1
|
Miyata M, Maeno K, Takagi R, Sugiura Y. Sodium alginate improves lipid disruption and alters the composition of the gut microbiota in farnesoid X receptor-null mice. Int J Food Sci Nutr 2025; 76:304-314. [PMID: 40024913 DOI: 10.1080/09637486.2025.2471106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
Seaweed-derived dietary fibre sodium alginate (SA) has been shown to present with health benefits in food-derived disease models. To determine whether SA improves the disease rather than merely suppressing its progression, we assessed its effects using farnesoid X receptor (FXR)-deficient mice to provide a model of advanced hyperlipidaemia. Fxr-null mice were fed with a 5% SA-supplemented diet for nine weeks and showed significant decreases in the levels of liver triglycerides (p < 0.05), total cholesterol (p < 0.05), serum low-density lipoprotein-cholesterol (p < 0.001). The expression levels of fatty acid-synthesizing genes (Fas and Scd1) and cholesterol-metabolizing genes (Hmgcr, Hmgcs, and Abca1), were significantly reduced. Furthermore, the SA supplementation has altered the gut microbiota and significantly increased the abundance of the genus Oscillospira (p < 0.001) and Parabacteroides (p < 0.01). These results suggest that SA improves lipid disruption and influences the composition of the gut microbiota in the Fxr-null mice.
Collapse
Affiliation(s)
- Masaaki Miyata
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Kouhei Maeno
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Reina Takagi
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Yoshimasa Sugiura
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| |
Collapse
|
2
|
Chen B, Bao R, Pan J, Zhu Z, Chen Q, Wang D, Wu Y, Yu H, Zhang Y, Wang T. Taurine alleviates dysfunction of cholesterol metabolism under hyperuricemia by inhibiting A2AR-SREBP-2/CREB/HMGCR axis. J Lipid Res 2025; 66:100746. [PMID: 39848583 PMCID: PMC11875148 DOI: 10.1016/j.jlr.2025.100746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025] Open
Abstract
Dysfunctional cholesterol metabolism is highly prevalent in patients with hyperuricemia. Both uric acid and cholesterol are independent risk factors for atherosclerosis, contributing to an increased incidence of cardiovascular disease in hyperuricemia. Investigating the pathological mechanisms underlying cholesterol metabolism dysfunction in hyperuricemia is essential. This study identified adenosine and inosine, two major purine metabolites, as key regulators of cholesterol biosynthesis. These metabolites upregulate 3-hydroxy-3-methylglutaryl-CoA. Further mechanistic studies revealed that adenosine/inosine up-regulated the expression of 3-hydroxy-3-methylglutaryl-CoA by activating adenosine A2A receptor via the Srebp-2/Creb axis in hyperuricemia. Additionally, we found that taurine deficiency contributes to cholesterol metabolism dysfunction in hyperuricemia. Taurine administration in hyperuricemia mice significantly reduced cholesterol elevation by inhibiting adenosine A2A receptor. This study provides a promising strategy for treating comorbid hypercholesterolemia and hyperuricemia.
Collapse
Affiliation(s)
- Beibei Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruixia Bao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jujie Pan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zicheng Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qian Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dan Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuzheng Wu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Miyata M, Takeda K, Nagira S, Sugiura Y. Trimethylamine N-oxide ameliorates hepatic damage including reduction of hepatic bile acids and cholesterol in Fxr-null mice. Int J Food Sci Nutr 2024; 75:385-395. [PMID: 38690724 DOI: 10.1080/09637486.2024.2346765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
There are conflicting animal experiments on the effect of trimethylamine N-oxide (TMAO), the dietary metabolite, on non-alcoholic fatty liver disease (NAFLD). This study aims to determine the effect of TMAO on NAFLD. A diet containing 0.3% TMAO was fed to farnesoid X receptor (Fxr)-null mice, a model of NAFLD, for 13 weeks. Fxr-null mice fed TMAO showed significant reductions in liver damage markers but not wild-type mice. Hepatic bile acid and cholesterol levels were significantly decreased, and triacylglycerol levels tended to decrease in TMAO-fed Fxr-null mice. Changes in mRNA levels of hepatic bile acid and cholesterol transporters and synthetic enzymes were observed, which could explain the decreased hepatic bile acid and cholesterol levels in Fxr-null mice given the TMAO diet but not in the wild-type mice. These results suggest that TMAO intake ameliorates liver damage in Fxr-null mice, further altering bile acid/cholesterol metabolism in an FXR-independent manner.
Collapse
Affiliation(s)
- Masaaki Miyata
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Kento Takeda
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Sayuri Nagira
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Yoshimasa Sugiura
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| |
Collapse
|
4
|
Cetin AK, Buyukdere Y, Gulec A, Akyol A. Taurine supplementation reduces adiposity and hepatic lipid metabolic activity in adult offspring following maternal cafeteria diet. Nutr Res 2023; 117:15-29. [PMID: 37423013 DOI: 10.1016/j.nutres.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
Maternal taurine supplementation has been shown to exert protective effects following a maternal obesogenic diet on offspring growth and metabolism. However, the long-term effects of maternal cafeteria diet on adiposity, metabolic profile, and hepatic gene expression patterns following supplementation of taurine in adult offspring remains unclear. In this study, we hypothesized that exposure to maternal taurine supplementation would modulate the effects of maternal cafeteria diet by reducing adiposity and hepatic gene expression patterns involved in lipid metabolism in adult offspring. Female Wistar rats were fed a control diet, control diet supplemented with 1.5% taurine in drinking water, cafeteria diet (CAF) or CAF supplemented with taurine (CAFT) from weaning. After 8 weeks, all animals were mated and maintained on the same diets during pregnancy and lactation. After weaning, all offspring were fed with control chow diet until the age of 20 weeks. Despite similar body weights, CAFT offspring had significantly lower fat deposition and body fat when compared with CAF offspring. Microarray analysis revealed that genes (Akr1c3, Cyp7a1, Hsd17b6, Cd36, Acsm3, and Aldh1b1) related to steroid hormone biosynthesis, cholesterol metabolism, peroxisome proliferator-activated receptor signaling pathway, butanoate metabolism, and fatty acid degradation were down-regulated in CAFT offspring. The current study shows that exposure to maternal cafeteria diet promoted adiposity and taurine supplementation reduced lipid deposition and in both male and female offspring and led to alterations in hepatic gene expression patterns, reducing the detrimental effects of maternal cafeteria diet.
Collapse
Affiliation(s)
- Arzu Kabasakal Cetin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| | - Yucel Buyukdere
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| | - Atila Gulec
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| | - Asli Akyol
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Sihhiye, Ankara, Turkey.
| |
Collapse
|
5
|
Xu M, Zhou Y, Fan S, Zhang M, Gao X. Cul5 mediates taurine-stimulated mTOR mRNA expression and proliferation of mouse mammary epithelial cells. Amino Acids 2023; 55:243-252. [PMID: 36449095 DOI: 10.1007/s00726-022-03222-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022]
Abstract
Cullin5 (Cul5) protein can regulate multiple signaling pathways; however, it is still largely unknown the role and molecule mechanism of Cul5 in regulation of the mTOR signaling. In this study, we determined the effect of Cul5 on the proliferation of HC11 cells, a mouse mammary epithelial cell line, and explored the corresponding molecular mechanism. We found that Cul5 was highly expressed in mammary gland tissues in the lactation stage compared with that in puberty and involution. Using gene knockdown and activation methods, we showed that Cul5 promoted proliferation of HC11 cells, mRNA expression and protein phosphorylation of mTOR. Taurine (Tau) affected Cul5 mRNA and protein levels in a dose-dependent manner. Cul5 localized to the nucleus and knockdown of Cul5 almost totally blocked the stimulation of Tau on mTOR mRNA expression and protein phosphorylation. PI3K inhibition almost totally abolished the stimulation of Tau on Cul5 expression. In summary, our data uncover that Cul5 is a positive regulator of proliferation of HC11 cells, and mediates the stimulation of Tau on mRNA expression and subsequent protein phosphorylation of mTOR. Our data lay a new theoretical foundation for regulating mammary cell proliferation and promoting milk yield.
Collapse
Affiliation(s)
- Ming Xu
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Yuwen Zhou
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Sihua Fan
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Minghui Zhang
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Xuejun Gao
- College of Animal Science, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
6
|
Ishida T, Matsui H, Matsuda Y, Shimono T, Kanda S, Nishiyama T, Hosomi R, Fukunaga K, Yoshida M. Dietary Oyster (Crassostrea gigas) Extract Ameliorates Dextran Sulfate Sodium-Induced Chronic Experimental Colitis by Improving the Composition of Gut Microbiota in Mice. Foods 2022; 11:foods11142032. [PMID: 35885275 PMCID: PMC9317888 DOI: 10.3390/foods11142032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Previously, we have reported that the intake of oyster extract (OE), prepared from Pacific oysters (Crassostrea gigas), can attenuate symptoms of dextran sulfate sodium (DSS)-induced acute experimental colitis in mice. Herein, we aimed to evaluate whether OE intake ameliorates chronic experimental colitis induced by repeated DSS administration in mice. Male C57BL/6J (4-week-old) mice were fed either the standard diet AIN93G (control diet) or the control diet containing 5.0% (w/w) OE (OE diet). After 21 days of diet feeding, chronic experimental colitis was induced by three cycles of 2.0% (w/w) DSS solution administration (5 days), followed by distilled water (5 days). Mice fed OE alleviated the shortened colonic length, increased the relative weight of the spleen, colonic histopathological score (regeneration), and blood in the stool score compared with mice fed control diet. A tendency to improve the α-diversity of fecal microbiota, which was exacerbated by colitis, was observed in mice fed OE. Correlation analysis suggested that the anti-colitis effect of OE intake could be related to the valeric acid content and relative abundances of Ruminococcus and Enterococcus in the feces. In conclusion, OE could ameliorate DSS-induced chronic experimental colitis by improving the gut environment, including the microbiota community and SCFA composition.
Collapse
Affiliation(s)
- Tatsuya Ishida
- Central Research Institute, Japan Clinic Co., Ltd., 1 Nishimachi, Taishogun, Kyoto 603-8331, Japan; (T.I.); (H.M.); (Y.M.)
| | - Hiroyuki Matsui
- Central Research Institute, Japan Clinic Co., Ltd., 1 Nishimachi, Taishogun, Kyoto 603-8331, Japan; (T.I.); (H.M.); (Y.M.)
| | - Yoshikazu Matsuda
- Central Research Institute, Japan Clinic Co., Ltd., 1 Nishimachi, Taishogun, Kyoto 603-8331, Japan; (T.I.); (H.M.); (Y.M.)
| | - Takaki Shimono
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1 Shin-machi, Osaka 573-1010, Japan; (T.S.); (S.K.); (T.N.)
| | - Seiji Kanda
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1 Shin-machi, Osaka 573-1010, Japan; (T.S.); (S.K.); (T.N.)
| | - Toshimasa Nishiyama
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1 Shin-machi, Osaka 573-1010, Japan; (T.S.); (S.K.); (T.N.)
| | - Ryota Hosomi
- Faculty of Chemistry, Materials, and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Osaka 564-8680, Japan; (K.F.); (M.Y.)
- Correspondence: ; Tel.: +81-66-3681-765
| | - Kenji Fukunaga
- Faculty of Chemistry, Materials, and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Osaka 564-8680, Japan; (K.F.); (M.Y.)
| | - Munehiro Yoshida
- Faculty of Chemistry, Materials, and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Osaka 564-8680, Japan; (K.F.); (M.Y.)
| |
Collapse
|
7
|
Liu HY, Gu H, Qu H, Bao W, Li Y, Cai D. Aberrant Cholesterol Metabolic Genes Regulation in a Negative Feedback Loop Induced by an Alphacoronavirus. Front Nutr 2022; 9:870680. [PMID: 35369058 PMCID: PMC8973467 DOI: 10.3389/fnut.2022.870680] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/18/2022] [Indexed: 01/10/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is an alphacoronavirus that causes acute inflammation and severe diarrhea in newborn piglets with a high mortality rate. Given that cholesterol is required for coronavirus infection in vitro, the role of endogenous cholesterol metabolism in regulating coronavirus infection and the mechanism behind it ought to be elucidated. In this study, we found that the levels of cholesterol and bile acids were both elevated in the livers of PEDV-infected piglets compared to those of the control group. Consistently, in the livers of PEDV-infected piglets, the expression of key genes involved in cholesterol metabolism was significantly increased. Transcriptomic analysis indicated that the cholesterol homeostasis pathway was among the most enriched pathways in the livers of PEDV-infected piglets. Unexpectedly, the expression of key genes in the cholesterol metabolic pathway was downregulated at the messenger RNA (mRNA) level, but upregulated at the protein level. While the primary transcriptional factors (TFs) of cholesterol metabolism, including SREBP2 and FXR, were upregulated at both mRNA and protein levels in response to PEDV infection. Further Chromatin Immunoprecipitation Quantitative Real-time PCR (ChIP-qPCR) analysis demonstrated that the binding of these TFs to the locus of key genes in the cholesterol metabolic pathway was remarkably inhibited by PEDV infection. It was also observed that the occupancies of histone H3K27ac and H3K4me1, at the locus of the cholesterol metabolic genes HMGCR and HMGCS1, in the livers of PEDV-infected piglets, were suppressed. Together, the PEDV triggers an aberrant regulation of cholesterol metabolic genes via epigenetic inhibition of SREBP2/FXR-mediated transcription, which provides a novel antiviral target against PEDV and other coronaviruses.
Collapse
Affiliation(s)
- Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Haotian Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Huan Qu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanhua Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- *Correspondence: Yanhua Li
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Demin Cai
| |
Collapse
|
8
|
Human Cytochrome P450 2C9 and Its Polymorphic Modifications: Electroanalysis, Catalytic Properties, and Approaches to the Regulation of Enzymatic Activity. Processes (Basel) 2022. [DOI: 10.3390/pr10020383] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The electrochemical properties of cytochrome P450 2C9 (CYP2C9) and polymorphic modifications P450 2C9*2 (CYP2C9*2) and P450 2C9*3 (CYP2C9*3) were studied. To analyze the comparative electrochemical and electrocatalytic activity, the enzymes were immobilized on electrodes modified with a membrane-like synthetic surfactant (didodecyldimethylammonium bromide (DDAB)). An adequate choice of the type of modified electrode was confirmed by cyclic voltammetry of cytochromes P450 under anaerobic conditions, demonstrating well-defined peaks of reduction and oxidation of the heme iron. The midpoint potential, Emid, of cytochrome P450 2C9 is −0.318 ± 0.01 V, and Emid = −0.324 ± 0.01 V, and Emid = −0.318 ± 0.03 V for allelic variant 2C9*2 and allelic variant 2C9*3, respectively. In the presence of substrate diclofenac under aerobic conditions, cytochrome P450 2C9 and its polymorphic modifications P450 2C9*2 and P450 2C9*3 exhibit catalytic properties. Stimulation of the metabolism of diclofenac by cytochrome P450 2C9 in the presence of antioxidant medications mexidol and taurine was shown.
Collapse
|
9
|
Tagawa R, Kobayashi M, Sakurai M, Yoshida M, Kaneko H, Mizunoe Y, Nozaki Y, Okita N, Sudo Y, Higami Y. Long-Term Dietary Taurine Lowers Plasma Levels of Cholesterol and Bile Acids. Int J Mol Sci 2022; 23:ijms23031793. [PMID: 35163722 PMCID: PMC8836270 DOI: 10.3390/ijms23031793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
Cholesterol is an essential lipid in vertebrates, but excess blood cholesterol promotes atherosclerosis. In the liver, cholesterol is metabolized to bile acids by cytochrome P450, family 7, subfamily a, polypeptide 1 (CYP7A1), the transcription of which is negatively regulated by the ERK pathway. Fibroblast growth factor 21 (FGF21), a hepatokine, induces ERK phosphorylation and suppresses Cyp7a1 transcription. Taurine, a sulfur-containing amino acid, reportedly promotes cholesterol metabolism and lowers blood and hepatic cholesterol levels. However, the influence of long-term feeding of taurine on cholesterol levels and metabolism remains unclear. Here, to evaluate the more chronic effects of taurine on cholesterol levels, we analyzed mice fed a taurine-rich diet for 14-16 weeks. Long-term feeding of taurine lowered plasma cholesterol and bile acids without significantly changing other metabolic parameters, but hardly affected these levels in the liver. Moreover, taurine upregulated Cyp7a1 levels, while downregulated phosphorylated ERK and Fgf21 levels in the liver. Likewise, taurine-treated Hepa1-6 cells, a mouse hepatocyte line, exhibited downregulated Fgf21 levels and upregulated promoter activity of Cyp7a1. These results indicate that taurine promotes cholesterol metabolism by suppressing the FGF21/ERK pathway followed by upregulating Cyp7a1 expression. Collectively, this study shows that long-term feeding of taurine lowers both plasma cholesterol and bile acids, reinforcing that taurine effectively prevents hypercholesterolemia.
Collapse
Affiliation(s)
- Ryoma Tagawa
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (R.T.); (M.S.); (M.Y.); (H.K.); (Y.N.); (Y.S.)
| | - Masaki Kobayashi
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (R.T.); (M.S.); (M.Y.); (H.K.); (Y.N.); (Y.S.)
- Correspondence: (M.K.); (Y.H.); Tel.: +81-4-7121-3676 (M.K.); +81-4-7121-3675 (Y.H.)
| | - Misako Sakurai
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (R.T.); (M.S.); (M.Y.); (H.K.); (Y.N.); (Y.S.)
| | - Maho Yoshida
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (R.T.); (M.S.); (M.Y.); (H.K.); (Y.N.); (Y.S.)
| | - Hiroki Kaneko
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (R.T.); (M.S.); (M.Y.); (H.K.); (Y.N.); (Y.S.)
| | - Yuhei Mizunoe
- Department of Internal Medicine Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Yuka Nozaki
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (R.T.); (M.S.); (M.Y.); (H.K.); (Y.N.); (Y.S.)
| | - Naoyuki Okita
- Division of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi 756-0884, Japan;
| | - Yuka Sudo
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (R.T.); (M.S.); (M.Y.); (H.K.); (Y.N.); (Y.S.)
| | - Yoshikazu Higami
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (R.T.); (M.S.); (M.Y.); (H.K.); (Y.N.); (Y.S.)
- Division of Integrated Research, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
- Correspondence: (M.K.); (Y.H.); Tel.: +81-4-7121-3676 (M.K.); +81-4-7121-3675 (Y.H.)
| |
Collapse
|