1
|
Esposito T, Pentimalli F, Giordano A, Cortellino S. Vitamins and dietary supplements in cancer treatment: is there a need for increased usage? Expert Rev Anticancer Ther 2025:1-24. [PMID: 40322898 DOI: 10.1080/14737140.2025.2501077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025]
Abstract
INTRODUCTION Vitamins are essential for homeostasis and proper functioning of organisms. These micronutrients prevent tumor onset by functioning as antioxidants and enzymatic cofactors involved in anti-stress and immune responses, modulating epigenetic regulators, and shaping the microbiota composition. Unbalanced diets and sedentary lifestyles contribute to obesity, associated with increasing cancer risk. Cancer patients often exhibit vitamin deficiencies due to chronic inflammation, anticancer therapies, and tumor-induced metabolic changes, leading to malnutrition and cachexia. AREAS COVERED This review critically analyzes preclinical and clinical studies, sourced from PubMed and ClinicalTrials.gov databases, that investigate the potential benefits of vitamin supplementation and dietary interventions, such as intermittent fasting and ketogenic diets, in mouse tumor models and cancer patients. This analysis elucidates the limitations of such interventions and suggests optimal dietary strategies to prevent cancer and enhance patients' quality of life and prognosis. EXPERT OPINION To date, clinical studies have found no substantial benefit of over-the-counter vitamin supplements and dietary interventions on cancer patients' health and prognosis. To prevent the spread of useless and potentially harmful products by the nutraceutical industry, establishing a regulatory authority is necessary to monitor and ensure product quality and validity before commercialization.
Collapse
Affiliation(s)
- Teresa Esposito
- Department of Clinical Dietetics and Metabolic Diseases, Cavalier Raffaele Apicella Hospital, ASL Napoli 3 Sud, Naples, Italy
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University "Giuseppe De Gennaro", Bari, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Salvatore Cortellino
- Scuola Superiore Meridionale (SSM), Clinical and Translational Oncology, Naples, Italy
- S.H.R.O. Italia Foundation ETS, Turin, Italy
| |
Collapse
|
2
|
Menard BS, Benidickson KH, Raytek LM, Snedden WA, Plaxton WC. Heterologous expression and purification of glutamate decarboxylase-1 from the model plant Arabidopsis thaliana: Characterization of the enzyme's in vitro truncation by thiol endopeptidase activity. Protein Expr Purif 2025; 226:106612. [PMID: 39343154 DOI: 10.1016/j.pep.2024.106612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Plant glutamate decarboxylase (GAD) is a Ca2+-calmodulin (CaM) activated enzyme that produces γ-aminobutyrate (GABA) as the first committed step of the GABA shunt. Our prior research established that in vivo phosphorylation of AtGAD1 (AT5G17330) occurs at multiple N-terminal serine residues following Pi resupply to Pi-starved cell cultures of the model plant Arabidopsis thaliana. The aim of the current investigation was to purify recombinant AtGAD1 (rAtGAD1) following its expression in Escherichia coli to facilitate studies of the impact of phosphorylation on its kinetic properties. However, in vitro proteolytic truncation of an approximate 5 kDa polypeptide from the C-terminus of 59 kDa rAtGAD1 subunits occurred during purification. Immunoblotting demonstrated that most protease inhibitors or cocktails that we tested were ineffective in suppressing this partial rAtGAD1 proteolysis. Although the thiol modifiers N-ethylmaleimide or 2,2-dipyridyl disulfide negated rAtGAD1 proteolysis, they also abolished its GAD activity. This indicates that an essential -SH group is needed for catalysis, and that rAtGAD1 is susceptible to partial degradation either by an E. coli cysteine endopeptidase, or possibly via autoproteolytic activity. The inclusion of exogenous Ca2+/CaM facilitated the purification of non-proteolyzed rAtGAD1 to a specific activity of 27 (μmol GABA produced/mg) at optimal pH 5.8, while exhibiting an approximate 3-fold activation by Ca2+/CaM at pH 7.3. By contrast, the purified partially proteolyzed rAtGAD1 was >40 % less active at both pH values, and only activated 2-fold by Ca2+/CaM at pH 7.3. These results emphasize the need to diagnose and prevent partial proteolysis before conducting kinetic studies of purified regulatory enzymes.
Collapse
Affiliation(s)
| | | | - Lee Marie Raytek
- Dept. of Plant Sciences, McGill Univ., Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Wayne A Snedden
- Dept. of Biology, Queen's Univ., Kingston, Ontario, K7L 3N6, Canada
| | - William C Plaxton
- Dept. of Biology, Queen's Univ., Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
3
|
Bjørke-Monsen AL, Ueland PM. Vitamin B 6: a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2023; 67:10259. [PMID: 38187791 PMCID: PMC10770651 DOI: 10.29219/fnr.v67.10259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/30/2022] [Accepted: 09/27/2023] [Indexed: 01/09/2024] Open
Abstract
Pyridoxal 5´-phosphate (PLP) is the main form of vitamin B6 in animal tissue and functions as a coenzyme for more than 160 different enzymatic reactions in the metabolism of amino acids, carbohydrates, lipids, and neurotransmitters. Estimated dietary intake of vitamin B6 and plasma PLP values differ a lot between studies, something which may be due to variable use of supplements, variations in dietary assessment and analytical methods. These factors make it difficult to achieve precise data for setting a correct recommended intake of vitamin B6. In addition, a plasma PLP concentration of 30 nmol/L is considered to be sufficient and the current recommendations for vitamin B6 intake is based on this concept. However, the metabolic marker for vitamin B6 status, HK ratio (HKr), starts to increase already when plasma PLP falls below 100 nmol/L and increases more steeply below 50 nmol/L, indicating biochemical deficiency. Consequently, a plasma PLP concentration of 30 nmol/L, may be too low as a marker for an adequate vitamin B6 status.
Collapse
Affiliation(s)
- Anne-Lise Bjørke-Monsen
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Per Magne Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Bisello G, Rossignoli G, Choi S, Phillips RS, Bertoldi M. Active site serine-193 modulates activity of human aromatic amino acid decarboxylase. Biochem Biophys Res Commun 2023; 679:6-14. [PMID: 37651872 DOI: 10.1016/j.bbrc.2023.08.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Aromatic amino acid decarboxylase is a pyridoxal 5'-phosphate-dependent enzyme responsible for the synthesis of the neurotransmitters, dopamine and serotonin. Here, by a combination of bioinformatic predictions and analyses, phosphorylation assays, spectroscopic investigations and activity measurements, we determined that Ser-193, a conserved residue located at the active site, can be phosphorylated, increasing catalytic efficiency. In order to determine the molecular basis for this functional improvement, we determined the structural and kinetic properties of the site-directed variants S193A, S193D and S193E. While S193A retains 27% of the catalytic efficiency of wild-type, the two acidic side chain variants are impaired in catalysis with efficiencies of about 0.15% with respect to the wild-type. Thus, even if located at the active site, Ser-193 is not essential for enzyme activity. We advance the idea that this residue is fundamental for the correct architecture of the active site in terms of network of interactions triggering catalysis. This role has been compared with the properties of the Ser-194 of the highly homologous enzyme histidine decarboxylase whose catalytic loop is visible in the spatial structure, allowing us to propose the validation for the effect of the phosphorylation. The effect could be interesting for AADC deficiency, a rare monogenic disease, whose broad clinical phenotype could be also related to post translational AADC modifications.
Collapse
Affiliation(s)
- Giovanni Bisello
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, Verona, Italy
| | - Giada Rossignoli
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, Verona, Italy
| | - Sarah Choi
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Robert S Phillips
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA.
| | - Mariarita Bertoldi
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, Verona, Italy.
| |
Collapse
|
5
|
Stojanovski BM, Hunter GA, Na I, Uversky VN, Jiang RHY, Ferreira GC. 5-Aminolevulinate synthase catalysis: The catcher in heme biosynthesis. Mol Genet Metab 2019; 128:178-189. [PMID: 31345668 PMCID: PMC6908770 DOI: 10.1016/j.ymgme.2019.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/27/2019] [Accepted: 06/07/2019] [Indexed: 01/26/2023]
Abstract
5-Aminolevulinate (ALA) synthase (ALAS), a homodimeric pyridoxal-5'-phosphate (PLP)-dependent enzyme, catalyzes the first step of heme biosynthesis in metazoa, fungi and α-proteobacteria. In this review, we focus on the advances made in unraveling the mechanism of the ALAS-catalyzed reaction during the past decade. The interplay between the PLP cofactor and the protein moiety determines and modulates the multi-intermediate reaction cycle of ALAS, which involves the decarboxylative condensation of two substrates, glycine and succinyl-CoA. Substrate binding and catalysis are rapid, and product (ALA) release dominates the overall ALAS kinetic mechanism. Interconversion between a catalytically incompetent, open conformation and a catalytically competent, closed conformation is linked to ALAS catalysis. Reversion to the open conformation, coincident with ALA dissociation, defines the slowest step of the reaction cycle. These findings were further substantiated by introducing seven mutations in the16-amino acid loop that gates the active site, yielding an ALAS variant with a greatly increased rate of catalytic turnover and heightened specificity constants for both substrates. Recently, molecular dynamics (MD) simulation analysis of various dimeric ALAS forms revealed that the seven active site loop mutations caused the proteins to adopt different conformations. In particular, the emergence of a β-strand in the mutated loop, which interacted with two preexisting β-strands to form an anti-parallel three-stranded β-sheet, conferred the murine heptavariant with a more stable open conformation and prompted faster product release than wild-type mALAS2. Moreover, the dynamics of the mALAS2 active site loop anti-correlated with that of the 35 amino acid C-terminal sequence. This led us to propose that this C-terminal extension, which is absent in prokaryotic ALASs, finely tunes mammalian ALAS activity. Based on the above results, we extend our previous proposal to include that discovery of a ligand inducing the mammalian C-terminal extension to fold offers a good prospect for the development of a new drug for X-linked protoporphyria and/or other porphyrias associated with enhanced ALAS activity and/or porphyrin accumulation.
Collapse
Affiliation(s)
- Bosko M Stojanovski
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Gregory A Hunter
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Insung Na
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Rays H Y Jiang
- Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - Gloria C Ferreira
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA; Department of Chemistry, College of Arts and Sciences, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|