1
|
Mall R, Kaushik R, Martinez ZA, Thomson MW, Castiglione F. Benchmarking protein language models for protein crystallization. Sci Rep 2025; 15:2381. [PMID: 39827171 PMCID: PMC11743144 DOI: 10.1038/s41598-025-86519-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
The problem of protein structure determination is usually solved by X-ray crystallography. Several in silico deep learning methods have been developed to overcome the high attrition rate, cost of experiments and extensive trial-and-error settings, for predicting the crystallization propensities of proteins based on their sequences. In this work, we benchmark the power of open protein language models (PLMs) through the TRILL platform, a be-spoke framework democratizing the usage of PLMs for the task of predicting crystallization propensities of proteins. By comparing LightGBM / XGBoost classifiers built on the average embedding representations of proteins learned by different PLMs, such as ESM2, Ankh, ProtT5-XL, ProstT5, xTrimoPGLM, SaProt with the performance of state-of-the-art sequence-based methods like DeepCrystal, ATTCrys and CLPred, we identify the most effective methods for predicting crystallization outcomes. The LightGBM classifiers utilizing embeddings from ESM2 model with 30 and 36 transformer layers and 150 and 3000 million parameters respectively have performance gains by 3-[Formula: see text] than all compared models for various evaluation metrics, including AUPR (Area Under Precision-Recall Curve), AUC (Area Under the Receiver Operating Characteristic Curve), and F1 on independent test sets. Furthermore, we fine-tune the ProtGPT2 model available via TRILL to generate crystallizable proteins. Starting with 3000 generated proteins and through a step of filtration processes including consensus of all open PLM-based classifiers, sequence identity through CD-HIT, secondary structure compatibility, aggregation screening, homology search and foldability evaluation, we identified a set of 5 novel proteins as potentially crystallizable.
Collapse
Affiliation(s)
- Raghvendra Mall
- Biotechnology Research Center, Technology Innovation Institute, P.O. Box 9639, Abu Dhabi, United Arab Emirates.
| | - Rahul Kaushik
- Biotechnology Research Center, Technology Innovation Institute, P.O. Box 9639, Abu Dhabi, United Arab Emirates
| | - Zachary A Martinez
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, 91125, CA, USA
| | - Matt W Thomson
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, 91125, CA, USA
| | - Filippo Castiglione
- Biotechnology Research Center, Technology Innovation Institute, P.O. Box 9639, Abu Dhabi, United Arab Emirates.
- Institute for Applied Computing, National Research Council of Italy, 00185, Rome, Italy.
| |
Collapse
|
2
|
Xiong D, U K, Sun J, Cribbs AP. PLMC: Language Model of Protein Sequences Enhances Protein Crystallization Prediction. Interdiscip Sci 2024; 16:802-813. [PMID: 39155325 DOI: 10.1007/s12539-024-00639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 08/20/2024]
Abstract
X-ray diffraction crystallography has been most widely used for protein three-dimensional (3D) structure determination for which whether proteins are crystallizable is a central prerequisite. Yet, there are a number of procedures during protein crystallization, including protein material production, purification, and crystal production, which take turns affecting the crystallization outcome. Due to the expensive and laborious nature of this multi-stage process, various computational tools have been developed to predict protein crystallization propensity, which is then used to guide the experimental determination. In this study, we presented a novel deep learning framework, PLMC, to improve multi-stage protein crystallization propensity prediction by leveraging a pre-trained protein language model. To effectively train PLMC, two groups of features of each protein were integrated into a more comprehensive representation, including protein language embeddings from the large-scale protein sequence database and a handcrafted feature set consisting of physicochemical, sequence-based and disordered-related information. These features were further separately embedded for refinement, and then concatenated for the final prediction. Notably, our extensive benchmarking tests demonstrate that PLMC greatly outperforms other state-of-the-art methods by achieving AUC scores of 0.773, 0.893, and 0.913, respectively, at the aforementioned individual stages, and 0.982 at the final crystallization stage. Furthermore, PLMC is shown to be superior for predicting the crystallization of both globular and membrane proteins, as demonstrated by an AUC score of 0.991 for the latter. These results suggest the significant potential of PLMC in assisting researchers with the experimental design of crystallizable protein variants.
Collapse
Affiliation(s)
- Dapeng Xiong
- Department of Computational Biology, Cornell University, Ithaca, 14853, USA.
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, 14853, USA.
| | - Kaicheng U
- Department of Computational Biology, Cornell University, Ithaca, 14853, USA
| | - Jianfeng Sun
- Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, UK.
| | - Adam P Cribbs
- Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, UK
| |
Collapse
|
3
|
Xia Y, Zhang Y, Liu D, Zhu YH, Wang Z, Song J, Yu DJ. BLAM6A-Merge: Leveraging Attention Mechanisms and Feature Fusion Strategies to Improve the Identification of RNA N6-Methyladenosine Sites. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1803-1815. [PMID: 38913512 DOI: 10.1109/tcbb.2024.3418490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
RNA N6-methyladenosine is a prevalent and abundant type of RNA modification that exerts significant influence on diverse biological processes. To date, numerous computational approaches have been developed for predicting methylation, with most of them ignoring the correlations of different encoding strategies and failing to explore the adaptability of various attention mechanisms for methylation identification. To solve the above issues, we proposed an innovative framework for predicting RNA m6A modification site, termed BLAM6A-Merge. Specifically, it utilized a multimodal feature fusion strategy to combine the classification results of four features and Blastn tool. Apart from this, different attention mechanisms were employed for extracting higher-level features on specific features after the screening process. Extensive experiments on 12 benchmarking datasets demonstrated that BLAM6A-Merge achieved superior performance (average AUC: 0.849 for the full transcript mode and 0.784 for the mature mRNA mode). Notably, the Blastn tool was employed for the first time in the identification of methylation sites.
Collapse
|
4
|
Matinyan S, Filipcik P, Abrahams JP. Deep learning applications in protein crystallography. Acta Crystallogr A Found Adv 2024; 80:1-17. [PMID: 38189437 PMCID: PMC10833361 DOI: 10.1107/s2053273323009300] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/24/2023] [Indexed: 01/09/2024] Open
Abstract
Deep learning techniques can recognize complex patterns in noisy, multidimensional data. In recent years, researchers have started to explore the potential of deep learning in the field of structural biology, including protein crystallography. This field has some significant challenges, in particular producing high-quality and well ordered protein crystals. Additionally, collecting diffraction data with high completeness and quality, and determining and refining protein structures can be problematic. Protein crystallographic data are often high-dimensional, noisy and incomplete. Deep learning algorithms can extract relevant features from these data and learn to recognize patterns, which can improve the success rate of crystallization and the quality of crystal structures. This paper reviews progress in this field.
Collapse
Affiliation(s)
| | | | - Jan Pieter Abrahams
- Biozentrum, Basel University, Basel, Switzerland
- Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
5
|
Alghushairy O, Ali F, Alghamdi W, Khalid M, Alsini R, Asiry O. Machine learning-based model for accurate identification of druggable proteins using light extreme gradient boosting. J Biomol Struct Dyn 2023; 42:12330-12341. [PMID: 37850427 DOI: 10.1080/07391102.2023.2269280] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
The identification of druggable proteins (DPs) is significant for the development of new drugs, personalized medicine, understanding of disease mechanisms, drug repurposing, and economic benefits. By identifying new druggable targets, researchers can develop new therapies for a range of diseases, leading to better patient outcomes. Identification of DPs by machine learning strategies is more efficient and cost-effective than conventional methods. In this study, a computational predictor, namely Drug-LXGB, is introduced to enhance the identification of DPs. Features are discovered by composition, transition, and distribution (CTD), composition of K-spaced amino acid pair (CKSAAP), pseudo-position-specific scoring matrix (PsePSSM), and a novel descriptor, called multi-block pseudo amino acid composition (MB-PseAAC). The dimensions of CTD, CKSAAP, PsePSSM, and MB-PseAAC are integrated and utilized the sequential forward selection as feature selection algorithm. The best characteristics are provided by random forest, extreme gradient boosting, and light eXtreme gradient boosting (LXGB). The predictive analysis of these learning methods is measured via 10-fold cross-validation. The LXGB-based model secures the highest results than other existing predictors. Our novel protocol will perform an active role in designing novel drugs and would be fruitful to explore the potential target. This study will help better to capture a more universal view of a potential target.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Omar Alghushairy
- Department of Information Systems and Technology, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia
| | - Farman Ali
- Department of Software Engineering, Sarhad University of Science and Information Technology Peshawar Mardan Campus, Peshawar, Pakistan
| | - Wajdi Alghamdi
- Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majdi Khalid
- Department of Computer Science, College of Computers and Information Systems, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Raed Alsini
- Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Othman Asiry
- Department of Information Technology, College of Computing and Information Technology at Khulais, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Yan K, Lv H, Wen J, Guo Y, Xu Y, Liu B. PreTP-Stack: Prediction of Therapeutic Peptides Based on the Stacked Ensemble Learing. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1337-1344. [PMID: 35700248 DOI: 10.1109/tcbb.2022.3183018] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Therapeutic peptide prediction is critical for drug development and therapeutic therapy. Researchers have developed several computational methods to identify different therapeutic peptide types. However, most computational methods focus on identifying the specific type of therapeutic peptides and fail to accurately predict all types of therapeutic peptides. Moreover, it is still challenging to utilize different properties features to predict the therapeutic peptides. In this study, a novel stacking framework PreTP-Stack is proposed for predicting different types of therapeutic peptide. PreTP-Stack is constructed based on ten different features and four predictors (Random Forest, Linear Discriminant Analysis, XGBoost and Support Vector Machine). Then the proposed method constructs an auto-weighted multi-view learning model as a final meta-classifier to enhance the performance of the basic models. Experimental results showed that the proposed method achieved better or highly comparable performance with the state-of-the-art methods for predicting eight types of therapeutic peptides A user-friendly web-server predictor is available at http://bliulab.net/PreTP-Stack.
Collapse
|
7
|
Wang PH, Zhu YH, Yang X, Yu DJ. GCmapCrys: Integrating graph attention network with predicted contact map for multi-stage protein crystallization propensity prediction. Anal Biochem 2023; 663:115020. [PMID: 36521558 DOI: 10.1016/j.ab.2022.115020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
X-ray crystallography is the major approach for atomic-level protein structure determination. Since not all proteins can be easily crystallized, accurate prediction of protein crystallization propensity is critical to guiding the experimental design and improving the success rate of X-ray crystallography experiments. In this work, we proposed a new deep learning pipeline, GCmapCrys, for multi-stage crystallization propensity prediction through integrating graph attention network with predicted protein contact map. Experimental results on 1548 proteins with known crystallization records demonstrated that GCmapCrys increased the value of Matthew's correlation coefficient by 37.0% in average compared to state-of-the-art protein crystallization propensity predictors. Detailed analyses show that the major advantages of GCmapCrys lie in the efficiency of the graph attention network with predicted contact map, which effectively associates the residue-interaction knowledge with crystallization pattern. Meanwhile, the designed four sequence-based features can be complementary to further enhance crystallization propensity proprediction.
Collapse
Affiliation(s)
- Peng-Hao Wang
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, PR China
| | - Yi-Heng Zhu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, PR China
| | - Xibei Yang
- School of Computer, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, PR China.
| |
Collapse
|
8
|
Hu J, Bai YS, Zheng LL, Jia NX, Yu DJ, Zhang GJ. Protein-DNA Binding Residue Prediction via Bagging Strategy and Sequence-Based Cube-Format Feature. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3635-3645. [PMID: 34714748 DOI: 10.1109/tcbb.2021.3123828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein-DNA interactions play an important role in diverse biological processes. Accurately identifying protein-DNA binding residues is a critical but challenging task for protein function annotations and drug design. Although wet-lab experimental methods are the most accurate way to identify protein-DNA binding residues, they are time consuming and labor intensive. There is an urgent need to develop computational methods to rapidly and accurately predict protein-DNA binding residues. In this study, we propose a novel sequence-based method, named PredDBR, for predicting DNA-binding residues. In PredDBR, for each query protein, its position-specific frequency matrix (PSFM), predicted secondary structure (PSS), and predicted probabilities of ligand-binding residues (PPLBR) are first generated as three feature sources. Secondly, for each feature source, the sliding window technique is employed to extract the matrix-format feature of each residue. Then, we design two strategies, i.e., square root (SR) and average (AVE), to separately transform PSFM-based and two predicted feature source-based, i.e., PSS-based and PPLBR-based, matrix-format features of each residue into three corresponding cube-format features. Finally, after serially combining the three cube-format features, the ensemble classifier is generated via applying bagging strategy to multiple base classifiers built by the framework of 2D convolutional neural network. The computational experimental results demonstrate that the proposed PredDBR achieves an average overall accuracy of 93.7% and a Mathew's correlation coefficient of 0.405 on two independent validation datasets and outperforms several state-of-the-art sequenced-based protein-DNA binding residue predictors. The PredDBR web-server is available at https://jun-csbio.github.io/PredDBR/.
Collapse
|
9
|
Wang S, Zhao H. SADeepcry: a deep learning framework for protein crystallization propensity prediction using self-attention and auto-encoder networks. Brief Bioinform 2022; 23:6678422. [PMID: 36037090 DOI: 10.1093/bib/bbac352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 11/14/2022] Open
Abstract
The X-ray diffraction (XRD) technique based on crystallography is the main experimental method to analyze the three-dimensional structure of proteins. The production process of protein crystals on which the XRD technique relies has undergone multiple experimental steps, which requires a lot of manpower and material resources. In addition, studies have shown that not all proteins can form crystals under experimental conditions, and the success rate of the final crystallization of proteins is only <10%. Although some protein crystallization predictors have been developed, not many tools capable of predicting multi-stage protein crystallization propensity are available and the accuracy of these tools is not satisfactory. In this paper, we propose a novel deep learning framework, named SADeepcry, for predicting protein crystallization propensity. The framework can be used to estimate the three steps (protein material production, purification and crystallization) in protein crystallization experiments and the success rate of the final protein crystallization. SADeepcry uses the optimized self-attention and auto-encoder modules to extract sequence, structure and physicochemical features from the proteins. Compared with other state-of-the-art protein crystallization propensity prediction models, SADeepcry can obtain more complex global spatial long-distance dependence of protein sequence information. Our computational results show that SADeepcry has increased Matthews correlation coefficient and area under the curve, by 100.3% and 13.4%, respectively, over the DCFCrystal method on the benchmark dataset. The codes of SADeepcry are available at https://github.com/zhc940702/SADeepcry.
Collapse
Affiliation(s)
- Shaokai Wang
- David R. Cheriton School of Computer Science, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Haochen Zhao
- School of Computer Science and Engineering, Central South University, Changsha 410083, China.,Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, China
| |
Collapse
|
10
|
Xiouras C, Cameli F, Quilló GL, Kavousanakis ME, Vlachos DG, Stefanidis GD. Applications of Artificial Intelligence and Machine Learning Algorithms to Crystallization. Chem Rev 2022; 122:13006-13042. [PMID: 35759465 DOI: 10.1021/acs.chemrev.2c00141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Artificial intelligence and specifically machine learning applications are nowadays used in a variety of scientific applications and cutting-edge technologies, where they have a transformative impact. Such an assembly of statistical and linear algebra methods making use of large data sets is becoming more and more integrated into chemistry and crystallization research workflows. This review aims to present, for the first time, a holistic overview of machine learning and cheminformatics applications as a novel, powerful means to accelerate the discovery of new crystal structures, predict key properties of organic crystalline materials, simulate, understand, and control the dynamics of complex crystallization process systems, as well as contribute to high throughput automation of chemical process development involving crystalline materials. We critically review the advances in these new, rapidly emerging research areas, raising awareness in issues such as the bridging of machine learning models with first-principles mechanistic models, data set size, structure, and quality, as well as the selection of appropriate descriptors. At the same time, we propose future research at the interface of applied mathematics, chemistry, and crystallography. Overall, this review aims to increase the adoption of such methods and tools by chemists and scientists across industry and academia.
Collapse
Affiliation(s)
- Christos Xiouras
- Chemical Process R&D, Crystallization Technology Unit, Janssen R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Fabio Cameli
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Gustavo Lunardon Quilló
- Chemical Process R&D, Crystallization Technology Unit, Janssen R&D, Turnhoutseweg 30, 2340 Beerse, Belgium.,Chemical and BioProcess Technology and Control, Department of Chemical Engineering, Faculty of Engineering Technology, KU Leuven, Gebroeders de Smetstraat 1, 9000 Ghent, Belgium
| | - Mihail E Kavousanakis
- School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, 15780 Zografou, Greece
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Georgios D Stefanidis
- School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, 15780 Zografou, Greece.,Laboratory for Chemical Technology, Ghent University; Tech Lane Ghent Science Park 125, B-9052 Ghent, Belgium
| |
Collapse
|
11
|
Ge F, Zhang Y, Xu J, Muhammad A, Song J, Yu DJ. Prediction of disease-associated nsSNPs by integrating multi-scale ResNet models with deep feature fusion. Brief Bioinform 2022; 23:bbab530. [PMID: 34953462 PMCID: PMC8769912 DOI: 10.1093/bib/bbab530] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
More than 6000 human diseases have been recorded to be caused by non-synonymous single nucleotide polymorphisms (nsSNPs). Rapid and accurate prediction of pathogenic nsSNPs can improve our understanding of the principle and design of new drugs, which remains an unresolved challenge. In the present work, a new computational approach, termed MSRes-MutP, is proposed based on ResNet blocks with multi-scale kernel size to predict disease-associated nsSNPs. By feeding the serial concatenation of the extracted four types of features, the performance of MSRes-MutP does not obviously improve. To address this, a second model FFMSRes-MutP is developed, which utilizes deep feature fusion strategy and multi-scale 2D-ResNet and 1D-ResNet blocks to extract relevant two-dimensional features and physicochemical properties. FFMSRes-MutP with the concatenated features achieves a better performance than that with individual features. The performance of FFMSRes-MutP is benchmarked on five different datasets. It achieves the Matthew's correlation coefficient (MCC) of 0.593 and 0.618 on the PredictSNP and MMP datasets, which are 0.101 and 0.210 higher than that of the existing best method PredictSNP1. When tested on the HumDiv and HumVar datasets, it achieves MCC of 0.9605 and 0.9507, and area under curve (AUC) of 0.9796 and 0.9748, which are 0.1747 and 0.2669, 0.0853 and 0.1335, respectively, higher than the existing best methods PolyPhen-2 and FATHMM (weighted). In addition, on blind test using a third-party dataset, FFMSRes-MutP performs as the second-best predictor (with MCC and AUC of 0.5215 and 0.7633, respectively), when compared with the other four predictors. Extensive benchmarking experiments demonstrate that FFMSRes-MutP achieves effective feature fusion and can be explored as a useful approach for predicting disease-associated nsSNPs. The webserver is freely available at http://csbio.njust.edu.cn/bioinf/ffmsresmutp/ for academic use.
Collapse
Affiliation(s)
- Fang Ge
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Ying Zhang
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Jian Xu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Arif Muhammad
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Jiangning Song
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| |
Collapse
|
12
|
Jin C, Shi Z, Kang C, Lin K, Zhang H. TLCrys: Transfer Learning Based Method for Protein Crystallization Prediction. Int J Mol Sci 2022; 23:972. [PMID: 35055158 PMCID: PMC8778968 DOI: 10.3390/ijms23020972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
X-ray diffraction technique is one of the most common methods of ascertaining protein structures, yet only 2-10% of proteins can produce diffraction-quality crystals. Several computational methods have been proposed so far to predict protein crystallization. Nevertheless, the current state-of-the-art computational methods are limited by the scarcity of experimental data. Thus, the prediction accuracy of existing models hasn't reached the ideal level. To address the problems above, we propose a novel transfer-learning-based framework for protein crystallization prediction, named TLCrys. The framework proceeds in two steps: pre-training and fine-tuning. The pre-training step adopts attention mechanism to extract both global and local information of the protein sequences. The representation learned from the pre-training step is regarded as knowledge to be transferred and fine-tuned to enhance the performance of crystalization prediction. During pre-training, TLCrys adopts a multi-task learning method, which not only improves the learning ability of protein encoding, but also enhances the robustness and generalization of protein representation. The multi-head self-attention layer guarantees that different levels of the protein representation can be extracted by the fine-tuned step. During transfer learning, the fine-tuning strategy used by TLCrys improves the task-specialized learning ability of the network. Our method outperforms all previous predictors significantly in five crystallization stages of prediction. Furthermore, the proposed methodology can be well generalized to other protein sequence classification tasks.
Collapse
Affiliation(s)
- Chen Jin
- College of Computer Science, Nankai University, Tianjin 300350, China; (C.J.); (C.K.)
| | - Zhuangwei Shi
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; (Z.S.); (K.L.)
| | - Chuanze Kang
- College of Computer Science, Nankai University, Tianjin 300350, China; (C.J.); (C.K.)
| | - Ken Lin
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; (Z.S.); (K.L.)
| | - Han Zhang
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; (Z.S.); (K.L.)
| |
Collapse
|
13
|
Abstract
Background:
Therapeutic peptide prediction is critical for drug development and therapy. Researchers have been studying this essential task, developing several computational methods to identify different therapeutic peptide types.
Objective:
Most predictors are the specific methods for certain peptides. Currently, developing methods to predict the presence of multiple peptides remains a challenging problem. Moreover, it is still challenging to combine different features to make the therapeutic prediction.
Method:
In this paper, we proposed a new ensemble method TP-MV for general therapeutic peptide recognition. TP-MV is developed using the stacking framework in conjunction with the KNN, SVM, ET, RF, and XGB. Then TP-MV constructs a multi-view learning model as meta-classifiers to extract the discriminative feature for different peptides.
Results:
In the experiment, the proposed method outperforms the other existing methods on the benchmark datasets, indicating that the proposed method has the ability to predict multiple therapeutic peptides simultaneously.
Conclusion:
The TP-MV is a useful tool for predicting therapeutic peptides.
Collapse
Affiliation(s)
- Ke Yan
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Hongwu Lv
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Yichen Guo
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Jie Wen
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
14
|
Jin C, Gao J, Shi Z, Zhang H. ATTCry: Attention-based neural network model for protein crystallization prediction. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Ding Y, Tang J, Guo F. Protein Crystallization Identification via Fuzzy Model on Linear Neighborhood Representation. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1986-1995. [PMID: 31751248 DOI: 10.1109/tcbb.2019.2954826] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
X-ray crystallography is the most popular approach for analyzing protein 3D structure. However, the success rate of protein crystallization is very low (2-10 percent). To reduce the cost of time and resources, lots of computation-based methods are developed to detect the protein crystallization. Improving the accuracy of predicting protein crystallization is very important for the determination of protein structure by X-ray crystallography. At present, many machine learning methods are used to predict protein crystallization. In this article, we propose a Fuzzy Support Vector Machine based on Linear Neighborhood Representation (FSVM-LNR) to predict the crystallization propensity of proteins. Proteins are represented by three types of features (PsePSSM, PSSM-DWT, MMI-PS), and these features are serially combined and fed into FSVM-LNR. FSVM-LNR can filter outliers by membership score, which is calculated via reconstruction residuals of k nearest samples. To evaluate the performance of our predictive model, we test FSVM-LNR on the datasets of TRAIN3587, TEST3585 and TEST500. Our method achieves better Mathew's correlation coefficient (MCC) on TRAIN3587 (MCC: 0.56) and TEST3585 (MCC: 0.58). Although the performance of independent test is not the best on TEST500, FSVM-LNR also has a certain predictability (MCC: 0.70) in the identification of protein crystallization. The good performance on the datasets proves the effectiveness of our method and the better performance on large datasets further demonstrates the stability and superiority of our method.
Collapse
|
16
|
Zhu YH, Hu J, Ge F, Li F, Song J, Zhang Y, Yu DJ. Accurate multistage prediction of protein crystallization propensity using deep-cascade forest with sequence-based features. Brief Bioinform 2021; 22:bbaa076. [PMID: 32436937 DOI: 10.1093/bib/bbaa076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 11/13/2022] Open
Abstract
X-ray crystallography is the major approach for determining atomic-level protein structures. Because not all proteins can be easily crystallized, accurate prediction of protein crystallization propensity provides critical help in guiding experimental design and improving the success rate of X-ray crystallography experiments. This study has developed a new machine-learning-based pipeline that uses a newly developed deep-cascade forest (DCF) model with multiple types of sequence-based features to predict protein crystallization propensity. Based on the developed pipeline, two new protein crystallization propensity predictors, denoted as DCFCrystal and MDCFCrystal, have been implemented. DCFCrystal is a multistage predictor that can estimate the success propensities of the three individual steps (production of protein material, purification and production of crystals) in the protein crystallization process. MDCFCrystal is a single-stage predictor that aims to estimate the probability that a protein will pass through the entire crystallization process. Moreover, DCFCrystal is designed for general proteins, whereas MDCFCrystal is specially designed for membrane proteins, which are notoriously difficult to crystalize. DCFCrystal and MDCFCrystal were separately tested on two benchmark datasets consisting of 12 289 and 950 proteins, respectively, with known crystallization results from various experimental records. The experimental results demonstrated that DCFCrystal and MDCFCrystal increased the value of Matthew's correlation coefficient by 199.7% and 77.8%, respectively, compared to the best of other state-of-the-art protein crystallization propensity predictors. Detailed analyses show that the major advantages of DCFCrystal and MDCFCrystal lie in the efficiency of the DCF model and the sensitivity of the sequence-based features used, especially the newly designed pseudo-predicted hybrid solvent accessibility (PsePHSA) feature, which improves crystallization recognition by incorporating sequence-order information with solvent accessibility of residues. Meanwhile, the new crystal-dataset constructions help to train the models with more comprehensive crystallization knowledge.
Collapse
|
17
|
Xuan W, Liu N, Huang N, Li Y, Wang J. CLPred: a sequence-based protein crystallization predictor using BLSTM neural network. Bioinformatics 2021; 36:i709-i717. [PMID: 33381840 DOI: 10.1093/bioinformatics/btaa791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 01/05/2023] Open
Abstract
MOTIVATION Determining the structures of proteins is a critical step to understand their biological functions. Crystallography-based X-ray diffraction technique is the main method for experimental protein structure determination. However, the underlying crystallization process, which needs multiple time-consuming and costly experimental steps, has a high attrition rate. To overcome this issue, a series of in silico methods have been developed with the primary aim of selecting the protein sequences that are promising to be crystallized. However, the predictive performance of the current methods is modest. RESULTS We propose a deep learning model, so-called CLPred, which uses a bidirectional recurrent neural network with long short-term memory (BLSTM) to capture the long-range interaction patterns between k-mers amino acids to predict protein crystallizability. Using sequence only information, CLPred outperforms the existing deep-learning predictors and a vast majority of sequence-based diffraction-quality crystals predictors on three independent test sets. The results highlight the effectiveness of BLSTM in capturing non-local, long-range inter-peptide interaction patterns to distinguish proteins that can result in diffraction-quality crystals from those that cannot. CLPred has been steadily improved over the previous window-based neural networks, which is able to predict crystallization propensity with high accuracy. CLPred can also be improved significantly if it incorporates additional features from pre-extracted evolutional, structural and physicochemical characteristics. The correctness of CLPred predictions is further validated by the case studies of Sox transcription factor family member proteins and Zika virus non-structural proteins. AVAILABILITY AND IMPLEMENTATION https://github.com/xuanwenjing/CLPred.
Collapse
Affiliation(s)
- Wenjing Xuan
- School of Computer Science and Engineering.,Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, China
| | - Ning Liu
- School of Computer Science and Engineering
| | - Neng Huang
- School of Computer Science and Engineering
| | - Yaohang Li
- Department of Computer Science, Old Dominion University, Norfolk, VA 23529, USA
| | - Jianxin Wang
- School of Computer Science and Engineering.,Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, China
| |
Collapse
|
18
|
Wang Y, Ding Y, Tang J, Dai Y, Guo F. CrystalM: A Multi-View Fusion Approach for Protein Crystallization Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:325-335. [PMID: 31027046 DOI: 10.1109/tcbb.2019.2912173] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Improving the accuracy of predicting protein crystallization is very important for protein crystallization projects, which is a critical step for the determination of protein structure by X-ray crystallography. At present, many machine learning methods are used to predict protein crystallization. Here, we use a novel feature combination to construct a SVM model in the prediction of protein crystallization, called as CrystalM. In this work, we extract six features to represent protein sequences, namely Average Block-Position specific scoring matrix (AVBlock-PSSM), Average Block-Secondary Structure (AVBlock-SS), Global Encoding (GE), Pseudo-Position specific scoring matrix (PsePSSM), Protscale, and Discrete Wavelet Transform-Position specific scoring matrix (DWT-PSSM). Moreover, we employ two training datasets (TRAIN3587 and TRAIN1500) and their corresponding independent test datasets (TEST3585 and TEST500) to evaluate CrystalM by feeding multi-view features into Support Vector Machine (SVM) classifier. Two training datasets are employed for five-fold cross validation, and two test datasets are separately used to test the corresponding datasets. Finally, we compare CrystalM with other existing methods in the performance. For the datasets of TRAIN3587 and TEST3585, CrystalM achieves best Accuracy (ACC), best Specificity (SP), and the same Mathew's correlation coefficient (MCC) as the previous outperforming methods in the five-fold cross validation. In particular, ACC, SP, and MCC have surpassed the existing methods in independent test, which proves the effectiveness of CrystalM. Meanwhile, ACC, SP, and MCC are higher than existing methods in the five-fold cross validation for TRAIN1500. Although the performance of independent test for TEST500 is not the best, CrystalM also has a certain predictability in the prediction of protein crystallization. In addition, we find that only choosing the first four features can improve the performance of prediction for TRAIN1500 and TEST500, not only in independent tests but also in five-fold cross validation. This phenomenon indicates that the latter two features can not effectively represent proteins of TRAIN1500 and TEST500. CrystalM is a sequence-based protein crystallization prediction method. The good performance on the datasets proves the effectiveness of CrystalM and the better performance on large datasets further demonstrates the stability and superiority of CrystalM.
Collapse
|
19
|
Elbasir A, Mall R, Kunji K, Rawi R, Islam Z, Chuang GY, Kolatkar PR, Bensmail H. BCrystal: an interpretable sequence-based protein crystallization predictor. Bioinformatics 2020; 36:1429-1438. [PMID: 31603511 DOI: 10.1093/bioinformatics/btz762] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/19/2019] [Accepted: 10/08/2019] [Indexed: 02/01/2023] Open
Abstract
MOTIVATION X-ray crystallography has facilitated the majority of protein structures determined to date. Sequence-based predictors that can accurately estimate protein crystallization propensities would be highly beneficial to overcome the high expenditure, large attrition rate, and to reduce the trial-and-error settings required for crystallization. RESULTS In this study, we present a novel model, BCrystal, which uses an optimized gradient boosting machine (XGBoost) on sequence, structural and physio-chemical features extracted from the proteins of interest. BCrystal also provides explanations, highlighting the most important features for the predicted crystallization propensity of an individual protein using the SHAP algorithm. On three independent test sets, BCrystal outperforms state-of-the-art sequence-based methods by more than 12.5% in accuracy, 18% in recall and 0.253 in Matthew's correlation coefficient, with an average accuracy of 93.7%, recall of 96.63% and Matthew's correlation coefficient of 0.868. For relative solvent accessibility of exposed residues, we observed higher values to associate positively with protein crystallizability and the number of disordered regions, fraction of coils and tripeptide stretches that contain multiple histidines associate negatively with crystallizability. The higher accuracy of BCrystal enables it to accurately screen for sequence variants with enhanced crystallizability. AVAILABILITY AND IMPLEMENTATION Our BCrystal webserver is at https://machinelearning-protein.qcri.org/ and source code is available at https://github.com/raghvendra5688/BCrystal. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Abdurrahman Elbasir
- ICT Division, College of Science and Engineering, Hamad Bin Khalifa University
| | - Raghvendra Mall
- Data Analytics, Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha 34110, Qatar
| | - Khalid Kunji
- Data Analytics, Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha 34110, Qatar
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zeyaul Islam
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha 34100, Qatar
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Prasanna R Kolatkar
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha 34100, Qatar
| | - Halima Bensmail
- Data Analytics, Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha 34110, Qatar
| |
Collapse
|
20
|
Hu J, Zhou XG, Zhu YH, Yu DJ, Zhang GJ. TargetDBP: Accurate DNA-Binding Protein Prediction Via Sequence-Based Multi-View Feature Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:1419-1429. [PMID: 30668479 DOI: 10.1109/tcbb.2019.2893634] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Accurately identifying DNA-binding proteins (DBPs) from protein sequence information is an important but challenging task for protein function annotations. In this paper, we establish a novel computational method, named TargetDBP, for accurately targeting DBPs from primary sequences. In TargetDBP, four single-view features, i.e., AAC (Amino Acid Composition), PsePSSM (Pseudo Position-Specific Scoring Matrix), PsePRSA (Pseudo Predicted Relative Solvent Accessibility), and PsePPDBS (Pseudo Predicted Probabilities of DNA-Binding Sites), are first extracted to represent different base features, respectively. Second, differential evolution algorithm is employed to learn the weights of four base features. Using the learned weights, we weightedly combine these base features to form the original super feature. An excellent subset of the super feature is then selected by using a suitable feature selection algorithm SVM-REF+CBR (Support Vector Machine Recursive Feature Elimination with Correlation Bias Reduction). Finally, the prediction model is learned via using support vector machine on the selected feature subset. We also construct a new gold-standard and non-redundant benchmark dataset from PDB database to evaluate and compare the proposed TargetDBP with other existing predictors. On this new dataset, TargetDBP can achieve higher performance than other state-of-the-art predictors. The TargetDBP web server and datasets are freely available at http://csbio.njust.edu.cn/bioinf/targetdbp/ for academic use.
Collapse
|
21
|
Cui BL, Ding Y. Accurate Identification of Human Phosphorylated Proteins by Ensembling Supervised Kernel Self-organizing Maps. Mol Inform 2020; 39:e1900141. [PMID: 31994832 DOI: 10.1002/minf.201900141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022]
Abstract
Protein phosphorylation is a vital physiological process, which plays a critical role in controlling survival differentiation, cell growth, metabolism and apoptosis. The accurate identification of whether a protein will be phosphorylated solely from protein sequence is especially useful for both basic research and drug development. In this study, a new predictor specifically designed for the prediction of human phosphorylated proteins is proposed. The proposed method first train two supervised kernel self-organizing maps (SKSOMs): one is trained with feature from protein physiochemical composition view, while the other is trained with feature from protein evolutionary information view. Then, the two trained SKSOMs are ensembled to perform the final prediction. Rigorous computational experiments show that the proposed method achieves 78.75 % and 0.561 on ACC and MCC, which are 6.96 % and 12.5 % higher than that of the state-of-the-art predictor. Overall, the study demonstrated a new sensitive avenue to identify human phosphorylated proteins and could be readily extended to recognize phosphorylated proteins for other species.
Collapse
Affiliation(s)
- Bei-Liang Cui
- Network Information Center, Nanjing TECH University, Nanjing, 211816, P. R. China
| | - Yong Ding
- Information Center, Nanjing Polytechnic Institute, Nanjing, 210084, P. R. China
| |
Collapse
|
22
|
Discriminative margin-sensitive autoencoder for collective multi-view disease analysis. Neural Netw 2020; 123:94-107. [DOI: 10.1016/j.neunet.2019.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/18/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022]
|
23
|
SDBP-Pred: Prediction of single-stranded and double-stranded DNA-binding proteins by extending consensus sequence and K-segmentation strategies into PSSM. Anal Biochem 2019; 589:113494. [PMID: 31693872 DOI: 10.1016/j.ab.2019.113494] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 10/24/2019] [Accepted: 10/31/2019] [Indexed: 11/24/2022]
Abstract
Identification of DNA-binding proteins (DNA-BPs) is a hot issue in protein science due to its key role in various biological processes. These processes are highly concerned with DNA-binding protein types. DNA-BPs are classified into single-stranded DNA-binding proteins (SSBs) and double-stranded DNA-binding proteins (DSBs). SSBs mainly involved in DNA recombination, replication, and repair, while DSBs regulate transcription process, DNA cleavage, and chromosome packaging. In spite of the aforementioned significance, few methods have been proposed for discrimination of SSBs and DSBs. Therefore, more predictors with favorable performance are indispensable. In this work, we present an innovative predictor, called SDBP-Pred with a novel feature descriptor, named consensus sequence-based K-segmentation position-specific scoring matrix (CSKS-PSSM). We encoded the local discriminative features concealed in PSSM via K-segmentation strategy and the global potential features by applying the notion of the consensus sequence. The obtained feature vector then input to support vector machine (SVM) with linear, polynomial and radial base function (RBF) kernels. Our model with SVM-RBF achieved the highest accuracies on three tests namely jackknife, 10-fold, and independent tests, respectively than the recent method. The obtained prediction results illustrate the superlative prediction performance of SDBP-Pred over existing studies in the literature so far.
Collapse
|
24
|
Kabir M, Ahmad S, Iqbal M, Hayat M. iNR-2L: A two-level sequence-based predictor developed via Chou's 5-steps rule and general PseAAC for identifying nuclear receptors and their families. Genomics 2019; 112:276-285. [PMID: 30779939 DOI: 10.1016/j.ygeno.2019.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/09/2019] [Accepted: 02/07/2019] [Indexed: 12/25/2022]
Abstract
Nuclear receptor proteins (NRPs) perform a vital role in regulating gene expression. With the rapidity growth of NRPs in post-genomic era, it is highly recommendable to identify NRPs and their sub-families accurately from their primary sequences. Several conventional methods have been used for discrimination of NRPs and their sub-families, but did not achieve considerable results. In a sequel, a two-level new computational model "iNR-2 L" is developed. Two discrete methods namely: Dipeptide Composition and Tripeptide Composition were used to formulate NRPs sequences. Further, both the descriptor spaces were merged to construct hybrid space. Furthermore, feature selection technique minimum redundancy and maximum relevance was employed in order to select salient features as well as reduce the noise and redundancy. The experiential outcomes exhibited that the proposed model iNR-2 L achieved outstanding results. It is anticipated that the proposed computational model might be a practical and effective tool for academia and research community.
Collapse
Affiliation(s)
- Muhammad Kabir
- Department of Computer Science, Abdul Wali Khan University Mardan, Pakistan; School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China.
| | - Saeed Ahmad
- Department of Computer Science, Abdul Wali Khan University Mardan, Pakistan; School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Muhammad Iqbal
- Department of Computer Science, Abdul Wali Khan University Mardan, Pakistan
| | - Maqsood Hayat
- Department of Computer Science, Abdul Wali Khan University Mardan, Pakistan.
| |
Collapse
|
25
|
Yan K, Fang X, Xu Y, Liu B. Protein fold recognition based on multi-view modeling. Bioinformatics 2019; 35:2982-2990. [DOI: 10.1093/bioinformatics/btz040] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/29/2018] [Accepted: 01/16/2019] [Indexed: 12/22/2022] Open
Abstract
Abstract
Motivation
Protein fold recognition has attracted increasing attention because it is critical for studies of the 3D structures of proteins and drug design. Researchers have been extensively studying this important task, and several features with high discriminative power have been proposed. However, the development of methods that efficiently combine these features to improve the predictive performance remains a challenging problem.
Results
In this study, we proposed two algorithms: MV-fold and MT-fold. MV-fold is a new computational predictor based on the multi-view learning model for fold recognition. Different features of proteins were treated as different views of proteins, including the evolutionary information, secondary structure information and physicochemical properties. These different views constituted the latent space. The ε-dragging technique was employed to enlarge the margins between different protein folds, improving the predictive performance of MV-fold. Then, MV-fold was combined with two template-based methods: HHblits and HMMER. The ensemble method is called MT-fold incorporating the advantages of both discriminative methods and template-based methods. Experimental results on five widely used benchmark datasets (DD, RDD, EDD, TG and LE) showed that the proposed methods outperformed some state-of-the-art methods in this field, indicating that MV-fold and MT-fold are useful computational tools for protein fold recognition and protein homology detection and would be efficient tools for protein sequence analysis. Finally, we constructed an update and rigorous benchmark dataset based on SCOPe (version 2.07) to fairly evaluate the performance of the proposed method, and our method achieved stable performance on this new dataset. This new benchmark dataset will become a widely used benchmark dataset to fairly evaluate the performance of different methods for fold recognition.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ke Yan
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | - Xiaozhao Fang
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China
| | - Yong Xu
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | - Bin Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
26
|
Prediction of membrane protein types by exploring local discriminative information from evolutionary profiles. Anal Biochem 2019; 564-565:123-132. [DOI: 10.1016/j.ab.2018.10.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 11/17/2022]
|
27
|
Elbasir A, Moovarkumudalvan B, Kunji K, Kolatkar PR, Mall R, Bensmail H. DeepCrystal: a deep learning framework for sequence-based protein crystallization prediction. Bioinformatics 2018; 35:2216-2225. [DOI: 10.1093/bioinformatics/bty953] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/31/2018] [Accepted: 11/17/2018] [Indexed: 12/11/2022] Open
Abstract
Abstract
Motivation
Protein structure determination has primarily been performed using X-ray crystallography. To overcome the expensive cost, high attrition rate and series of trial-and-error settings, many in-silico methods have been developed to predict crystallization propensities of proteins based on their sequences. However, the majority of these methods build their predictors by extracting features from protein sequences, which is computationally expensive and can explode the feature space. We propose DeepCrystal, a deep learning framework for sequence-based protein crystallization prediction. It uses deep learning to identify proteins which can produce diffraction-quality crystals without the need to manually engineer additional biochemical and structural features from sequence. Our model is based on convolutional neural networks, which can exploit frequently occurring k-mers and sets of k-mers from the protein sequences to distinguish proteins that will result in diffraction-quality crystals from those that will not.
Results
Our model surpasses previous sequence-based protein crystallization predictors in terms of recall, F-score, accuracy and Matthew’s correlation coefficient (MCC) on three independent test sets. DeepCrystal achieves an average improvement of 1.4, 12.1% in recall, when compared to its closest competitors, Crysalis II and Crysf, respectively. In addition, DeepCrystal attains an average improvement of 2.1, 6.0% for F-score, 1.9, 3.9% for accuracy and 3.8, 7.0% for MCC w.r.t. Crysalis II and Crysf on independent test sets.
Availability and implementation
The standalone source code and models are available at https://github.com/elbasir/DeepCrystal and a web-server is also available at https://deeplearning-protein.qcri.org.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Abdurrahman Elbasir
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Khalid Kunji
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Prasanna R Kolatkar
- Qatar Biomedical Research Institute and Hamad Bin Khalifa University, Doha, Qatar
| | - Raghvendra Mall
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Halima Bensmail
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
28
|
State of health prediction for lithium-ion batteries using multiple-view feature fusion and support vector regression ensemble. INT J MACH LEARN CYB 2018. [DOI: 10.1007/s13042-018-0865-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Meng F, Wang C, Kurgan L. fDETECT webserver: fast predictor of propensity for protein production, purification, and crystallization. BMC Bioinformatics 2018; 18:580. [PMID: 29295714 PMCID: PMC6389161 DOI: 10.1186/s12859-017-1995-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/06/2017] [Indexed: 02/26/2023] Open
Abstract
Background Development of predictors of propensity of protein sequences for successful crystallization has been actively pursued for over a decade. A few novel methods that expanded the scope of these predictions to address additional steps of protein production and structure determination pipelines were released in recent years. The predictive performance of the current methods is modest. This is because the only input that they use is the protein sequence and since the experimental annotations of these data might be inconsistent given that they were collected across many laboratories and centers. However, even these modest levels of predictive quality are still practical compared to the reported low success rates of crystallization, which are below 10%. We focus on another important aspect related to a high computational cost of running the predictors that offer the expanded scope. Results We introduce a novel fDETECT webserver that provides very fast and modestly accurate predictions of the success of protein production, purification, crystallization, and structure determination. Empirical tests on two datasets demonstrate that fDETECT is more accurate than the only other similarly fast method, and similarly accurate and three orders of magnitude faster than the currently most accurate predictors. Our method predicts a single protein in about 120 milliseconds and needs less than an hour to generate the four predictions for an entire human proteome. Moreover, we empirically show that fDETECT secures similar levels of predictive performance when compared with four representative methods that only predict success of crystallization, while it also provides the other three predictions. A webserver that implements fDETECT is available at http://biomine.cs.vcu.edu/servers/fDETECT/. Conclusions fDETECT is a computational tool that supports target selection for protein production and X-ray crystallography-based structure determination. It offers predictive quality that matches or exceeds other state-of-the-art tools and is especially suitable for the analysis of large protein sets.
Collapse
Affiliation(s)
- Fanchi Meng
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
| | - Chen Wang
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
30
|
Gao J, Wu Z, Hu G, Wang K, Song J, Joachimiak A, Kurgan L. Survey of Predictors of Propensity for Protein Production and Crystallization with Application to Predict Resolution of Crystal Structures. Curr Protein Pept Sci 2018; 19:200-210. [PMID: 28933304 PMCID: PMC7001581 DOI: 10.2174/1389203718666170921114437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 11/22/2022]
Abstract
Selection of proper targets for the X-ray crystallography will benefit biological research community immensely. Several computational models were proposed to predict propensity of successful protein production and diffraction quality crystallization from protein sequences. We reviewed a comprehensive collection of 22 such predictors that were developed in the last decade. We found that almost all of these models are easily accessible as webservers and/or standalone software and we demonstrated that some of them are widely used by the research community. We empirically evaluated and compared the predictive performance of seven representative methods. The analysis suggests that these methods produce quite accurate propensities for the diffraction-quality crystallization. We also summarized results of the first study of the relation between these predictive propensities and the resolution of the crystallizable proteins. We found that the propensities predicted by several methods are significantly higher for proteins that have high resolution structures compared to those with the low resolution structures. Moreover, we tested a new meta-predictor, MetaXXC, which averages the propensities generated by the three most accurate predictors of the diffraction-quality crystallization. MetaXXC generates putative values of resolution that have modest levels of correlation with the experimental resolutions and it offers the lowest mean absolute error when compared to the seven considered methods. We conclude that protein sequences can be used to fairly accurately predict whether their corresponding protein structures can be solved using X-ray crystallography. Moreover, we also ascertain that sequences can be used to reasonably well predict the resolution of the resulting protein crystals.
Collapse
Affiliation(s)
- Jianzhao Gao
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, People’s Republic of China
| | - Zhonghua Wu
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, People’s Republic of China
| | - Gang Hu
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, People’s Republic of China
| | - Kui Wang
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, People’s Republic of China
| | - Jiangning Song
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Australia
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, Argonne, USA
- Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, USA
| |
Collapse
|
31
|
Espinosa S, Zhang L, Li X, Zhao R. Understanding pre-mRNA splicing through crystallography. Methods 2017; 125:55-62. [PMID: 28506657 PMCID: PMC5546983 DOI: 10.1016/j.ymeth.2017.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/11/2017] [Accepted: 04/26/2017] [Indexed: 01/07/2023] Open
Abstract
Crystallography is a powerful tool to determine the atomic structures of proteins and RNAs. X-ray crystallography has been used to determine the structure of many splicing related proteins and RNAs, making major contributions to our understanding of the molecular mechanism and regulation of pre-mRNA splicing. Compared to other structural methods, crystallography has its own advantage in the high-resolution structural information it can provide and the unique biological questions it can answer. In addition, two new crystallographic methods - the serial femtosecond crystallography and 3D electron crystallography - were developed to overcome some of the limitations of traditional X-ray crystallography and broaden the range of biological problems that crystallography can solve. This review discusses the theoretical basis, instrument requirements, troubleshooting, and exciting potential of these crystallographic methods to further our understanding of pre-mRNA splicing, a critical event in gene expression of all eukaryotes.
Collapse
|
32
|
Yan K, Xu Y, Fang X, Zheng C, Liu B. Protein fold recognition based on sparse representation based classification. Artif Intell Med 2017; 79:1-8. [DOI: 10.1016/j.artmed.2017.03.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022]
|
33
|
Hasan MAM, Li J, Ahmad S, Molla MKI. predCar-site: Carbonylation sites prediction in proteins using support vector machine with resolving data imbalanced issue. Anal Biochem 2017; 525:107-113. [DOI: 10.1016/j.ab.2017.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/26/2017] [Accepted: 03/07/2017] [Indexed: 10/20/2022]
|