1
|
Darawshi O, Yassin O, Shmuel M, Wek RC, Mahdizadeh SJ, Eriksson LA, Hatzoglou M, Tirosh B. Phosphorylation of GCN2 by mTOR confers adaptation to conditions of hyper-mTOR activation under stress. J Biol Chem 2024; 300:107575. [PMID: 39013537 PMCID: PMC11362803 DOI: 10.1016/j.jbc.2024.107575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
Adaptation to the shortage in free amino acids (AA) is mediated by 2 pathways, the integrated stress response (ISR) and the mechanistic target of rapamycin (mTOR). In response to reduced levels, primarily of leucine or arginine, mTOR in its complex 1 configuration (mTORC1) is suppressed leading to a decrease in translation initiation and elongation. The eIF2α kinase general control nonderepressible 2 (GCN2) is activated by uncharged tRNAs, leading to induction of the ISR in response to a broader range of AA shortage. ISR confers a reduced translation initiation, while promoting the selective synthesis of stress proteins, such as ATF4. To efficiently adapt to AA starvation, the 2 pathways are cross-regulated at multiple levels. Here we identified a new mechanism of ISR/mTORC1 crosstalk that optimizes survival under AA starvation, when mTORC1 is forced to remain active. mTORC1 activation during acute AA shortage, augmented ATF4 expression in a GCN2-dependent manner. Under these conditions, enhanced GCN2 activity was not dependent on tRNA sensing, inferring a different activation mechanism. We identified a labile physical interaction between GCN2 and mTOR that results in a phosphorylation of GCN2 on serine 230 by mTOR, which promotes GCN2 activity. When examined under prolonged AA starvation, GCN2 phosphorylation by mTOR promoted survival. Our data unveils an adaptive mechanism to AA starvation, when mTORC1 evades inhibition.
Collapse
Affiliation(s)
- Odai Darawshi
- The School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Olaya Yassin
- The School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Miri Shmuel
- The School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - S Jalil Mahdizadeh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Boaz Tirosh
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
2
|
Meng F, Li J, Dong K, Bai R, Liu Q, Lu S, Liu Y, Wu D, Jiang C, Li W. Juan-tong-yin potentially impacts endometriosis pathophysiology by enhancing autophagy of endometrial stromal cells via unfolded protein reaction-triggered endoplasmic reticulum stress. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117859. [PMID: 38316218 DOI: 10.1016/j.jep.2024.117859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Endometriosis (EMs) is characterized by inflammatory lesions, dysmenorrhea, infertility, and chronic pelvic pain. Single-target medications often fail to provide systemic therapeutic results owing to the complex mechanism underlying endometriosis. Although traditional Chinese medicines-such as Juan-Tong-Yin (JTY)-have shown promising results, their mechanisms of action remain largely unknown. AIM OF THE STUDY To elucidate the therapeutic mechanism of JTY in EMs, focusing on endoplasmic reticulum (ER) stress-induced autophagy. MATERIALS AND METHODS The major components of JTY were detected using high-performance liquid chromatography-mass spectrometry (HPLC-MS). The potential mechanism of JTY in EMs treatment was predicted using network pharmacological analysis. Finally, the pathogenesis of EMs was validated in a clinical case-control study and the molecular mechanism of JTY was validated in vitro using endometrial stromal cells (ESCs). RESULTS In total, 241 compounds were analyzed and identified from JTY using UPLC-MS. Network pharmacology revealed 288 targets between the JTY components and EMs. Results of the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses indicated that regulating autophagy, migration, apoptosis, and inflammation were the key mechanisms of JTY in treating EMs. Meanwhile, we found that protein kinase R-like endoplasmic reticulum kinase (PERK), Beclin-1, and microtubule-associated protein light chain 3 B (LC3B) expressions were lower in endometria of patients with EMs than in those with normal eutopic endometria (p < 0.05). Additionally, during in vitro experiments, treatment with 20% JTY-containing serum significantly suppressed ESC proliferation, achieving optimal effects after 48 h. Electron microscopy revealed significantly increased autophagy flux in the JTY group compared with the control group. Moreover, JTY treatment significantly reduced the migratory and invasive abilities of ESCs and upregulated protein expression of PERK, eukaryotic initiation factor 2α (eIF2α)/phospho-eukaryotic initiation factor 2α (p-eIF2α), activating Transcription Factor-4 (ATF4), Beclin-1, and LC3BII/I, while subsequently downregulating NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and interleukin 18 (IL-18) expression. However, administration of GSK2656157-a highly selective PERK inhibitor-reversed these changes. CONCLUSION JTY ameliorates EMs by activating PERK associated with unfolded protein reaction, enhancing cell ER stress and autophagy, improving the inflammatory microenvironment, and decreasing the migration and invasion of ESCs.
Collapse
Affiliation(s)
- Fengyun Meng
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Jing Li
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Kun Dong
- Department of Organ Transplantation, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rui Bai
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Qiyu Liu
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Shijin Lu
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ying Liu
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Dekun Wu
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Chen Jiang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Weihong Li
- Department of Nursing, Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
3
|
Mariner BL, Rodriguez AS, Heath OC, McCormick MA. Induction of proteasomal activity in mammalian cells by lifespan-extending tRNA synthetase inhibitors. GeroScience 2024; 46:1755-1773. [PMID: 37749371 PMCID: PMC10828360 DOI: 10.1007/s11357-023-00938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
We have recently shown that multiple tRNA synthetase inhibitors can greatly increase lifespan in multiple models by acting through the conserved transcription factor ATF4. Here, we show that these compounds, and several others of the same class, can greatly upregulate mammalian ATF4 in cells in vitro, in a dose dependent manner. Further, RNASeq analysis of these cells pointed toward changes in protein turnover. In subsequent experiments here we show that multiple tRNA synthetase inhibitors can greatly upregulate activity of the ubiquitin proteasome system (UPS) in cells in an ATF4-dependent manner. The UPS plays an important role in the turnover of many damaged or dysfunctional proteins in an organism. Increasing UPS activity has been shown to enhance the survival of Huntington's disease cell models, but there are few known pharmacological enhancers of the UPS. Additionally, we see separate ATF4 dependent upregulation of macroautophagy upon treatment with tRNA synthetase inhibitors. Protein degradation is an essential cellular process linked to many important human diseases of aging such as Alzheimer's disease and Huntington's disease. These drugs' ability to enhance proteostasis more broadly could have wide-ranging implications in the treatment of important age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Blaise L Mariner
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, Albuquerque, NM, 87131, USA
| | - Antonio S Rodriguez
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Olivia C Heath
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Mark A McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, Albuquerque, NM, 87131, USA.
| |
Collapse
|
4
|
Garg S, Miousse IR. Rescue of Methionine Dependence by Cobalamin in a Human Colorectal Cancer Cell Line. Nutrients 2024; 16:997. [PMID: 38613029 PMCID: PMC11013648 DOI: 10.3390/nu16070997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Methionine dependence is a characteristic of most cancer cells where they are unable to proliferate when the essential amino acid methionine is replaced with its precursor homocysteine in the growing media. Normal cells, on the other hand, thrive under these conditions and are referred to as methionine-independent. The reaction that adds a methyl group from 5-methyltetrahydrofolate to homocysteine to regenerate methionine is catalyzed by the enzyme methionine synthase with the cofactor cobalamin (vitamin B12). However, decades of research have shown that methionine dependence in cancer is not due to a defect in the activity of methionine synthase. Cobalamin metabolism has been tied to the dependent phenotype in rare cell lines. We have identified a human colorectal cancer cell line in which the cells regain the ability to proliferation in methionine-free, L-homocystine-supplemented media when cyanocobalamin is supplemented at a level of 1 µg/mL. In human SW48 cells, methionine replacement with L-homocystine does not induce any measurable increase in apoptosis or reactive oxygen species production in this cell line. Rather, proliferation is halted, then restored in the presence of cyanocobalamin. Our data show that supplementation with cyanocobalamin prevents the activation of the integrated stress response (ISR) in methionine-deprived media in this cell line. The ISR-associated cell cycle arrest, characteristic of methionine-dependence in cancer, is also prevented, leading to the continuation of proliferation in methionine-deprived SW48 cells with cobalamin. Our results highlight differences between cancer cell lines in the response to cobalamin supplementation in the context of methionine dependence.
Collapse
Affiliation(s)
| | - Isabelle R. Miousse
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
5
|
Kukułowicz J, Pietrzak-Lichwa K, Klimończyk K, Idlin N, Bajda M. The SLC6A15-SLC6A20 Neutral Amino Acid Transporter Subfamily: Functions, Diseases, and Their Therapeutic Relevance. Pharmacol Rev 2023; 76:142-193. [PMID: 37940347 DOI: 10.1124/pharmrev.123.000886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
The neutral amino acid transporter subfamily that consists of six members, consecutively SLC6A15-SLC620, also called orphan transporters, represents membrane, sodium-dependent symporter proteins that belong to the family of solute carrier 6 (SLC6). Primarily, they mediate the transport of neutral amino acids from the extracellular milieu toward cell or storage vesicles utilizing an electric membrane potential as the driving force. Orphan transporters are widely distributed throughout the body, covering many systems; for instance, the central nervous, renal, or intestinal system, supplying cells into molecules used in biochemical, signaling, and building pathways afterward. They are responsible for intestinal absorption and renal reabsorption of amino acids. In the central nervous system, orphan transporters constitute a significant medium for the provision of neurotransmitter precursors. Diseases related with aforementioned transporters highlight their significance; SLC6A19 mutations are associated with metabolic Hartnup disorder, whereas altered expression of SLC6A15 has been associated with a depression/stress-related disorders. Mutations of SLC6A18-SLCA20 cause iminoglycinuria and/or hyperglycinuria. SLC6A18-SLC6A20 to reach the cellular membrane require an ancillary unit ACE2 that is a molecular target for the spike protein of the SARS-CoV-2 virus. SLC6A19 has been proposed as a molecular target for the treatment of metabolic disorders resembling gastric surgery bypass. Inhibition of SLC6A15 appears to have a promising outcome in the treatment of psychiatric disorders. SLC6A19 and SLC6A20 have been suggested as potential targets in the treatment of COVID-19. In this review, we gathered recent advances on orphan transporters, their structure, functions, related disorders, and diseases, and in particular their relevance as therapeutic targets. SIGNIFICANCE STATEMENT: The following review systematizes current knowledge about the SLC6A15-SLCA20 neutral amino acid transporter subfamily and their therapeutic relevance in the treatment of different diseases.
Collapse
Affiliation(s)
- Jędrzej Kukułowicz
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Pietrzak-Lichwa
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Klimończyk
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Nathalie Idlin
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
6
|
Jonsson WO, Borowik AK, Pranay A, Kinter MT, Mirek ET, Levy JL, Snyder EM, Miller BF, Anthony TG. Kinetic proteomics identifies targeted changes in liver metabolism and the ribo-interactome by dietary sulfur amino acid restriction. GeroScience 2023; 45:2425-2441. [PMID: 36976488 PMCID: PMC10651627 DOI: 10.1007/s11357-023-00758-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/19/2023] [Indexed: 03/29/2023] Open
Abstract
Dietary sulfur amino acid restriction (SAAR) protects against diet-induced obesity, extends healthspan, and coincides with an overall reduction in hepatic protein synthesis. To explore the underpinnings of SAAR-induced slowed growth and its impact on liver metabolism and proteostasis, we resolved changes in hepatic mRNA and protein abundances and compared synthesis rates of individual liver proteins. To achieve this, adult male mice were provided deuterium-labeled drinking water while freely consuming either a regular-fat or high-fat diet that was SAA restricted. Livers from these mice and their respective dietary controls were used to conduct transcriptomic, proteomic, and kinetic proteomic analyses. We found that remodeling of the transcriptome by SAAR was largely agnostic to dietary fat content. Shared signatures included activation of the integrated stress response alongside alterations in metabolic processes impacting lipids, fatty acids, and amino acids. Changes to the proteome correlated poorly with the transcriptome, and yet, functional clustering of kinetic proteomic changes in the liver during SAAR revealed that the management of fatty acids and amino acids were altered to support central metabolism and redox balance. Dietary SAAR also strongly influenced the synthesis rates of ribosomal proteins and ribosome-interacting proteins regardless of dietary fat. Taken together, dietary SAAR alters the transcriptome and proteome in the liver to safely manage increased fatty acid flux and energy use and couples this with targeted changes in the ribo-interactome to support proteostasis and slowed growth.
Collapse
Affiliation(s)
- William O Jonsson
- Department of Nutritional Sciences and the New Jersey Institute for Food, Nutrition and Health, Rutgers University, 59 Dudley Road - Foran Hall, Room 166, New Brunswick, NJ, 08901, USA
| | - Agnieszka K Borowik
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Atul Pranay
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael T Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Emily T Mirek
- Department of Nutritional Sciences and the New Jersey Institute for Food, Nutrition and Health, Rutgers University, 59 Dudley Road - Foran Hall, Room 166, New Brunswick, NJ, 08901, USA
| | - Jordan L Levy
- Department of Nutritional Sciences and the New Jersey Institute for Food, Nutrition and Health, Rutgers University, 59 Dudley Road - Foran Hall, Room 166, New Brunswick, NJ, 08901, USA
| | - Elizabeth M Snyder
- Department of Animal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City VA, Oklahoma City, OK, USA
| | - Tracy G Anthony
- Department of Nutritional Sciences and the New Jersey Institute for Food, Nutrition and Health, Rutgers University, 59 Dudley Road - Foran Hall, Room 166, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
7
|
Zhang Y, Zhou XQ, Jiang WD, Wu P, Liu Y, Ren HM, Jin XW, Feng L. Vitamin D Promotes Mucosal Barrier System of Fish Skin Infected with Aeromonas hydrophila through Multiple Modulation of Physical and Immune Protective Capacity. Int J Mol Sci 2023; 24:11243. [PMID: 37511003 PMCID: PMC10379486 DOI: 10.3390/ijms241411243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
The vertebrate mucosal barrier comprises physical and immune elements, as well as bioactive molecules, that protect organisms from pathogens. Vitamin D is a vital nutrient for animals and is involved in immune responses against invading pathogens. However, the effect of vitamin D on the mucosal barrier system of fish, particularly in the skin, remains unclear. Here, we elucidated the effect of vitamin D supplementation (15.2, 364.3, 782.5, 1167.9, 1573.8, and 1980.1 IU/kg) on the mucosal barrier system in the skin of grass carp (Ctenopharyngodon idella) challenged with Aeromonas hydrophila. Dietary vitamin D supplementation (1) alleviated A. hydrophila-induced skin lesions and inhibited oxidative damage by reducing levels of reactive oxygen species, malondialdehyde, and protein carbonyl; (2) improved the activities and transcription levels of antioxidant-related parameters and nuclear factor erythroid 2-related factor 2 signaling; (3) attenuated cell apoptosis by decreasing the mRNA and protein levels of apoptosis factors involved death receptor and mitochondrial pathway processes related to p38 mitogen-activated protein kinase and c-Jun N-terminal kinase signaling; (4) improved tight junction protein expression by inhibiting myosin light-chain kinase signaling; and (5) enhanced immune barrier function by promoting antibacterial compound and immunoglobulin production, downregulating pro-inflammatory cytokine expression, and upregulating anti-inflammatory cytokines expression, which was correlated with nuclear factor kappa B and the target of rapamycin signaling pathways. Vitamin D intervention for mucosal barrier via multiple signaling correlated with vitamin D receptor a. Overall, these results indicate that vitamin D supplementation enhanced the skin mucosal barrier system against pathogen infection, improving the physical and immune barriers in fish. This finding highlights the viability of vitamin D in supporting sustainable aquaculture.
Collapse
Affiliation(s)
- Yao Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611100, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611100, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611100, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611100, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611100, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611100, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611100, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611100, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611100, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611100, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611100, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611100, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611100, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611100, China
| |
Collapse
|
8
|
Feng C, Jiang Y, Wu G, Shi Y, Ge Y, Li B, Cheng X, Tang X, Zhu J, Le G. Dietary Methionine Restriction Improves Gastrocnemius Muscle Glucose Metabolism through Improved Insulin Secretion and H19/IRS-1/Akt Pathway in Middle-Aged Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5655-5666. [PMID: 36995760 DOI: 10.1021/acs.jafc.2c08373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Methionine restriction (MR) improves glucose metabolism. In skeletal muscle, H19 is a key regulator of insulin sensitivity and glucose metabolism. Therefore, this study aims to reveal the underlying mechanism of H19 upon MR on glucose metabolism in skeletal muscle. Middle-aged mice were fed MR diet for 25 weeks. Mouse islets β cell line β-TC6 cells and mouse myoblast cell line C2C12 cells were used to establish the apoptosis or insulin resistance model. Our findings showed that MR increased B-cell lymphoma-2 (Bcl-2) expression, deceased Bcl-2 associated X protein (Bax), cleaved cysteinyl aspartate-specific proteinase-3 (Caspase-3) expression in pancreas, and promoted insulin secretion of β-TC6 cells. Meanwhile, MR increased H19 expression, insulin Receptor Substrate-1/insulin Receptor Substrate-2 (IRS-1/IRS-2) value, protein Kinase B (Akt) phosphorylation, glycogen synthase kinase-3β (GSK3β) phosphorylation, and hexokinase 2 (HK2) expression in gastrocnemius muscle and promoted glucose uptake in C2C12 cells. But these results were reversed after H19 knockdown in C2C12 cells. In conclusion, MR alleviates pancreatic apoptosis and promotes insulin secretion. And MR enhances gastrocnemius muscle insulin-dependent glucose uptake and utilization via the H19/IRS-1/Akt pathway, thereby ameliorating blood glucose disorders and insulin resistance in high-fat-diet (HFD) middle-aged mice.
Collapse
Affiliation(s)
- Chuanxing Feng
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuge Jiang
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guoqing Wu
- School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yonghui Shi
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yueting Ge
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Bowen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiangrong Cheng
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xue Tang
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianjin Zhu
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guowei Le
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Zhang M, Zheng Y, Li X, Wu H, Liu P, Zhang K, Shi Z, Lv M, Wang F, Tang X. Tong-Xie-Yao-Fang alleviates diarrhea-predominant irritable bowel syndrome in rats via the GCN2/PERK-eIF2α-ATF4 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154350. [PMID: 36194974 DOI: 10.1016/j.phymed.2022.154350] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Diarrhea-predominant irritable bowel syndrome (IBS-D) is a common functional gastrointestinal disease. Tong-Xie-Yao-Fang (TXYF), the traditional Chinese herbal medicine prescription, is a classic and effective prescription for the treatment of IBS-D, but its mechanism of action is not fully clarified. OBJECTIVE To evaluate the efficacy of TXYF in the treatment of IBS-D and to explore its potential mechanism of action. METHODS Changes in the serum levels of 50 free amino acids were targeted for detection by high-performance liquid chromatography (HPLC), and the expression of glucose-regulated protein 78 (GRP78), general control nonderepressible 2 (GCN2), and endoplasmic reticulum-resident kinase (PERK) was detected by immunohistochemistry examinations in healthy volunteers and IBS-D patients. The IBS-D rat was constructed by the three-factor superposition method of neonatal maternal separation, 2,4,6-trinitrobenzene sulfonic acid enema, and chronic unpredictable stress stimulation. The treatment effect of TXYF on IBS-D rats was observed by recording the body weight, grasp force, fecal water content (FWC), and abdominal withdrawal reflex (AWR) of rats before and after treatment. The effects of GCN2/PERK-eukaryotic initiation factor-2 (eIF2α) -activating transcription Factor 4 (ATF4) pathway proteins and gene expression were analyzed by western blotting, reverse transcription-polymerase chain reaction (RT-qPCR), and immunohistochemistry evaluations. RESULTS Compared with healthy volunteers, IBS-D patients exhibited lower levels of cysteine, γ-aminoacetic acid (GABA), homoproline, and lysine, and immunohistochemistry showed strong activation of GRP78, a marker of endoplasmic reticulum stress. Differential expression of GCN2 and PERK proteins was detected in IBS-D patients and rat colons. In the IBS-D rats, TXYF improved the body weight and grasp force, reduced the FWC, and improved the AWR score. TXYF increased the levels of p-GCN2 and GCN2 and reduced the levels of GRP78, p-PERK, PERK, p-eIF2α, and eIF2α, thereby affecting the expression of the apoptosis-related transcription factors ATF4, CHOP, Caspase-3, and Bcl-2. CONCLUSION Our study showed that TXYF improved IBS-D by inhibiting apoptosis. The anti-apoptosis effects were potentially mediated by regulating the GCN2/PERK-eIF2a-ATF4 signaling pathway.
Collapse
Affiliation(s)
- Min Zhang
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yijun Zheng
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xia Li
- Beijing University of Chinese Medicine, Beijing, China
| | - Haomeng Wu
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Liu
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kunli Zhang
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongfei Shi
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mi Lv
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengyun Wang
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xudong Tang
- China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
10
|
Kosakamoto H, Okamoto N, Aikawa H, Sugiura Y, Suematsu M, Niwa R, Miura M, Obata F. Sensing of the non-essential amino acid tyrosine governs the response to protein restriction in Drosophila. Nat Metab 2022; 4:944-959. [PMID: 35879463 DOI: 10.1038/s42255-022-00608-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/15/2022] [Indexed: 11/08/2022]
Abstract
The intake of dietary protein regulates growth, metabolism, fecundity and lifespan across various species, which makes amino acid (AA)-sensing vital for adaptation to the nutritional environment. The general control nonderepressible 2 (GCN2)-activating transcription factor 4 (ATF4) pathway and the mechanistic target of rapamycin complex 1 (mTORC1) pathway are involved in AA-sensing. However, it is not fully understood which AAs regulate these two pathways in living animals and how they coordinate responses to protein restriction. Here we show in Drosophila that the non-essential AA tyrosine (Tyr) is a nutritional cue in the fat body necessary and sufficient for promoting adaptive responses to a low-protein diet, which entails reduction of protein synthesis and mTORC1 activity and increased food intake. This adaptation is regulated by dietary Tyr through GCN2-independent induction of ATF4 target genes in the fat body. This study identifies the Tyr-ATF4 axis as a regulator of the physiological response to a low-protein diet and sheds light on the essential function of a non-essential nutrient.
Collapse
Affiliation(s)
- Hina Kosakamoto
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- RIKEN Center for Biosystems and Dynamics Research, Kobe, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Hide Aikawa
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Fumiaki Obata
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- RIKEN Center for Biosystems and Dynamics Research, Kobe, Japan.
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan.
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
11
|
Sawa R, Ohnishi A, Ohno M, Nagata M, Wake I, Okimura Y. Specific amino acids regulate Sestrin2 mRNA and protein levels in an ATF4-dependent manner in C2C12 myocytes. Biochim Biophys Acta Gen Subj 2022; 1866:130174. [PMID: 35597502 DOI: 10.1016/j.bbagen.2022.130174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Sestrin2 is a conserved protein in several species, and its expression is upregulated in cells under various environmental stresses. Sestrin2 content is involved in the function of mechanistic target of rapamycin complex 1 (mTORC1) in mouse embryonic fibroblasts and C2C12 cells. METHODS C2C12 cells were treated with amino acid-free DMEM (AF-DMEM) for 5 h. The effects of the addition of specific amino acids to AF-DMEM on Sestrin2 mRNA and protein expression were examined using RT-qPCR and western blotting, respectively. The mechanism by which amino acids regulate Sestrin2 mRNA expression was examined using blocking and siRNA experiments. RESULTS AF-DMEM increased the mRNA and protein levels of both Sestrin2 and activating transcription factor 4 (ATF4). The addition of a specific amino acid changed Sestrin2 mRNA and protein levels. The response pattern of Sestrin2 to specific amino acids was similar to that of ATF4. ATF4 siRNA reduced Sestrin2 mRNA levels. AF-DMEM increased eukaryotic initiation factor 2α (eIF2α) phosphorylation as early as 10 min after the treatment; however, ATF4 and Sestrin2 were increased 300 min after the treatment. Nuclear factor erythroid 2-related factor 2 and pancreatic and duodenal homeobox 1 siRNA did not affect ATF4 and Sestrin2 mRNA expression. CONCLUSIONS Specific Amino acids regulate Sestrin2 levels in an ATF4-dependent manner in C2C12 cells. GENERAL SIGNIFICANCE The results of the present study indicate that amino acids regulate levels of Sestrin2, which might cause phenotypic alterations, including mTORC1 activity, in C2C12 cells.
Collapse
Affiliation(s)
- Ran Sawa
- Department of Nutrition and Food Science, Kobe Women's University Graduate School of Life Sciences, 2-1 Higashisuma-aoyama, Suma-ku, Kobe 654-8585, Japan
| | - Ayaka Ohnishi
- Department of Nutrition and Food Science, Kobe Women's University Graduate School of Life Sciences, 2-1 Higashisuma-aoyama, Suma-ku, Kobe 654-8585, Japan
| | - Maya Ohno
- Department of Nutrition and Food Science, Kobe Women's University Graduate School of Life Sciences, 2-1 Higashisuma-aoyama, Suma-ku, Kobe 654-8585, Japan
| | - Maika Nagata
- Department of Nutrition and Food Science, Kobe Women's University Graduate School of Life Sciences, 2-1 Higashisuma-aoyama, Suma-ku, Kobe 654-8585, Japan
| | - Ikumi Wake
- Department of Nutrition and Food Science, Kobe Women's University Graduate School of Life Sciences, 2-1 Higashisuma-aoyama, Suma-ku, Kobe 654-8585, Japan
| | - Yasuhiko Okimura
- Department of Nutrition and Food Science, Kobe Women's University Graduate School of Life Sciences, 2-1 Higashisuma-aoyama, Suma-ku, Kobe 654-8585, Japan.
| |
Collapse
|
12
|
Sedillo JC, Cryns VL. Targeting the methionine addiction of cancer. Am J Cancer Res 2022; 12:2249-2276. [PMID: 35693095 PMCID: PMC9185618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023] Open
Abstract
Methionine is the initiator amino acid for protein synthesis, the methyl source for most nucleotide, chromatin, and protein methylation, and the carbon backbone for various aspects of the cellular antioxidant response and nucleotide biosynthesis. Methionine is provided in the diet and serum methionine levels fluctuate based on dietary methionine content. Within the cell, methionine is recycled from homocysteine via the methionine cycle, which is linked to nutrient status via one-carbon metabolism. Unlike normal cells, many cancer cells, both in vitro and in vivo, show high methionine cycle activity and are dependent on exogenous methionine for continued growth. However, the molecular mechanisms underlying the methionine dependence of diverse malignancies are poorly understood. Methionine deprivation initiates widespread metabolic alterations in cancer cells that enable them to survive despite limited methionine availability, and these adaptive alterations can be specifically targeted to enhance the activity of methionine deprivation, a strategy we have termed "metabolic priming". Chemotherapy-resistant cell populations such as cancer stem cells, which drive treatment-resistance, are also sensitive to methionine deprivation, suggesting dietary methionine restriction may inhibit metastasis and recurrence. Several clinical trials in cancer are investigating methionine restriction in combination with other agents. This review will explore new insights into the mechanisms of methionine dependence in cancer and therapeutic efforts to translate these insights into enhanced clinical activity of methionine restriction in cancer.
Collapse
Affiliation(s)
- Joni C Sedillo
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health Madison, WI, USA
| | - Vincent L Cryns
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health Madison, WI, USA
| |
Collapse
|
13
|
Rapid ATF4 Depletion Resets Synaptic Responsiveness after cLTP. eNeuro 2021; 8:ENEURO.0239-20.2021. [PMID: 33980608 PMCID: PMC8177969 DOI: 10.1523/eneuro.0239-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 04/14/2021] [Accepted: 04/24/2021] [Indexed: 12/14/2022] Open
Abstract
Activating transcription factor 4 [ATF4 (also called CREB2)], in addition to its well studied role in stress responses, is proposed to play important physiologic functions in regulating learning and memory. However, the nature of these functions has not been well defined and is subject to apparently disparate views. Here, we provide evidence that ATF4 is a regulator of excitability during synaptic plasticity. We evaluated the role of ATF4 in mature hippocampal cultures subjected to a brief chemically induced LTP (cLTP) protocol that results in changes in mEPSC properties and synaptic AMPA receptor density 1 h later, with return to baseline by 24 h. We find that ATF4 protein, but not its mRNA, is rapidly depleted by ∼50% in response to cLTP induction via NMDA receptor activation. Depletion is detectable in dendrites within 15 min and in cell bodies by 1 h, and returns to baseline by 8 h. Such changes correlate with a parallel depletion of phospho-eIF2a, suggesting that ATF4 loss is driven by decreased translation. To probe the physiologic role of cLTP-induced ATF4 depletion, we constitutively overexpressed the protein. Reversing ATF4 depletion by overexpression blocked the recovery of synaptic activity and AMPA receptor density to baseline values that would otherwise occur 24 h after cLTP induction. This reversal was not reproduced by a transcriptionally inactive ATF4 mutant. These findings support the role of ATF4 as a required element in resetting baseline synaptic responsiveness after cLTP.
Collapse
|
14
|
Ren JX, Li C, Yan XL, Qu Y, Yang Y, Guo ZN. Crosstalk between Oxidative Stress and Ferroptosis/Oxytosis in Ischemic Stroke: Possible Targets and Molecular Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6643382. [PMID: 34055196 PMCID: PMC8133868 DOI: 10.1155/2021/6643382] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/23/2021] [Indexed: 01/21/2023]
Abstract
Oxidative stress is a key cause of ischemic stroke and an initiator of neuronal dysfunction and death, mainly through the overproduction of peroxides and the depletion of antioxidants. Ferroptosis/oxytosis is a unique, oxidative stress-induced cell death pathway characterized by lipid peroxidation and glutathione depletion. Both oxidative stress and ferroptosis/oxytosis have common molecular pathways. This review summarizes the possible targets and the mechanisms underlying the crosstalk between oxidative stress and ferroptosis/oxytosis in ischemic stroke. This knowledge might help to further understand the pathophysiology of ischemic stroke and open new perspectives for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jia-Xin Ren
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China
- China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China
| | - Chao Li
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China
- China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China
| | - Xiu-Li Yan
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China
- China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China
| | - Yang Qu
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China
- China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China
| | - Yi Yang
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China
- China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, No. 1 Xinmin Street, Changchun 130021, China
| | - Zhen-Ni Guo
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China
- China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, No. 1 Xinmin Street, Changchun 130021, China
| |
Collapse
|
15
|
Role of Proteasomes in Inflammation. J Clin Med 2021; 10:jcm10081783. [PMID: 33923887 PMCID: PMC8072576 DOI: 10.3390/jcm10081783] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin–proteasome system (UPS) is involved in multiple cellular functions including the regulation of protein homeostasis, major histocompatibility (MHC) class I antigen processing, cell cycle proliferation and signaling. In humans, proteasome loss-of-function mutations result in autoinflammation dominated by a prominent type I interferon (IFN) gene signature. These genomic alterations typically cause the development of proteasome-associated autoinflammatory syndromes (PRAAS) by impairing proteasome activity and perturbing protein homeostasis. However, an abnormal increased proteasomal activity can also be found in other human inflammatory diseases. In this review, we cast a light on the different clinical aspects of proteasomal activity in human disease and summarize the currently studied therapeutic approaches.
Collapse
|
16
|
Jonsson WO, Margolies NS, Mirek ET, Zhang Q, Linden MA, Hill CM, Link C, Bithi N, Zalma B, Levy JL, Pettit AP, Miller JW, Hine C, Morrison CD, Gettys TW, Miller BF, Hamilton KL, Wek RC, Anthony TG. Physiologic Responses to Dietary Sulfur Amino Acid Restriction in Mice Are Influenced by Atf4 Status and Biological Sex. J Nutr 2021; 151:785-799. [PMID: 33512502 PMCID: PMC8030708 DOI: 10.1093/jn/nxaa396] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/19/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Dietary sulfur amino acid restriction (SAAR) improves body composition and metabolic health across several model organisms in part through induction of the integrated stress response (ISR). OBJECTIVE We investigate the hypothesis that activating transcription factor 4 (ATF4) acts as a converging point in the ISR during SAAR. METHODS Using liver-specific or global gene ablation strategies, in both female and male mice, we address the role of ATF4 during dietary SAAR. RESULTS We show that ATF4 is dispensable in the chronic induction of the hepatokine fibroblast growth factor 21 while being essential for the sustained production of endogenous hydrogen sulfide. We also affirm that biological sex, independent of ATF4 status, is a determinant of the response to dietary SAAR. CONCLUSIONS Our results suggest that auxiliary components of the ISR, which are independent of ATF4, are critical for SAAR-mediated improvements in metabolic health in mice.
Collapse
Affiliation(s)
- William O Jonsson
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | | | - Emily T Mirek
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Qian Zhang
- Department of Health and Exercise Science, Colorado State University, Ft. Collins, CO, USA
| | - Melissa A Linden
- Department of Health and Exercise Science, Colorado State University, Ft. Collins, CO, USA
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Cristal M Hill
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Christopher Link
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Nazmin Bithi
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Brian Zalma
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Jordan L Levy
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Ashley P Pettit
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Joshua W Miller
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Christopher Hine
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | | | - Thomas W Gettys
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Benjamin F Miller
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Karyn L Hamilton
- Department of Health and Exercise Science, Colorado State University, Ft. Collins, CO, USA
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
17
|
Stone KP, Ghosh S, Kovalik JP, Orgeron M, Wanders D, Sims LC, Gettys TW. The acute transcriptional responses to dietary methionine restriction are triggered by inhibition of ternary complex formation and linked to Erk1/2, mTOR, and ATF4. Sci Rep 2021; 11:3765. [PMID: 33580171 PMCID: PMC7880992 DOI: 10.1038/s41598-021-83380-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/01/2021] [Indexed: 12/20/2022] Open
Abstract
The initial sensing of dietary methionine restriction (MR) occurs in the liver where it activates an integrated stress response (ISR) that quickly reduces methionine utilization. The ISR program is regulated in part by ATF4, but ATF4's prototypical upstream regulator, eIF2α, is not acutely activated by MR. Bioinformatic analysis of RNAseq and metabolomics data from liver samples harvested 3 h and 6 h after initiating MR shows that general translation is inhibited at the level of ternary complex formation by an acute 50% reduction of hepatic methionine that limits formation of initiator methionine tRNA. The resulting ISR is induced by selective expression of ATF4 target genes that mediate adaptation to reduced methionine intake and return hepatic methionine to control levels within 4 days of starting the diet. Complementary in vitro experiments in HepG2 cells after knockdown of ATF4, or inhibition of mTOR or Erk1/2 support the conclusion that the early induction of genes by MR is partially dependent on ATF4 and regulated by both mTOR and Erk1/2. Taken together, these data show that initiation of dietary MR induces an mTOR- and Erk1/2-dependent stress response that is linked to ATF4 by the sharp, initial drop in hepatic methionine and resulting repression of translation pre-initiation.
Collapse
Affiliation(s)
- Kirsten P Stone
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | - Sujoy Ghosh
- Laboratory of Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, USA
- Program in Cardiovascular and Metabolic Disorders and Center for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Jean Paul Kovalik
- Program in Cardiovascular and Metabolic Disorders and Center for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Manda Orgeron
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | - Desiree Wanders
- Department of Nutrition, Georgia State University, Atlanta, GA, USA
| | - Landon C Sims
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | - Thomas W Gettys
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
18
|
Pan S, Fan M, Liu Z, Li X, Wang H. Serine, glycine and one‑carbon metabolism in cancer (Review). Int J Oncol 2021; 58:158-170. [PMID: 33491748 PMCID: PMC7864012 DOI: 10.3892/ijo.2020.5158] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Serine/glycine biosynthesis and one‑carbon metabolism are crucial in sustaining cancer cell survival and rapid proliferation, and of high clinical relevance. Excessive activation of serine/glycine biosynthesis drives tumorigenesis and provides a single carbon unit for one‑carbon metabolism. One‑carbon metabolism, which is a complex cyclic metabolic network based on the chemical reaction of folate compounds, provides the necessary proteins, nucleic acids, lipids and other biological macromolecules to support tumor growth. Moreover, one‑carbon metabolism also maintains the redox homeostasis of the tumor microenvironment and provides substrates for the methylation reaction. The present study reviews the role of key enzymes with tumor‑promoting functions and important intermediates that are physiologically relevant to tumorigenesis in serine/glycine/one‑carbon metabolism pathways. The related regulatory mechanisms of action of the key enzymes and important intermediates in tumors are also discussed. It is hoped that investigations into these pathways will provide new translational opportunities for human cancer drug development, dietary interventions, and biomarker identification.
Collapse
Affiliation(s)
- Sijing Pan
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, Institute of Translational Medicine, School of Basic Medicine, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Ming Fan
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, Institute of Translational Medicine, School of Basic Medicine, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Zhangnan Liu
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, Institute of Translational Medicine, School of Basic Medicine, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Xia Li
- Correspondence to: Dr Huijuan Wang or Dr Xia Li, Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, Institute of Translational Medicine, School of Basic Medicine, Henan University, Jinming Road, Kaifeng, Henan 475004, P.R. China, E-mail: , E-mail:
| | - Huijuan Wang
- Correspondence to: Dr Huijuan Wang or Dr Xia Li, Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, Institute of Translational Medicine, School of Basic Medicine, Henan University, Jinming Road, Kaifeng, Henan 475004, P.R. China, E-mail: , E-mail:
| |
Collapse
|
19
|
Hamano M, Tomonaga S, Osaki Y, Oda H, Kato H, Furuya S. Transcriptional Activation of Chac1 and Other Atf4-Target Genes Induced by Extracellular l-Serine Depletion is negated with Glycine Consumption in Hepa1-6 Hepatocarcinoma Cells. Nutrients 2020; 12:nu12103018. [PMID: 33023086 PMCID: PMC7600170 DOI: 10.3390/nu12103018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 11/25/2022] Open
Abstract
Mouse embryonic fibroblasts lacking D-3-phosphoglycerate dehydrogenase (Phgdh), which catalyzes the first step of de novo synthesis of l-serine, are particularly sensitive to depletion of extracellular L-serine. In these cells, depletion of l-serine leads to a rapid reduction of intracellular L-serine, cell growth arrest, and altered expression of a wide variety of genes. However, it remains unclear whether reduced availability of extracellular l-serine elicits such responses in other cell types expressing Phgdh. Here, we show in the mouse hepatoma cell line Hepa1-6 that extracellular l-serine depletion transiently induced transcriptional activation of Atf4-target genes, including cation transport regulator-like protein 1 (Chac1). Expression levels of these genes returned to normal 24 h after l-serine depletion, and were suppressed by the addition of l-serine or glycine in the medium. Extracellular l-serine depletion caused a reduction of extracellular and intracellular glycine levels but maintained intracellular l-serine levels in the cells. Further, Phgdh and serine hydroxymethyltransferase 2 (Shmt2) were upregulated after l-serine depletion. These results led us to conclude that the Atf4-mediated gene expression program is activated by extracellular l-serine depletion in Hepa1-6 cells expressing Phgdh, but is antagonized by the subsequent upregulation of l-serine synthesis, mainly from autonomous glycine consumption.
Collapse
Affiliation(s)
- Momoko Hamano
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
- Laboratory of Functional Genomics and Metabolism, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan;
- Correspondence: (M.H.); (S.F.)
| | - Shozo Tomonaga
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan;
| | - Yusuke Osaki
- Laboratory of Functional Genomics and Metabolism, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan;
| | - Hiroaki Oda
- Laboratory of Nutritional Biochemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan;
| | - Hisanori Kato
- Health Nutrition Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
| | - Shigeki Furuya
- Laboratory of Functional Genomics and Metabolism, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan;
- Innovative Bio-Architecture Center, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence: (M.H.); (S.F.)
| |
Collapse
|
20
|
Molenaars M, Daniels EG, Meurs A, Janssens GE, Houtkooper RH. Mitochondrial cross-compartmental signalling to maintain proteostasis and longevity. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190414. [PMID: 32362258 DOI: 10.1098/rstb.2019.0414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lifespan in eukaryotic species can be prolonged by shifting from cellular states favouring growth to those favouring maintenance and stress resistance. For instance, perturbations in mitochondrial oxidative phosphorylation (OXPHOS) can shift cells into this latter state and extend lifespan. Because mitochondria rely on proteins synthesized from nuclear as well as mitochondrial DNA, they need to constantly send and receive messages from other compartments of the cell in order to function properly and maintain homeostasis, and lifespan extension is often dependent on this cross-compartmental signalling. Here, we describe the mechanisms of bi-directional mitochondrial cross-compartmental signalling resulting in proteostasis and longevity. These proteostasis mechanisms are highly context-dependent, governed by the origin and extent of stress. Furthermore, we discuss the translatability of these mechanisms and explore therapeutic developments, such as the antibiotic studies targeting mitochondria or mitochondria-derived peptides as therapies for age-related diseases such as neurodegeneration and cancer. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Marte Molenaars
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Eileen G Daniels
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Amber Meurs
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Ratan RR. The Chemical Biology of Ferroptosis in the Central Nervous System. Cell Chem Biol 2020; 27:479-498. [PMID: 32243811 DOI: 10.1016/j.chembiol.2020.03.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/04/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
Over the past five decades, thanatology has come to include the study of how individual cells in our bodies die appropriately and inappropriately in response to physiological and pathological stimuli. Morphological and biochemical criteria have been painstakingly established to create clarity around definitions of distinct types of cell death and mechanisms for their activation. Among these, ferroptosis has emerged as a unique, oxidative stress-induced cell death pathway with implications for diseases as diverse as traumatic brain injury, hemorrhagic stroke, Alzheimer's disease, cancer, renal ischemia, and heat stress in plants. In this review, I highlight some of the formative studies that fostered its recognition in the nervous system and describe how chemical biological tools have been essential in defining events necessary for its execution. Finally, I discuss emerging opportunities for antiferroptotic agents as therapeutic agents in neurological diseases.
Collapse
Affiliation(s)
- Rajiv R Ratan
- Burke Neurological Institute at Weill Cornell Medicine, 785 Mamaroneck Avenue, White Plains, NY 10605, USA.
| |
Collapse
|
22
|
Molenaars M, Janssens GE, Williams EG, Jongejan A, Lan J, Rabot S, Joly F, Moerland PD, Schomakers BV, Lezzerini M, Liu YJ, McCormick MA, Kennedy BK, van Weeghel M, van Kampen AHC, Aebersold R, MacInnes AW, Houtkooper RH. A Conserved Mito-Cytosolic Translational Balance Links Two Longevity Pathways. Cell Metab 2020; 31:549-563.e7. [PMID: 32084377 PMCID: PMC7214782 DOI: 10.1016/j.cmet.2020.01.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 08/22/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022]
Abstract
Slowing down translation in either the cytosol or the mitochondria is a conserved longevity mechanism. Here, we found a non-interventional natural correlation of mitochondrial and cytosolic ribosomal proteins (RPs) in mouse population genetics, suggesting a translational balance. Inhibiting mitochondrial translation in C. elegans through mrps-5 RNAi repressed cytosolic translation. Transcriptomics integrated with proteomics revealed that this inhibition specifically reduced translational efficiency of mRNAs required in growth pathways while increasing stress response mRNAs. The repression of cytosolic translation and extension of lifespan from mrps-5 RNAi were dependent on atf-5/ATF4 and independent from metabolic phenotypes. We found the translational balance to be conserved in mammalian cells upon inhibiting mitochondrial translation pharmacologically with doxycycline. Lastly, extending this in vivo, doxycycline repressed cytosolic translation in the livers of germ-free mice. These data demonstrate that inhibiting mitochondrial translation initiates an atf-5/ATF4-dependent cascade leading to coordinated repression of cytosolic translation, which could be targeted to promote longevity.
Collapse
Affiliation(s)
- Marte Molenaars
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Evan G Williams
- Institute of Molecular Systems Biology, ETH Zurich, Zürich, Switzerland
| | - Aldo Jongejan
- Bioinformatics Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jiayi Lan
- Institute of Molecular Systems Biology, ETH Zurich, Zürich, Switzerland
| | - Sylvie Rabot
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Fatima Joly
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Perry D Moerland
- Bioinformatics Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Bauke V Schomakers
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Marco Lezzerini
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Yasmine J Liu
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Mark A McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Autophagy, Inflammation, and Metabolism Center of Biological Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Brian K Kennedy
- Buck Institute for Research on Aging, Novato, CA, USA; Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Antoine H C van Kampen
- Bioinformatics Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, ETH Zurich, Zürich, Switzerland; Faculty of Science, University of Zürich, Switzerland
| | - Alyson W MacInnes
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
23
|
Ebstein F, Poli Harlowe MC, Studencka-Turski M, Krüger E. Contribution of the Unfolded Protein Response (UPR) to the Pathogenesis of Proteasome-Associated Autoinflammatory Syndromes (PRAAS). Front Immunol 2019; 10:2756. [PMID: 31827472 PMCID: PMC6890838 DOI: 10.3389/fimmu.2019.02756] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Type I interferonopathies cover a phenotypically heterogeneous group of rare genetic diseases including the recently described proteasome-associated autoinflammatory syndromes (PRAAS). By definition, PRAAS are caused by inherited and/or de novo loss-of-function mutations in genes encoding proteasome subunits such as PSMB8, PSMB9, PSMB7, PSMA3, or proteasome assembly factors including POMP and PSMG2, respectively. Disruption of any of these subunits results in perturbed intracellular protein homeostasis including accumulation of ubiquitinated proteins which is accompanied by a type I interferon (IFN) signature. The observation that, similarly to pathogens, proteasome dysfunctions are potent type I IFN inducers is quite unexpected and, up to now, the underlying molecular mechanisms of this process remain largely unknown. One promising candidate for triggering type I IFN under sterile conditions is the unfolded protein response (UPR) which is typically initiated in response to an accumulation of unfolded and/or misfolded proteins in the endoplasmic reticulum (ER) (also referred to as ER stress). The recent observation that the UPR is engaged in subjects carrying POMP mutations strongly suggests its possible implication in the cause-and-effect relationship between proteasome impairment and interferonopathy onset. The purpose of this present review is therefore to discuss the possible role of the UPR in the pathogenesis of PRAAS. We will particularly focus on pathways initiated by the four ER-membrane proteins ATF6, PERK, IRE1-α, and TCF11/Nrf1 which undergo activation under proteasome inhibition. An overview of the current understanding of the mechanisms and potential cross-talk between the UPR and inflammatory signaling casacades is provided to convey a more integrated picture of the pathophysiology of PRAAS and shed light on potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Frédéric Ebstein
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - María Cecilia Poli Harlowe
- Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Maja Studencka-Turski
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
24
|
Seryl-tRNA synthetase is involved in methionine stimulation of β-casein synthesis in bovine mammary epithelial cells. Br J Nutr 2019; 123:489-498. [PMID: 31711551 PMCID: PMC7015878 DOI: 10.1017/s0007114519002885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite the well-characterised mechanisms of amino acids (AA) regulation of milk protein synthesis in mammary glands (MG), the underlying specific AA regulatory machinery in bovine MG remains further elucidated. As methionine (Met) is one of the most important essential and limiting AA for dairy cows, it is crucial to expand how Met exerts its regulatory effects on dairy milk protein synthesis. Our previous work detected the potential regulatory role of seryl-tRNA synthetase (SARS) in essential AA (EAA)-stimulated bovine casein synthesis. Here, we investigated whether and how SARS participates in Met stimulation of casein production in bovine mammary epithelial cells (BMEC). With or without RNA interference against SARS, BMEC were treated with the medium in the absence (containing all other EAA and devoid of Met alone)/presence (containing 0·6 mm of Met in the medium devoid of Met alone) of Met. The protein abundance of β-casein and members of the mammalian target of rapamycin (mTOR) and general control nonderepressible 2 (GCN2) pathways was determined by immunoblot assay after 6 h treatment, the cell viability and cell cycle progression were determined by cell counting and propidium iodide-staining assay after 24 h treatment, and protein turnover was determined by l-[ring-3H5]phenylalanine isotope tracing assay after 48 h treatment. In the absence of Met, there was a general reduction in cell viability, total protein synthesis and β-casein production; in contrast, total protein degradation was enhanced. SARS knockdown strengthened these changes. Finally, SARS may work to promote Met-stimulated β-casein synthesis via affecting mTOR and GCN2 routes in BMEC.
Collapse
|
25
|
Rajanala SH, Ringquist R, Cryns VL. Methionine restriction activates the integrated stress response in triple-negative breast cancer cells by a GCN2- and PERK-independent mechanism. Am J Cancer Res 2019; 9:1766-1775. [PMID: 31497357 PMCID: PMC6726988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023] Open
Abstract
Transformed cells are often selectively susceptible to depletion of the amino acid methionine, which induces growth arrest and/or apoptosis. In non-transformed cells, amino acid deficiency is sensed by two stress-activated kinases, general control nonderepressible 2 (GCN2) and protein kinase R-like endoplasmic reticulum kinase (PERK), which phosphorylate and inactivate elongation initiation factor 2 α (eIF2α), thereby suppressing global mRNA translation and inducing activated transcription factor (ATF4). ATF4 and its downstream transcriptional targets including Sestrin-2 constitute an adaptive integrated stress response. We postulated that methionine depletion activates the integrated stress response in breast cancer cells by a GCN2- and/or PERK-dependent mechanism and that selective disruption of one or both of these kinases would enhance the therapeutic activity of methionine restriction. Here we demonstrate that methionine restriction induces eIF2α phosphorylation and enhances ATF4 gene expression and protein levels of ATF4 and Sestrin-2 in triple (ER/PR/HER2)-negative breast cancer (TNBC) cells. However, knockdown of GCN2, PERK or both in TNBC cells did not prevent induction of ATF4 or Sestrin-2 by methionine restriction. In contrast, deletion of GCN2 in murine embryonic fibroblasts abrogated ATF4 and Sestrin-2 induction in response to methionine restriction. Moreover, knockdown of GCN2, PERK or both did not affect TNBC cell growth or apoptosis in response to methionine restriction. Overall, our findings point to a GCN2- and PERK-independent mechanism(s) by which methionine restriction activates the integrated stress response in TNBC cells. Elucidation of this pathway(s) could lead to strategies to enhance the therapeutic response of methionine restriction.
Collapse
Affiliation(s)
- Sai Harisha Rajanala
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health Madison, WI, USA
| | - Rachel Ringquist
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health Madison, WI, USA
| | - Vincent L Cryns
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health Madison, WI, USA
| |
Collapse
|
26
|
Albarazanji K, Jennis M, Cavanaugh CR, Lang W, Singh B, Lanter JC, Lenhard JM, Hornby PJ. Intestinal serine protease inhibition increases FGF21 and improves metabolism in obese mice. Am J Physiol Gastrointest Liver Physiol 2019; 316:G653-G667. [PMID: 30920846 PMCID: PMC7054636 DOI: 10.1152/ajpgi.00404.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Trypsin is the major serine protease responsible for intestinal protein digestion. An inhibitor, camostat (CS), reduced weight gain, hyperglycemia, and dyslipidemia in obese rats; however, the mechanisms for these are largely unknown. We reasoned that CS creates an apparent dietary protein restriction, which is known to increase hepatic fibroblast growth factor 21 (FGF21). Therefore, metabolic responses to CS and a gut-restricted CS metabolite, FOY-251, were measured in mice. Food intake, body weight, blood glucose, branched-chain amino acids (LC/MS), hormone levels (ELISA), liver pathology (histology), and transcriptional changes (qRT-PCR) were measured in ob/ob, lean and diet-induced obese (DIO) C57BL/6 mice. In ob/ob mice, CS in chow (9-69 mg/kg) or FOY-251 (46 mg/kg) reduced food intake and body weight gain to a similar extent as pair-fed mice. CS decreased blood glucose, liver weight, and lipidosis and increased FGF21 gene transcription and plasma levels. In lean mice, CS increased liver FGF21 mRNA and plasma levels. Relative to pair feeding, FOY-251 also increased plasma FGF21 and induced liver FGF21 and integrated stress response (ISR) transcription. In DIO mice, FOY-251 (100 mg/kg po) did not alter peak glucose levels but reduced the AUC of the glucose excursion in response to an oral glucose challenge. FOY-251 increased plasma FGF21 levels. In addition to previously reported satiety-dependent (cholecystokinin-mediated) actions, intestinal trypsin inhibition engages non-satiety-related pathways in both leptin-deficient and DIO mice. This novel mechanism improves metabolism by a liver-integrated stress response and increased FGF21 expression levels in mice. NEW & NOTEWORTHY Trypsin inhibitors, including plant-based consumer products, have long been associated with metabolic improvements. Studies in the 1980s and 1990s suggested this was due to satiety hormones and caloric wasting by loss of protein and fatty acids in feces. This work suggests an entirely new mechanism based on the lower amounts of digested protein available in the gut. This apparent protein reduction may cause beneficial metabolic adaptation by the intestinal-liver axis to perceived nutrient stress.
Collapse
Affiliation(s)
- Kamal Albarazanji
- 1Cardiovascular and Metabolic Disease Discovery, Janssen R&D, LLC, Spring House, Pennsylvania
| | - Matthew Jennis
- 1Cardiovascular and Metabolic Disease Discovery, Janssen R&D, LLC, Spring House, Pennsylvania
| | - Cassandre R. Cavanaugh
- 1Cardiovascular and Metabolic Disease Discovery, Janssen R&D, LLC, Spring House, Pennsylvania
| | - Wensheng Lang
- 2Analytical Sciences, Janssen R&D, LLC, Spring House, Pennsylvania
| | - Bhanu Singh
- 3Non-Clinical Sciences, Janssen Research & Development, LLC, Spring House, Pennsylvania
| | - James C. Lanter
- 1Cardiovascular and Metabolic Disease Discovery, Janssen R&D, LLC, Spring House, Pennsylvania
| | - James M. Lenhard
- 1Cardiovascular and Metabolic Disease Discovery, Janssen R&D, LLC, Spring House, Pennsylvania
| | - Pamela J. Hornby
- 1Cardiovascular and Metabolic Disease Discovery, Janssen R&D, LLC, Spring House, Pennsylvania
| |
Collapse
|
27
|
Wang KZ, Feng L, Jiang WD, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Zhang YA, Zhou XQ. Dietary gossypol reduced intestinal immunity and aggravated inflammation in on-growing grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2019; 86:814-831. [PMID: 30543935 DOI: 10.1016/j.fsi.2018.12.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/25/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
The present study explored the effects of dietary gossypol on the gut health of on-growing grass carp. The fish were fed six diets containing different levels of free gossypol (0, 121.38, 243.94, 363.89, 759.93 and 1162.06 mg/kg diet) from gossypol-acetic acid for 60 days and then challenged with Aeromonas hydrophila for 14 days. The results showed that dietary gossypol (1) could aggravate enteritis and damage the structure of intestinal epithelial cells, (2) decreased the lysozyme (LZ) and Acid phosphatase (ACP) activities, complement 3 (C3), C4 and immunoglobulin M (IgM) contents, and it down-regulated the Hepcidin (rather than distal intestine (DI)), immunoglobulin Z (IgZ), liver-expressed antimicrobial peptide (LEAP)-2B, Mucin2 and β-defensin-1 mRNA levels in the proximal intestine (PI), mid intestine (MI) and DI, (3) up-regulated intestinal pro-inflammatory cytokines tumor necrosis factor α (TNF-α), interferon γ2 (IFN-γ2), interleukin 1β (IL-1β), IL-6 (only in PI), IL-8 and IL-12p35 mRNA levels partly related to nuclear factor kappa B (NF-κB) signalling, and (4) down-regulated the mRNA levels of anti-inflammatory cytokines such as transforming growth factor (TGF)-β1, TGF-β2, interleukin 4/13A (IL-4/13A) (except IL-4/13B), IL-10 and IL-11 partly relating to target of rapamycin (TOR) signalling in the intestines of on-growing grass carp. Moreover, the dietary gossypol had no impact on the LEAP-2A, IL-12P40, IL-17D, IL-10, NF-κBp52, IKKα and eIF4E-binding proteins 2 (4E-BP2) mRNA levels in the intestines. Finally, based on the intestinal histopathological results, enteritis morbidity, LZ activity and IgM content, the safe dose of gossypol in the diets for on-growing grass carp should be less than 103.42 mg/kg diet.
Collapse
Affiliation(s)
- Kai-Zhuo Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan, Agricultural University, Sichuan, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan, Agricultural University, Sichuan, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan, Agricultural University, Sichuan, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan, Agricultural University, Sichuan, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan, Agricultural University, Sichuan, Chengdu, 611130, China.
| |
Collapse
|
28
|
Kuwahata M, Kobayashi Y, Wada Y, Aoi W, Kido Y. Dietary cystine is important to maintain plasma mercaptalbumin levels in rats fed low-protein diets. Nutr Res 2018; 56:79-89. [DOI: 10.1016/j.nutres.2018.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 10/16/2022]
|
29
|
Zheng L, Feng L, Jiang WD, Wu P, Tang L, Kuang SY, Zeng YY, Zhou XQ, Liu Y. Selenium deficiency impaired immune function of the immune organs in young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 77:53-70. [PMID: 29559270 DOI: 10.1016/j.fsi.2018.03.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 05/12/2023]
Abstract
This study aimed to investigate the effects of dietary selenium on resistance to skin haemorrhages and lesions and on immune function as well as the underlying mechanisms of those effects in the head kidney, spleen and skin of young grass carp (Ctenopharyngodon idella). A total of 540 healthy grass carp with initial body weight (226.48 ± 0.68 g) were randomly divided into six groups and fed six separate diets with graded dietary levels of selenium (0.025, 0.216, 0.387, 0.579, 0.795 and 1.049 mg/kg diet) for 80 days. After the feeding period, an immunization trial was performed by infection with Aeromonas hydrophila for 14 days. The results showed that, compared with the optimal selenium level, (1) selenium deficiency impaired the production of antibacterial compounds and immunoglobulins and down-regulated the transcript abundances of antimicrobial peptides and selenoproteins; (2) selenium deficiency aggravated inflammatory responses in part by up-regulating pro-inflammatory cytokines and down-regulating anti-inflammatory cytokines mRNA levels, which were partially related to [IKKα, β, γ/IκBα/NF-κB] signalling and [TOR/(S6K1, 4E-BP1)] signalling, respectively. Interestingly, selenium deficiency had no effect on the expression of TGF-β2, IL-4/13B, IL-10, IL-12p35, IL-15 (skin only) or 4E-BP2 in the head kidney, spleen and skin of young grass carp. Finally, based on the percent weight gain (PWG), the morbidity of skin haemorrhages and lesions, the ACP activity in the head kidney and the lysozyme activity in spleen, the optimal dietary selenium requirements for young grass carp were estimated to be 0.546-0.604 mg/kg diet. In summary, selenium deficiency decreased the growth performance and impaired the immune function in the head kidney, spleen and skin of young grass carp.
Collapse
Affiliation(s)
- Lin Zheng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yun-Yun Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.
| |
Collapse
|
30
|
Mazor KM, Dong L, Mao Y, Swanda RV, Qian SB, Stipanuk MH. Effects of single amino acid deficiency on mRNA translation are markedly different for methionine versus leucine. Sci Rep 2018; 8:8076. [PMID: 29795412 PMCID: PMC5967319 DOI: 10.1038/s41598-018-26254-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/04/2018] [Indexed: 11/09/2022] Open
Abstract
Although amino acids are known regulators of translation, the unique contributions of specific amino acids are not well understood. We compared effects of culturing HEK293T cells in medium lacking either leucine, methionine, histidine, or arginine on eIF2 and 4EBP1 phosphorylation and measures of mRNA translation. Methionine starvation caused the most drastic decrease in translation as assessed by polysome formation, ribosome profiling, and a measure of protein synthesis (puromycin-labeled polypeptides) but had no significant effect on eIF2 phosphorylation, 4EBP1 hyperphosphorylation or 4EBP1 binding to eIF4E. Leucine starvation suppressed polysome formation and was the only tested condition that caused a significant decrease in 4EBP1 phosphorylation or increase in 4EBP1 binding to eIF4E, but effects of leucine starvation were not replicated by overexpressing nonphosphorylatable 4EBP1. This suggests the binding of 4EBP1 to eIF4E may not by itself explain the suppression of mRNA translation under conditions of leucine starvation. Ribosome profiling suggested that leucine deprivation may primarily inhibit ribosome loading, whereas methionine deprivation may primarily impair start site recognition. These data underscore our lack of a full understanding of how mRNA translation is regulated and point to a unique regulatory role of methionine status on translation initiation that is not dependent upon eIF2 phosphorylation.
Collapse
Affiliation(s)
- Kevin M Mazor
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Leiming Dong
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Robert V Swanda
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Martha H Stipanuk
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
31
|
Functions and Signaling Pathways of Amino Acids in Intestinal Inflammation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9171905. [PMID: 29682569 PMCID: PMC5846438 DOI: 10.1155/2018/9171905] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/30/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022]
Abstract
Intestine is always exposed to external environment and intestinal microorganism; thus it is more sensitive to dysfunction and dysbiosis, leading to intestinal inflammation, such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and diarrhea. An increasing number of studies indicate that dietary amino acids play significant roles in preventing and treating intestinal inflammation. The review aims to summarize the functions and signaling mechanisms of amino acids in intestinal inflammation. Amino acids, including essential amino acids (EAAs), conditionally essential amino acids (CEAAs), and nonessential amino acids (NEAAs), improve the functions of intestinal barrier and expressions of anti-inflammatory cytokines and tight junction proteins but decrease oxidative stress and the apoptosis of enterocytes as well as the expressions of proinflammatory cytokines in the intestinal inflammation. The functions of amino acids are associated with various signaling pathways, including mechanistic target of rapamycin (mTOR), inducible nitric oxide synthase (iNOS), calcium-sensing receptor (CaSR), nuclear factor-kappa-B (NF-κB), mitogen-activated protein kinase (MAPK), nuclear erythroid-related factor 2 (Nrf2), general controlled nonrepressed kinase 2 (GCN2), and angiotensin-converting enzyme 2 (ACE2).
Collapse
|
32
|
Nikonorova IA, Mirek ET, Signore CC, Goudie MP, Wek RC, Anthony TG. Time-resolved analysis of amino acid stress identifies eIF2 phosphorylation as necessary to inhibit mTORC1 activity in liver. J Biol Chem 2018; 293:5005-5015. [PMID: 29449374 DOI: 10.1074/jbc.ra117.001625] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/26/2018] [Indexed: 12/31/2022] Open
Abstract
Amino acid availability is sensed by GCN2 (general control nonderepressible 2) and mechanistic target of rapamycin complex 1 (mTORC1), but how these two sensors coordinate their respective signal transduction events remains mysterious. In this study we utilized mouse genetic models to investigate the role of GCN2 in hepatic mTORC1 regulation upon amino acid stress induced by a single injection of asparaginase. We found that deletion of Gcn2 prevented hepatic phosphorylation of eukaryotic initiation factor 2α to asparaginase and instead unleashed mTORC1 activity. This change in intracellular signaling occurred within minutes and resulted in increased 5'-terminal oligopyrimidine mRNA translation instead of activating transcription factor 4 synthesis. Asparaginase also promoted hepatic mRNA levels of several genes which function as mTORC1 inhibitors, and these genes were blunted or blocked in the absence of Gcn2, but their timing could not explain the early discordant effects in mTORC1 signaling. Preconditioning mice with a chemical endoplasmic reticulum stress agent before amino acid stress rescued normal mTORC1 repression in the liver of Gcn2-/- mice but not in livers with both Gcn2 and the endoplasmic reticulum stress kinase, Perk, deleted. Furthermore, treating wildtype and Gcn2-/- mice with ISRIB, an inhibitor of PERK signaling, also failed to alter hepatic mTORC1 responses to asparaginase, although administration of ISRIB alone had an inhibitory GCN2-independent effect on mTORC1 activity. Taken together, the data show that activating transcription factor 4 is not required, but eukaryotic initiation factor 2α phosphorylation is necessary to prevent mTORC1 activation during amino acid stress.
Collapse
Affiliation(s)
- Inna A Nikonorova
- From the Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901 and
| | - Emily T Mirek
- From the Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901 and
| | - Christina C Signore
- From the Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901 and
| | - Michael P Goudie
- From the Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901 and
| | - Ronald C Wek
- the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Tracy G Anthony
- From the Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901 and
| |
Collapse
|
33
|
Pettit AP, Jonsson WO, Bargoud AR, Mirek ET, Peelor FF, Wang Y, Gettys TW, Kimball SR, Miller BF, Hamilton KL, Wek RC, Anthony TG. Dietary Methionine Restriction Regulates Liver Protein Synthesis and Gene Expression Independently of Eukaryotic Initiation Factor 2 Phosphorylation in Mice. J Nutr 2017; 147:1031-1040. [PMID: 28446632 PMCID: PMC5443467 DOI: 10.3945/jn.116.246710] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/20/2017] [Accepted: 03/15/2017] [Indexed: 01/12/2023] Open
Abstract
Background: The phosphorylation of eukaryotic initiation factor 2 (p-eIF2) during dietary amino acid insufficiency reduces protein synthesis and alters gene expression via the integrated stress response (ISR).Objective: We explored whether a Met-restricted (MR) diet activates the ISR to reduce body fat and regulate protein balance.Methods: Male and female mice aged 3-6 mo with either whole-body deletion of general control nonderepressible 2 (Gcn2) or liver-specific deletion of protein kinase R-like endoplasmic reticulum kinase (Perk) alongside wild-type or floxed control mice were fed an obesogenic diet sufficient in Met (0.86%) or an MR (0.12% Met) diet for ≤5 wk. Ala enrichment with deuterium was measured to calculate protein synthesis rates. The guanine nucleotide exchange factor activity of eIF2B was measured alongside p-eIF2 and hepatic mRNA expression levels at 2 d and 5 wk. Metabolic phenotyping was conducted at 4 wk, and body composition was measured throughout. Results were evaluated with the use of ANOVA (P < 0.05).Results: Feeding an MR diet for 2 d did not increase hepatic p-eIF2 or reduce eIF2B activity in wild-type or Gcn2-/- mice, yet many genes transcriptionally regulated by the ISR were altered in both strains in the same direction and amplitude. Feeding an MR diet for 5 wk increased p-eIF2 and reduced eIF2B activity in wild-type but not Gcn2-/- mice, yet ISR-regulated genes altered in both strains similarly. Furthermore, the MR diet reduced mixed and cytosolic but not mitochondrial protein synthesis in both the liver and skeletal muscle regardless of Gcn2 status. Despite the similarities between strains, the MR diet did not increase energy expenditure or reduce body fat in Gcn2-/- mice. Finally, feeding the MR diet to mice with Perk deleted in the liver increased hepatic p-eIF2 and altered body composition similar to floxed controls.Conclusions: Hepatic activation of the ISR resulting from an MR diet does not require p-eIF2. Gcn2 status influences body fat loss but not protein balance when Met is restricted.
Collapse
Affiliation(s)
- Ashley P Pettit
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| | - William O Jonsson
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| | - Albert R Bargoud
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| | - Emily T Mirek
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| | - Frederick F Peelor
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO
| | - Yongping Wang
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| | - Thomas W Gettys
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey PA; and
| | - Benjamin F Miller
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO
| | - Karyn L Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO
| | - Ronald C Wek
- Department of Biochemistry of Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ;
| |
Collapse
|