1
|
Kadaikunnan S, Vijayaragavan P, Rathi MA, Balamuralikrishnan B, Alharbi NS, Gopalakrishnan VK, Purushothaman S, Sivanesan R. Antibacterial and biofilm disruptive nonribosomal lipopeptides from Streptomyces parvulus against multidrug-resistant bacterial infections. J Infect Public Health 2024; 17:450-456. [PMID: 38262082 DOI: 10.1016/j.jiph.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 11/29/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND In recent years, new drugs for the treatment of various diseases, thereby the emergence of antimicrobial resistance tremendously increased because of the increased consumption rate of various drugs. However, the irrational use of antibiotics increases the microbial resistance along with that the frequency of mortality associated with infections is higher. Broad-spectrum antibiotics were effectively against various bacteria and the unrestricted application of antibiotics lead to the emergence of drug resistance. The present study was aimed to detect the antibacterial properties of lipopeptide novel drug producing Streptomyces parvulus. METHODS A lipopeptide-producing S. parvulus was isolated from the soil sample. The inhibitory effect of lipopeptide was detected against Gram-positive and Gram-negative bacteria. Bactericidal activity and minimum inhibitory concentration (MIC) were assayed. The IC50 value was analysed against ovarian and human melanoma cell lines. The experimental mouse model was infected withKlebsiella pneumoniae and treated with lipopeptide and bactericidal activity was determined. RESULTS The results indicated that the antibacterial activity of lipopeptide ranges from 13 ± 1 mm to 32 ± 2 mm against Gram-positive and Gram-negative strains. The lowest MIC value was noted as 1.5 ± 0.1 µg/mL against K. pneumoniae and the highest against E. aerogenes (7.5 ± 0.2 µg/mL). The IC50 value was considerably high for the ovarian cell lines and human melanoma cell lines (426 µg/mL and 503 µg/mL). At 25 µg/mL concentration of lipopeptide, only 16.4% inhibition was observed in the ovarian cell line whereas 20.2% inhibition was achieved at this concentration in the human melanoma cell line. Lipopeptide inhibited bacterial growth and was completely inhibited at a concentration of 20 µg/mL. Lipopeptide reduced bacterial load in experimental mice compared to control (p < 0.05). CONCLUSION Lipopeptide activity and its non-toxic nature reveal that it may serve as a lead molecule in the development of a novel drug.
Collapse
Affiliation(s)
- Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - P Vijayaragavan
- Bioprocess Engineering Division, Smykon Biotech Pvt Ltd, Nagercoil, Kanyakumari, Tamil Nadu 629201, India
| | - M A Rathi
- Department of Biochemistry and Cancer Research Centre, FASCM, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | | | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - V K Gopalakrishnan
- School of Medicine, Bule Hora University Institute of Health, Bule Hora University, Bule Hora, Ethiopia.
| | - Sumitha Purushothaman
- Bioprocess Engineering Division, Smykon Biotech Pvt Ltd, Nagercoil, Kanyakumari, Tamil Nadu 629201, India
| | - Ravikumar Sivanesan
- Department of Zoology Rajah Serfoji Govt. College (Autonomous), Tamil Nadu 613005, India
| |
Collapse
|
2
|
Chakraborty P, Dey A, Gopalakrishnan AV, Swati K, Ojha S, Prakash A, Kumar D, Ambasta RK, Jha NK, Jha SK, Dewanjee S. Glutamatergic neurotransmission: A potential pharmacotherapeutic target for the treatment of cognitive disorders. Ageing Res Rev 2023; 85:101838. [PMID: 36610558 DOI: 10.1016/j.arr.2022.101838] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
In the mammalian brain, glutamate is regarded to be the primary excitatory neurotransmitter due to its widespread distribution and wide range of metabolic functions. Glutamate plays key roles in regulating neurogenesis, synaptogenesis, neurite outgrowth, and neuron survival in the brain. Ionotropic and metabotropic glutamate receptors, neurotransmitters, neurotensin, neurosteroids, and others co-ordinately formulate a complex glutamatergic network in the brain that maintains optimal excitatory neurotransmission. Cognitive activities are potentially synchronized by the glutamatergic activities in the brain via restoring synaptic plasticity. Dysfunctional glutamate receptors and other glutamatergic components are responsible for the aberrant glutamatergic activity in the brain that cause cognitive impairments, loss of synaptic plasticity, and neuronal damage. Thus, controlling the brain's glutamatergic transmission and modifying glutamate receptor function could be a potential therapeutic strategy for cognitive disorders. Certain drugs that regulate glutamate receptor activities have shown therapeutic promise in improving cognitive functions in preclinical and clinical studies. However, several issues regarding precise functional information of glutamatergic activity are yet to be comprehensively understood. The present article discusses the scope of developing glutamatergic systems as prospective pharmacotherapeutic targets to treat cognitive disorders. Special attention has been given to recent developments, challenges, and future prospects.
Collapse
Affiliation(s)
- Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Kumari Swati
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Anand Prakash
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Dhruv Kumar
- School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand 248007, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, UP, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, UP, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India.
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
3
|
Tyurin AP, Alferova VA, Paramonov AS, Shuvalov MV, Kudryakova GK, Rogozhin EA, Zherebker AY, Brylev VA, Chistov AA, Baranova AA, Biryukov MV, Ivanov IA, Prokhorenko IA, Grammatikova NE, Kravchenko TV, Isakova EB, Mirchink EP, Gladkikh EG, Svirshchevskaya EV, Mardanov AV, Beletsky AV, Kocharovskaya MV, Kulyaeva VV, Shashkov AS, Tsvetkov DE, Nifantiev NE, Apt AS, Majorov KB, Efimova SS, Ravin NV, Nikolaev EN, Ostroumova OS, Katrukha GS, Lapchinskaya OA, Dontsova OA, Terekhov SS, Osterman IA, Shenkarev ZO, Korshun VA. Gausemycins A,B: Cyclic Lipoglycopeptides from
Streptomyces
sp.**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Tyurin AP, Alferova VA, Paramonov AS, Shuvalov MV, Kudryakova GK, Rogozhin EA, Zherebker AY, Brylev VA, Chistov AA, Baranova AA, Biryukov MV, Ivanov IA, Prokhorenko IA, Grammatikova NE, Kravchenko TV, Isakova EB, Mirchink EP, Gladkikh EG, Svirshchevskaya EV, Mardanov AV, Beletsky AV, Kocharovskaya MV, Kulyaeva VV, Shashkov AS, Tsvetkov DE, Nifantiev NE, Apt AS, Majorov KB, Efimova SS, Ravin NV, Nikolaev EN, Ostroumova OS, Katrukha GS, Lapchinskaya OA, Dontsova OA, Terekhov SS, Osterman IA, Shenkarev ZO, Korshun VA. Gausemycins A,B: Cyclic Lipoglycopeptides from Streptomyces sp.*. Angew Chem Int Ed Engl 2021; 60:18694-18703. [PMID: 34009717 DOI: 10.1002/anie.202104528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 11/10/2022]
Abstract
We report a novel family of natural lipoglycopeptides produced by Streptomyces sp. INA-Ac-5812. Two major components of the mixture, named gausemycins A and B, were isolated, and their structures were elucidated. The compounds are cyclic peptides with a unique peptide core and several remarkable structural features, including unusual positions of d-amino acids, lack of the Ca2+ -binding Asp-X-Asp-Gly (DXDG) motif, tyrosine glycosylation with arabinose, presence of 2-amino-4-hydroxy-4-phenylbutyric acid (Ahpb) and chlorinated kynurenine (ClKyn), and N-acylation of the ornithine side chain. Gausemycins have pronounced activity against Gram-positive bacteria. Mechanistic studies highlight significant differences compared to known glyco- and lipopeptides. Gausemycins exhibit only slight Ca2+ -dependence of activity and induce no pore formation at low concentrations. Moreover, there is no detectable accumulation of cell wall biosynthesis precursors under treatment with gausemycins.
Collapse
Affiliation(s)
- Anton P Tyurin
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia
| | - Vera A Alferova
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Alexander S Paramonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Maxim V Shuvalov
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119992, Moscow, Russia
| | | | - Eugene A Rogozhin
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Alexander Y Zherebker
- Skolkovo Institute of Science and Technology, Nobel Street 3, Skolkovo, 143026, Moscow Region, Russia
| | - Vladimir A Brylev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Alexey A Chistov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Anna A Baranova
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Mikhail V Biryukov
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Department of Biology, Lomonosov Moscow State University, Leninskie Gory 1-3, 119992, Moscow, Russia
| | - Igor A Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Igor A Prokhorenko
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | | | - Tatyana V Kravchenko
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Elena B Isakova
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia
| | - Elena P Mirchink
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia
| | - Elena G Gladkikh
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia
| | - Elena V Svirshchevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33-2, 119071, Moscow, Russia
| | - Aleksey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33-2, 119071, Moscow, Russia
| | - Milita V Kocharovskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.,Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprydny, 141700, Moscow region, Russia
| | - Valeriya V Kulyaeva
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia
| | - Alexander S Shashkov
- Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991, Moscow, Russia
| | - Dmitry E Tsvetkov
- Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991, Moscow, Russia
| | - Nikolay E Nifantiev
- Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991, Moscow, Russia
| | - Alexander S Apt
- Central Tuberculosis Research Institute, Yauzskaya Alley 2, 107564, Moscow, Russia
| | - Konstantin B Majorov
- Central Tuberculosis Research Institute, Yauzskaya Alley 2, 107564, Moscow, Russia
| | - Svetlana S Efimova
- Institute of Cytology RAS, Tikhoretsky Prospect 4, 194064, St. Petersburg, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33-2, 119071, Moscow, Russia
| | - Evgeny N Nikolaev
- Skolkovo Institute of Science and Technology, Nobel Street 3, Skolkovo, 143026, Moscow Region, Russia
| | - Olga S Ostroumova
- Institute of Cytology RAS, Tikhoretsky Prospect 4, 194064, St. Petersburg, Russia
| | - Genrikh S Katrukha
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia
| | - Olda A Lapchinskaya
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia
| | - Olga A Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119992, Moscow, Russia.,Skolkovo Institute of Science and Technology, Nobel Street 3, Skolkovo, 143026, Moscow Region, Russia
| | - Stanislav S Terekhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119992, Moscow, Russia
| | - Ilya A Osterman
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119992, Moscow, Russia.,Skolkovo Institute of Science and Technology, Nobel Street 3, Skolkovo, 143026, Moscow Region, Russia
| | - Zakhar O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.,Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprydny, 141700, Moscow region, Russia
| | - Vladimir A Korshun
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| |
Collapse
|
5
|
Vasilchenko AS, Julian WT, Lapchinskaya OA, Katrukha GS, Sadykova VS, Rogozhin EA. A Novel Peptide Antibiotic Produced by Streptomyces roseoflavus Strain INA-Ac-5812 With Directed Activity Against Gram-Positive Bacteria. Front Microbiol 2020; 11:556063. [PMID: 33072016 PMCID: PMC7533577 DOI: 10.3389/fmicb.2020.556063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/19/2020] [Indexed: 12/25/2022] Open
Abstract
In this work, we report the isolation and detailed functional characterization for the new non-ribosomally synthesized antibiotic 5812-A/C, which was derived from metabolites of Streptomyces roseoflavus INA-Ac-5812. According to its chemical structure, the studied 5812-A/C preliminary is composed of a cyclic peptide part covalently bounded with an arabinose residue. N-terminal amino acid sequencing of the native peptide has identified its partial structure of Leu-Asp-Gly-Ser-Gly and consisting of a Tyr residue that is supposed to have a two-component peptide nature for the molecule studied. However, the structural analysis of the antibiotic complex derived from S. roseoflavus INA-Ac-5812 is still ongoing. The mechanism of action of 5812-A/C was assessed in comparison with its most related analog, the lipopeptide antibiotic daptomycin, given the presence in both antimicrobials of an L-kynurenine amino acid residue. The inhibitory activity of 5812-A/C against Gram-positive bacteria including methicillin-resistant strain of Staphylococcus aureus was similar to daptomycin. The mechanism of action of 5812-A/C was associated with the disruption of membrane integrity, which differs in comparison with daptomycin and is most similar to the antimicrobial membrane-disturbing peptides. However, 5812-A/C demonstrated a calcium-dependent mode of action. In addition, unlike daptomycin, 5812-A/C was able to penetrate mature biofilms and inhibit the metabolic activity of embedded S. aureus cells. At the same time, 5812-A/C has no hemolytic activity toward erythrocyte, but possessed weak cytotoxic activity represented by heterochromatin condensation in human buccal epithelium cells. The biological properties of the peptide 5812-A/C suggest its classification as a calcium-dependent antibiotic effective against a wide spectrum of Gram-positive pathogenic bacteria.
Collapse
Affiliation(s)
- Alexey S Vasilchenko
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia
| | - William T Julian
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia
| | | | | | | | - Eugene A Rogozhin
- Gause Institute of New Antibiotics, Moscow, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Luhavaya H, Sigrist R, Chekan JR, McKinnie SMK, Moore BS. Biosynthesis of l-4-Chlorokynurenine, an Antidepressant Prodrug and a Non-Proteinogenic Amino Acid Found in Lipopeptide Antibiotics. Angew Chem Int Ed Engl 2019; 58:8394-8399. [PMID: 30963655 PMCID: PMC6555645 DOI: 10.1002/anie.201901571] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/06/2019] [Indexed: 12/18/2022]
Abstract
l-4-Chlorokynurenine (l-4-Cl-Kyn) is a neuropharmaceutical drug candidate that is in development for the treatment of major depressive disorder. Recently, this amino acid was naturally found as a residue in the lipopeptide antibiotic taromycin. Herein, we report the unprecedented conversion of l-tryptophan into l-4-Cl-Kyn catalyzed by four enzymes in the taromycin biosynthetic pathway from the marine bacterium Saccharomonospora sp. CNQ-490. We used genetic, biochemical, structural, and analytical techniques to establish l-4-Cl-Kyn biosynthesis, which is initiated by the flavin-dependent tryptophan chlorinase Tar14 and its flavin reductase partner Tar15. This work revealed the first tryptophan 2,3-dioxygenase (Tar13) and kynurenine formamidase (Tar16) enzymes that are selective for chlorinated substrates. The substrate scope of Tar13, Tar14, and Tar16 was examined and revealed intriguing promiscuity, thereby opening doors for the targeted engineering of these enzymes as useful biocatalysts.
Collapse
Affiliation(s)
- Hanna Luhavaya
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Renata Sigrist
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Organic Chemistry, University of Campinas UNICAMP, Cidade Universitária Zeferino Vaz s/n, P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | - Jonathan R Chekan
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Shaun M K McKinnie
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|