1
|
Rigante ECL, Calvano CD, Ventura G, Cataldi TRI. Look but don't touch: Non-invasive chemical analysis of organic paint binders - A review. Anal Chim Acta 2025; 1335:343251. [PMID: 39643288 DOI: 10.1016/j.aca.2024.343251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 12/09/2024]
Abstract
Diagnostics on historical art samples are decisive for assessing degradation and understanding the chemical composition of supports and polychromies. These investigations help us in uncovering the artist's style and techniques and provide invaluable information for restoration, preservation and conservation. In paint formulation, the binder, also known as medium, disperses insoluble pigments and creates a homogeneous, adhesive mixture. Various analytical techniques, often used in combination, are usually employed to characterize binders with infrared (IR) and Raman spectroscopies being the most common choices. Recently, mass spectrometry (MS) has gained prominence for its ability to allow detailed structural characterization and identification, thanks to soft ionization sources such as matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI). However, MS typically requires micro-sampling, which is often prohibited for highly valuable artworks. This limitation has driven research toward the development of innovative minimally invasive sampling strategies like enzyme-functionalized gels applied to polychromies for in-situ protein digestion and peptide extraction. These quasi-non-invasive methods offer powerful solutions for extracting and characterizing organic painting binders, unlocking valuable insights into these elusive materials. This review aims to explore both the most common non-invasive analytical techniques used to characterize ancient and contemporary painting binders, and the most recent advancements in minimally invasive sampling strategies, which represent convenient and interesting approaches to enable the use of invasive analytical approaches while preserving the integrity of precious artworks.
Collapse
Affiliation(s)
- Elena C L Rigante
- Department of Chemistry, University of Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Cosima D Calvano
- Department of Chemistry, University of Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, University of Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale "Laboratorio di ricerca per la Diagnostica dei Beni Culturali", University of Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy.
| | - Giovanni Ventura
- Department of Chemistry, University of Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Tommaso R I Cataldi
- Department of Chemistry, University of Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, University of Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| |
Collapse
|
2
|
Picone P, Palumbo FS, Cancilla F, Girgenti A, Cancemi P, Muccilli V, Francesco AD, Cimino M, Cipollina C, Soligo M, Manni L, Sferrazza G, Scalisi L, Nuzzo D. Brain biodistribution of myelin nanovesicles with targeting potential for multiple sclerosis. Acta Biomater 2024; 187:352-365. [PMID: 39159713 DOI: 10.1016/j.actbio.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Multiple sclerosis (MS) is a complex autoimmune disease with multiple players. In particular, peripheral (myelin-reactive CD4+ T lymphocytes) and central immune cells (microglia) are involved in the neuroinflammatory process and are found in MS brain lesions. New nanotechnological approaches that can cross the blood-brain barrier and specifically target the key players in the disease using biocompatible nanomaterials with low immunoreactivity represent an important challenge. To this end, nanoparticles and nanovesicles have been studied to induce immune tolerance to a wide range of myelin-derived antigens as potential approaches against MS. To this aim, we extracted myelin from bovine brain and produced myelin-based nanovesicles (MyVes) by nanoprecipitation. MyVes have a diameter of about 100 nm, negative zeta potential and contain the typical proteins of the myelin sheath. The results showed that MyVes are not cytotoxic, are hemocompatibile and do not induce an inflammatory response. In vitro experiments showed that MyVes are specifically taken up by microglial cells and are able to induce the expression of the anti-inflammatory cytokine IL-4. In addition, we have used biodistribution experiments to show that MyVes are able to reach the brain after intranasal administration. Finally, MyVes induced the production of the anti-inflammatory cytokines IL-10 and IL-4 in peripheral blood mononuclear cells isolated from MS patients. Taken together, these data provide proof of concept that MyVes may represent a safe nanosystem capable of promoting anti-inflammatory effects by modulating both central and peripheral immune cells to treat neuroinflammation in MS. STATEMENT OF SIGNIFICANCE: Recently, nanoparticles and nanovesicles have been investigated as potential approaches for the treatment of neurodegenerative diseases. We propose the use of myelin nanovesicles (MyVes) as a potential application to counteract neuroinflammation in multiple sclerosis (MS). Approximately 2.8 million people worldwide are estimated to live with MS. It is an autoimmune disease directed toward various myelin-derived antigens. Both peripheral immune cells (lymphocytes) and central immune cells (microglia) actively contribute to MS brain lesions. MyVes, due to their myelin nature, specific characteristics (size, zeta potential, and presence of myelin proteins), biocompatibility, and ability to cross the blood-brain barrier, could represent the first nanosystem capable of promoting anti-inflammatory actions by modulating both central and peripheral immune cells to treat neuroinflammation in MS.
Collapse
Affiliation(s)
- Pasquale Picone
- Istituto per la Ricerca e l'Innovazione Biomedica, CNR, via U. La Malfa 153, Palermo 90146, Italy.
| | - Fabio Salvatore Palumbo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Palermo 90128, Italy
| | - Francesco Cancilla
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Palermo 90128, Italy
| | - Antonella Girgenti
- Istituto per la Ricerca e l'Innovazione Biomedica, CNR, via U. La Malfa 153, Palermo 90146, Italy
| | - Patrizia Cancemi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Palermo 90128, Italy
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria, 6, Catania I-95125, Italy
| | - Antonella Di Francesco
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria, 6, Catania I-95125, Italy
| | | | - Chiara Cipollina
- Istituto per la Ricerca e l'Innovazione Biomedica, CNR, via U. La Malfa 153, Palermo 90146, Italy; Fondazione RiMED, Palermo, Italy
| | - Marzia Soligo
- Istituto di Farmacologia Traslazionale, CNR, Via Fosso del Cavaliere 100, Roma 00133, Italy
| | - Luigi Manni
- Istituto di Farmacologia Traslazionale, CNR, Via Fosso del Cavaliere 100, Roma 00133, Italy
| | - Gianluca Sferrazza
- Istituto di Farmacologia Traslazionale, CNR, Via Fosso del Cavaliere 100, Roma 00133, Italy; Dipartimento di Scienze Biomediche, CNR, Roma 00185, Italy
| | - Luca Scalisi
- Centro Medico di Fisioterapia Villa Sarina, Alcamo, Palermo 91011, Italy
| | - Domenico Nuzzo
- Istituto per la Ricerca e l'Innovazione Biomedica, CNR, via U. La Malfa 153, Palermo 90146, Italy.
| |
Collapse
|
3
|
Nawaz MA, Pamirsky IE, Golokhvast KS. Bioinformatics in Russia: history and present-day landscape. Brief Bioinform 2024; 25:bbae513. [PMID: 39402695 PMCID: PMC11473191 DOI: 10.1093/bib/bbae513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/12/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Bioinformatics has become an interdisciplinary subject due to its universal role in molecular biology research. The current status of Russia's bioinformatics research in Russia is not known. Here, we review the history of bioinformatics in Russia, present the current landscape, and highlight future directions and challenges. Bioinformatics research in Russia is driven by four major industries: information technology, pharmaceuticals, biotechnology, and agriculture. Over the past three decades, despite a delayed start, the field has gained momentum, especially in protein and nucleic acid research. Dedicated and shared centers for genomics, proteomics, and bioinformatics are active in different regions of Russia. Present-day bioinformatics in Russia is characterized by research issues related to genetics, metagenomics, OMICs, medical informatics, computational biology, environmental informatics, and structural bioinformatics. Notable developments are in the fields of software (tools, algorithms, and pipelines), use of high computation power (e.g. by the Siberian Supercomputer Center), and large-scale sequencing projects (the sequencing of 100 000 human genomes). Government funding is increasing, policies are being changed, and a National Genomic Information Database is being established. An increased focus on eukaryotic genome sequencing, the development of a common place for developers and researchers to share tools and data, and the use of biological modeling, machine learning, and biostatistics are key areas for future focus. Universities and research institutes have started to implement bioinformatics modules. A critical mass of bioinformaticians is essential to catch up with the global pace in the discipline.
Collapse
Affiliation(s)
- Muhammad A Nawaz
- Advanced Engineering School (Agrobiotek), National Research Tomsk State University, Lenin Ave, 36, Tomsk Oblast, Tomsk 634050, Russia
- Centre for Research in the Field of Materials and Technologies, National Research Tomsk State University, Lenin Ave, 36, Tomsk Oblast, Tomsk 634050, Russia
| | - Igor E Pamirsky
- Advanced Engineering School (Agrobiotek), National Research Tomsk State University, Lenin Ave, 36, Tomsk Oblast, Tomsk 634050, Russia
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya st., 2b, Presidium, Krasnoobsk, 633501, Novosibirsk Oblast, Russia
| | - Kirill S Golokhvast
- Advanced Engineering School (Agrobiotek), National Research Tomsk State University, Lenin Ave, 36, Tomsk Oblast, Tomsk 634050, Russia
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya st., 2b, Presidium, Krasnoobsk, 633501, Novosibirsk Oblast, Russia
| |
Collapse
|
4
|
Piras C, De Fazio R, Di Francesco A, Oppedisano F, Spina AA, Cunsolo V, Roncada P, Cramer R, Britti D. Detection of Antimicrobial Proteins/Peptides and Bacterial Proteins Involved in Antimicrobial Resistance in Raw Cow's Milk from Different Breeds. Antibiotics (Basel) 2024; 13:838. [PMID: 39335011 PMCID: PMC11429332 DOI: 10.3390/antibiotics13090838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Proteins involved in antibiotic resistance (resistome) and with antimicrobial activity are present in biological specimens. This study aims to explore the presence and abundance of antimicrobial peptides (AMPs) and resistome proteins in bovine milk from diverse breeds and from intensive (Pezzata rossa, Bruna alpina, and Frisona) and non-intensive farming (Podolica breeds). Liquid atmospheric pressure matrix-assisted laser desorption/ionization (LAP-MALDI) mass spectrometry (MS) profiling, bottom-up proteomics, and metaproteomics were used to comprehensively analyze milk samples from various bovine breeds in order to identify and characterize AMPs and to investigate resistome proteins. LAP-MALDI MS coupled with linear discriminant analysis (LDA) machine learning was employed as a rapid classification method for Podolica milk recognition against the milk of other bovine species. The results of the LAP-MALDI MS analysis of milk coupled with the linear discriminant analysis (LDA) demonstrate the potential of distinguishing between Podolica and control milk samples based on MS profiles. The classification accuracy achieved in the training set is 86% while it reaches 98.4% in the test set. Bottom-up proteomics revealed approximately 220 quantified bovine proteins (identified using the Bos taurus database), with cathelicidins and annexins exhibiting higher abundance levels in control cows (intensive farming breeds). On the other hand, the metaproteomics analysis highlighted the diversity within the milk's microbial ecosystem with interesting results that may reflect the diverse environmental variables. The bottom-up proteomics data analysis using the Comprehensive Antibiotic Resistance Database (CARD) revealed beta-lactamases and tetracycline resistance proteins in both control and Podolica milk samples, with no relevant breed-specific differences observed.
Collapse
Affiliation(s)
- Cristian Piras
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (R.D.F.); (F.O.); (A.A.S.); (P.R.); (D.B.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, University “Magna Graecia” of Catanzaro, CISVetSUA, 88100 Catanzaro, Italy
| | - Rosario De Fazio
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (R.D.F.); (F.O.); (A.A.S.); (P.R.); (D.B.)
| | - Antonella Di Francesco
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, 95125 Catania, Italy; (A.D.F.); (V.C.)
| | - Francesca Oppedisano
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (R.D.F.); (F.O.); (A.A.S.); (P.R.); (D.B.)
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Anna Antonella Spina
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (R.D.F.); (F.O.); (A.A.S.); (P.R.); (D.B.)
| | - Vincenzo Cunsolo
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, 95125 Catania, Italy; (A.D.F.); (V.C.)
| | - Paola Roncada
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (R.D.F.); (F.O.); (A.A.S.); (P.R.); (D.B.)
| | - Rainer Cramer
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6DX, UK;
| | - Domenico Britti
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (R.D.F.); (F.O.); (A.A.S.); (P.R.); (D.B.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, University “Magna Graecia” of Catanzaro, CISVetSUA, 88100 Catanzaro, Italy
| |
Collapse
|
5
|
Fabrizi I, Flament S, Delhon C, Gourichon L, Vuillien M, Oueslati T, Auguste P, Rolando C, Bray F. Low-Invasive Sampling Method with Tape-Disc Sampling for the Taxonomic Identification of Archeological and Paleontological Bones by Proteomics. J Proteome Res 2024; 23:3404-3417. [PMID: 39042361 DOI: 10.1021/acs.jproteome.4c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Collagen from paleontological bones is an important organic material for isotopic measurement, radiocarbon analysis, and paleoproteomic analysis to provide information on diet, dating, taxonomy, and phylogeny. Current paleoproteomic methods are destructive and require from a few milligrams to several tens of milligrams of bone for analysis. In many cultures, bones are raw materials for artifacts that are conserved in museums, which hampers damage to these precious objects during sampling. Here, we describe a low-invasive sampling method that identifies collagen, taxonomy, and post-translational modifications from Holocene and Upper Pleistocene bones dated to 130,000 and 150 BC using dermatological skin tape discs for sampling. The sampled bone micropowders were digested following our highly optimized enhanced filter-aided sample preparation protocol and then analyzed by MALDI FTICR MS and LC-MS/MS for identifying the genus taxa of the bones. We show that this low-invasive sampling does not deteriorate the bones and achieves results similar to those obtained by more destructive sampling. Moreover, this sampling method can be carried out at archeological sites or in museums.
Collapse
Affiliation(s)
- Isabelle Fabrizi
- Univ. Lille, CNRS UAR 3290─MSAP─Miniaturisation pour la Synthèse, l'Analyse et la Protéomique, Lille F-59000, France
| | - Stéphanie Flament
- Univ. Lille, CNRS UAR 3290─MSAP─Miniaturisation pour la Synthèse, l'Analyse et la Protéomique, Lille F-59000, France
| | - Claire Delhon
- Université Côte d'Azur, CNRS, CEPAM (UMR 7264), Nice F-06300, France
| | - Lionel Gourichon
- Université Côte d'Azur, CNRS, CEPAM (UMR 7264), Nice F-06300, France
| | - Manon Vuillien
- Université Côte d'Azur, CNRS, CEPAM (UMR 7264), Nice F-06300, France
| | - Tarek Oueslati
- Univ. Lille, CNRS UMR 8164─HALMA─Histoire, Archéologie et Littérature des Mondes Anciens, Lille F-59000, France
| | - Patrick Auguste
- Univ. Lille, CNRS UMR 8198─EEP─Evolution, Ecology and Paleontology, Lille F-59000, France
| | - Christian Rolando
- Univ. Lille, CNRS UAR 3290─MSAP─Miniaturisation pour la Synthèse, l'Analyse et la Protéomique, Lille F-59000, France
- Shrieking Sixties, Villeneuve d'Ascq F-59650, France
| | - Fabrice Bray
- Univ. Lille, CNRS UAR 3290─MSAP─Miniaturisation pour la Synthèse, l'Analyse et la Protéomique, Lille F-59000, France
| |
Collapse
|
6
|
Poquérusse J, Brown CL, Gaillard C, Doughty C, Dalén L, Gallagher AJ, Wooller M, Zimov N, Church GM, Lamm B, Hysolli E. Assessing contemporary Arctic habitat availability for a woolly mammoth proxy. Sci Rep 2024; 14:9804. [PMID: 38684726 PMCID: PMC11058768 DOI: 10.1038/s41598-024-60442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Interest continues to grow in Arctic megafaunal ecological engineering, but, since the mass extinction of megafauna ~ 12-15 ka, key physiographic variables and available forage continue to change. Here we sought to assess the extent to which contemporary Arctic ecosystems are conducive to the rewilding of megaherbivores, using a woolly mammoth (M. primigenius) proxy as a model species. We first perform a literature review on woolly mammoth dietary habits. We then leverage Oak Ridge National Laboratories Distributive Active Archive Center Global Aboveground and Belowground Biomass Carbon Density Maps to generate aboveground biomass carbon density estimates in plant functional types consumed by the woolly mammoth at 300 m resolution on Alaska's North Slope. We supplement these analyses with a NASA Arctic Boreal Vulnerability Experiment dataset to downgrade overall biomass estimates to digestible levels. We further downgrade available forage by using a conversion factor representing the relationship between total biomass and net primary productivity (NPP) for arctic vegetation types. Integrating these estimates with the forage needs of woolly mammoths, we conservatively estimate Alaska's North Slope could support densities of 0.0-0.38 woolly mammoth km-2 (mean 0.13) across a variety of habitats. These results may inform innovative rewilding strategies.
Collapse
Affiliation(s)
| | | | - Camille Gaillard
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Chris Doughty
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Love Dalén
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | | | - Matthew Wooller
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Nikita Zimov
- North-East Science Station, Pacific Institute of Geography, Russian Academy of Sciences, Chersky, Russia
| | - George M Church
- Colossal Biosciences Inc, Austin, TX, 78701, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - Ben Lamm
- Colossal Biosciences Inc, Austin, TX, 78701, USA.
| | | |
Collapse
|
7
|
Pittalà MG, Di Francesco A, Cucina A, Saletti R, Zilberstein G, Zilberstein S, Arhire T, Righetti PG, Cunsolo V. Count Dracula Resurrected: Proteomic Analysis of Vlad III the Impaler's Documents by EVA Technology and Mass Spectrometry. Anal Chem 2023; 95:12732-12744. [PMID: 37552208 PMCID: PMC10469356 DOI: 10.1021/acs.analchem.3c01461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/17/2023] [Indexed: 08/09/2023]
Abstract
The interest of scientists in analyzing items of World Cultural Heritage has been exponentially increasing since the beginning of the new millennium. These studies have grown considerably in tandem with the development and use of sophisticated and sensitive technologies such as high-resolution mass spectrometry (MS) and the non-invasive and non-damaging technique, known under the acronym EVA (ethylene-vinyl acetate). Here, we report the results of the MS characterization of the peptides and proteins harvested by the EVA technology applied to three letters written in 1457 and 1475 by the voivode of Wallachia, Vlad III, also known as Vlad the Impaler, or Vlad Dracula. The discrimination of the "original" endogenous peptides from contaminant ones was obtained by monitoring their different levels of deamidation and of other diagenetic chemical modifications. The characterization of the ancient proteins extracted from these documents allowed us to explore the environmental conditions, in the second half of the 15th century, of the Wallachia, a region considered as a meeting point for soldiers, migrants, and travelers that probably carried not only trade goods and cultural traditions but also diseases and epidemics. In addition, the identification of many human peptides and proteins harvested from the letters allowed us to uncover more about Vlad Dracula the Impaler. Particularly, the experimental data show that he probably suffered from inflammatory processes of the respiratory tract and/or of the skin. In addition, proteomics data, although not exhaustive, suggest that, according to some stories, he might also have suffered from a pathological condition called hemolacria, that is, he could shed tears admixed with blood. It is worth noting that more medieval people may have touched these documents, which cannot be denied, but it is also presumable that the most prominent ancient proteins should be related to Prince Vlad the Impaler, who wrote and signed these letters. The data have been deposited to the ProteomeXchange with the identifier ⟨PXD041350⟩.
Collapse
Affiliation(s)
- Maria
Gaetana Giovanna Pittalà
- Laboratory
of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Antonella Di Francesco
- Laboratory
of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Annamaria Cucina
- Laboratory
of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Rosaria Saletti
- Laboratory
of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Gleb Zilberstein
- SpringStyle
Tech Design Ltd, Oppenheimer
7, Rehovot 7670107, Israel
| | | | - Tudor Arhire
- Sibiu
County Department of Romania National Archives, Strada Arhivelor 3, Sibiu 557260, Romania
| | - Pier Giorgio Righetti
- Department
of Chemistry, Materials and Chemical Engineering ‘‘Giulio
Natta’’, Politecnico di Milano, Via Mancinelli 7, Milano 20131, Italy
| | - Vincenzo Cunsolo
- Laboratory
of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| |
Collapse
|
8
|
Meta-proteomic analysis of two mammoth's trunks by EVA technology and high-resolution mass spectrometry for an indirect picture of their habitat and the characterization of the collagen type I, alpha-1 and alpha-2 sequence. Amino Acids 2022; 54:935-954. [PMID: 35434776 PMCID: PMC9213349 DOI: 10.1007/s00726-022-03160-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/27/2022] [Indexed: 12/30/2022]
Abstract
The recent paleoproteomic studies, including paleo-metaproteomic analyses, improved our understanding of the dietary of ancient populations, the characterization of past human diseases, the reconstruction of the habitat of ancient species, but also provided new insights into the phylogenetic relationships between extant and extinct species. In this respect, the present work reports the results of the metaproteomic analysis performed on the middle part of a trunk, and on the portion of a trunk tip tissue of two different woolly mammoths some 30,000 years old. In particular, proteins were extracted by applying EVA (Ethylene-Vinyl Acetate studded with hydrophilic and hydrophobic resins) films to the surface of these tissues belonging to two Mammuthus primigenus specimens, discovered in two regions located in the Russian Far East, and then investigated via a shotgun MS-based approach. This approach allowed to obtain two interesting results: (i) an indirect description of the habitat of these two mammoths, and (ii) an improved characterization of the collagen type I, alpha-1 and alpha-2 chains (col1a1 and col1a2). Sequence characterization of the col1a1 and col1a2 highlighted some differences between M. primigenius and other Proboscidea together with the identification of three (two for col1a1, and one for col1a2) potentially diagnostic amino acidic mutations that could be used to reliably distinguish the Mammuthus primigenius with respect to the other two genera of elephantids (i.e., Elephas and Loxodonta), and the extinct American mastodon (i.e., Mammut americanum). The results were validated through the level of deamidation and other diagenetic chemical modifications of the sample peptides, which were used to discriminate the "original" endogenous peptides from contaminant ones. The data have been deposited to the ProteomeXchange with identifier < PXD029558 > .
Collapse
|
9
|
Abstract
The goal of paleoproteomics is to characterize proteins from specimens that have been subjected to the degrading and obscuring effects of time, thus obtaining biological information about tissues or organisms both unobservable in the present and unobtainable through morphological study. Although the description of sequences from Tyrannosaurus rex and Brachylophosaurus canadensis suggested that proteins may persist over tens of millions of years, the majority of paleoproteomic analyses have focused on historical, archeological, or relatively young paleontological samples that rarely exceed 1 million years in age. However, recent advances in methodology and analyses of diverse tissues types (e.g., fossil eggshell, dental enamel) have begun closing the large window of time that remains unexplored in the fossil history of the Cenozoic. In this perspective, we discuss the history and current state of deep time paleoproteomics (DTPp), here defined as paleoproteomic study of samples ∼1 million years (1 Ma) or more in age. We then discuss the future of DTPp research, including what we see as critical ways the field can expand, advancements in technology that can be utilized, and the types of questions DTPp can address if such a future is realized.
Collapse
Affiliation(s)
- Elena R Schroeter
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Timothy P Cleland
- Museum Conservation Institute, Smithsonian Institution, Suitland, Maryland 20746, United States
| | - Mary H Schweitzer
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States.,North Carolina Museum of Natural Sciences, Raleigh, North Carolina 27605, United States.,Department of Geology, Lund University, Lund SE-221 00, Sweden
| |
Collapse
|