently reduced by the treatment of LBMW. In addition, LBMW showed no cytotoxicity and reduced the production of reactive oxygen species (ROS) in H2O2-treated hepatocytes. Moreover, LBMW regulated the expression of an anti-apoptotic molecule, Bcl-2 and the expression of pro-apoptotic molecules, Bax and PARP in H2O2-treated hepatocytes as well as the increment of antioxidant mediated-HO-1 and Nrf2 protein expression. In further study, LBMW improved the survival rate and decreased the production of ROS in H2O2-treated zebrafish embryo model. Therefore, our results suggest that Loliolus beka has protective effects against H2O2-induced oxidative stress and may be used as a potential source for functional foods.
Collapse
Affiliation(s)
- Eui Jeong Han
- Deparment of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
| | - Ju Hyung Um
- Deparment of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
| | - Eun A Kim
- Jeju International Marine Science Center for Research and Education, Korea Institute of Ocean Science & Technology (KIOST), Jeju, Republic of Korea
| | - WonWoo Lee
- Department of Marine Life Science, Jeju National University, Jeju, Republic of Korea
| | - Nalae Kang
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, Republic of Korea
| | - Jae Young Oh
- Department of Marine Life Science, Jeju National University, Jeju, Republic of Korea
| | - Soo Yeon Park
- Deparment of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju, Republic of Korea
| | - Chang-Bum Ahn
- Deparment of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
- Division of Food and Nutrition, Chonnam National University, Gwang ju, Republic of Korea
| | - Seung Hong Lee
- Division of Food Bioscience and Korea Nokyong Research Center, Konkuk University, Chungju, Republic of Korea
| | - Ginnae Ahn
- Deparment of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea.
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, Republic of Korea.
| |
Collapse
|
10
|
Schaalan MF, Ramadan BK, H. Abd Elwahab A. Ameliorative effect of taurine-chloramine in azathioprine-induced testicular damage; a deeper insight into the mechanism of protection. Altern Ther Health Med 2018; 18:255. [PMID: 30223827 PMCID: PMC6142322 DOI: 10.1186/s12906-018-2272-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/26/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND The male reproductive system is a sensitive and intricate process that can be distressed following exposure to various toxicants. Therapeutic drugs, especially chemotherapeutics, can also adversely affect male fertility by instigating hormonal changes leading to testicular cells injury. Azathioprine (AZA) is an effective anticancer drug, but some cases of testicular toxicity have been reported. The aim of this work was to investigate the protective effects of taurine chloramine (TAU-Cl), a reported antioxidant and antiinflammtory peptide, against AZA-induced testicular dysfunction in male rats and ascertain the contributing mechanisms. METHODS Forty male rats were allocated into four equal groups; (i) normal control rats, (ii) TAU-Cl group (100 mg/kg b.w/day for 10 weeks, (iii) AZA group (5 mg/day for 4 weeks); (iv) TAU-Cl/AZA group. RESULTS AZA caused increased DNA damage in the testes, and alterations in sex hormones and sperm quality, including sperm count, viability, and motility. Moreover, testicular tissue from the AZA-treated group had increased levels of oxidative stress indicator, MDA, and decreased activity of the antioxidant enzymes as superoxide dismutase (SOD), reduced glutathione (GSH) and catalase (CAT) levels. These deleterious events were accompanied by upregulated levels of the pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α), and protein expression of iNOS and NFκB-p65, interleukin-1beta (IL-1β), and proapoptotic marker; caspase-9, together with decreased Bcl-2, NrF2 and hemeoxygenase (HO-1) expression. In contrast, TAU-Cl pretreatment significantly abrogated these toxic effects which were confirmed histologically. CONCLUSION Pretreatment with TAU-Cl exerts a protective effect against AZA-induced male reproductive testicular atrophy. This finding could open new avenues for the use of TAU-Cl as a complementary approach to chemotherapy supportive care.
Collapse
|
11
|
Ahmadi N, Ghanbarinejad V, Ommati MM, Jamshidzadeh A, Heidari R. Taurine prevents mitochondrial membrane permeabilization and swelling upon interaction with manganese: Implication in the treatment of cirrhosis-associated central nervous system complications. J Biochem Mol Toxicol 2018; 32:e22216. [PMID: 30152904 DOI: 10.1002/jbt.22216] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022]
Abstract
Brain tissue manganese (Mn) accumulation is a cirrhosis-associated complication. Cellular mitochondria are among the potential targets for Mn-induced cytotoxicity. Taurine is one of the most abundant amino acids with high concentrations in human brain tissue. Several pharmacological properties including regulation of mitochondrial function are attributed to taurine. The current investigation was designed to evaluate the effect of taurine on Mn-induced mitochondrial impairment in isolated mice brain mitochondria. The brain mitochondria were exposed to increasing concentrations of Mn (0.1-10 mM). Taurine (0.1, 1, and 10 mM) was added as the protective agent. The severe collapse of mitochondrial membrane potential, decreased mitochondrial dehydrogenases activity, mitochondrial swelling, and depleted mitochondrial adenosine triphosphate (ATP) were evident in Mn-exposed mitochondria. It was found that taurine administration preserved mitochondrial ATP, prevented mitochondrial depolarization and swelling, and increased mitochondrial dehydrogenases activity. These data suggest mitochondrial protection as an underlying mechanism for the protective effects of taurine against Mn toxicity.
Collapse
Affiliation(s)
- Nahid Ahmadi
- Pharmaceutical Sciences Research Center, Department of Toxicology, Shiraz University of Medical Sciences, Shiraz, Fars, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Vahid Ghanbarinejad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Mohammad Mehdi Ommati
- Pharmaceutical Sciences Research Center, Department of Toxicology, Shiraz University of Medical Sciences, Shiraz, Fars, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Department of Toxicology, Shiraz University of Medical Sciences, Shiraz, Fars, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Department of Toxicology, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| |
Collapse
|
12
|
Logotheti S, Khoury N, Vlahopoulos SA, Skourti E, Papaevangeliou D, Liloglou T, Gorgoulis V, Budunova I, Kyriakopoulos AM, Zoumpourlis V. N-bromotaurine surrogates for loss of antiproliferative response and enhances cisplatin efficacy in cancer cells with impaired glucocorticoid receptor. Transl Res 2016; 173:58-73.e2. [PMID: 27063960 DOI: 10.1016/j.trsl.2016.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 03/09/2016] [Accepted: 03/12/2016] [Indexed: 11/15/2022]
Abstract
Glucocorticoids (GCs) are frequently used in anticancer combination regimens; however, their continuous use adds selective pressure on cancer cells to develop GC-resistance via impairment of the glucocorticoid receptor (GR), therefore creating a need for GC-alternatives. Based on the drug repurposing approach and the commonalities between inflammation and neoplasia, drugs that are either in late-stage clinical trials and/or already marketed for GC-refractory inflammatory diseases could be evaluated as GC-substitutes in the context of cancer. Advantageously, unlike new molecular entities currently being de novo developed to restore GC-responsiveness of cancer cells, such drugs have documented safety and efficacy profile, which overall simplifies their introduction in clinical cancer trials. In this study, we estimated the potential of a well-established, multistage, cell line-based, mouse skin carcinogenesis model to be exploited as an initial screening tool for unveiling covert GC-substitutes. First, we categorized the cell lines of this model to GC-sensitive and GC-resistant, in correlation with their corresponding GR status, localization, and functionality. We found that GC-resistance starts in papilloma stages, due to a dysfunctional GR, which is overexpressed, DNA binding-competent, but transactivation-incompetent in papilloma, squamous, and spindle stages of the model. Then, aided by this tool, we evaluated the ability of N-bromotaurine, a naturally occurring, small-molecule, nonsteroid anti-inflammatory drug which is under consideration for use interchangeably/in replacement to GCs in skin inflammations, to restore antiproliferative response of GC-resistant cancer cells. Unlike GCs, N-bromotaurine inhibited cell-cycle progression in GC-resistant cancer cells and efficiently synergized with cisplatin, thus indicating a potential to be exploited instead of GCs against cancer.
Collapse
Affiliation(s)
- Stella Logotheti
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece; Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Nikolas Khoury
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Spiros A Vlahopoulos
- Horemio Research Institute, First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elena Skourti
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Dimitra Papaevangeliou
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Triantafyllos Liloglou
- University of Liverpool, Department of Molecular and Clinical Cancer Medicine, Liverpool, UK
| | - Vassilis Gorgoulis
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Irina Budunova
- Department of Dermatology, Northwestern University, Chicago, Ill, USA
| | | | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece.
| |
Collapse
|
13
|
Effect of taurine on chronic and acute liver injury: Focus on blood and brain ammonia. Toxicol Rep 2016; 3:870-879. [PMID: 28959615 PMCID: PMC5615919 DOI: 10.1016/j.toxrep.2016.04.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 03/19/2016] [Accepted: 04/08/2016] [Indexed: 12/20/2022] Open
Abstract
Hyperammonemia is associated with chronic and acute liver injury. There is no promising therapeutic agent against ammonia-induced complications. Hence, finding therapeutic molecules with safe profile of administration has clinical value. The present study was conducted to evaluate the role of taurine (TA) administration on plasma and brain ammonia and its consequent events in different models of chronic and acute liver injury and hyperammonemia. Bile duct ligated (BDL) rats were used as a model of chronic liver injury. Thioacetamide and acetaminophen-induced acute liver failure were used as acute liver injury models. A high level of ammonia was detected in blood and brain of experimental groups. An increase in brain ammonia level coincided with a decreased total locomotor activity of animals and significant changes in the biochemistry of blood and also liver tissue. TA administration (500 and 1000 mg/kg, i.p), effectively alleviated liver injury and its consequent events including rise in plasma and brain ammonia and brain edema. The data suggested that TA is not only a useful and safe agent to preserve liver function, but also prevented hyperammonemia as a deleterious consequence of acute and chronic liver injury.
Collapse
|
14
|
Heidari R, Sadeghi N, Azarpira N, Niknahad H. Sulfasalazine-Induced Hepatic Injury in an Ex Vivo Model of Isolated Perfused Rat Liver and the Protective Role of Taurine. PHARMACEUTICAL SCIENCES 2015. [DOI: 10.15171/ps.2015.39] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|