1
|
Li Y, Chen L, Huang X, Wang Y. The Causal Relationship Between Serum Metabolites and Sjogren's Syndrome: A Mendelian Randomization Study. Br J Hosp Med (Lond) 2025; 86:1-18. [PMID: 40405841 DOI: 10.12968/hmed.2024.0968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Aims/Background Sjogren's syndrome (SS) is a highly prevalent autoimmune disease with potentially serious consequences if left untreated, but methods for early detection and prevention of SS remain limited. This study aims to investigate the causal relationships between serum metabolites and SS using Mendelian randomization (MR), focusing on identifying key metabolic pathways and biomarkers that contribute to SS pathogenesis. Methods We used a two-sample MR approach to investigate the causal relationships between serum metabolites and SS. The primary method for estimating these causal effects was inverse variance weighting (IVW), with results presented alongside their corresponding 95% confidence intervals (CIs). Sensitivity analyses included the Cochran's Q statistical analysis and MR-Egger method. Furthermore, an enrichment analysis of metabolic pathways was applied to the identified metabolites. Results Thirty-seven serum metabolites that have causal links with SS, encompassing 7 metabolite ratios and 30 single metabolites (4 unknown and 26 known), were identified. Metabolite ratios, reflecting the balance between specific metabolites, were analyzed to identify metabolic shifts that may contribute to SS pathogenesis. Among the 26 known metabolites, 12 are protective factors and 14 are risk factors. The levels of cis-4-decenoate (cDA) (10:1n6) (odds ratio [OR] = 1.125; 95% CI = 1.026-1.233; p = 0.012) is positively correlated with the incidence of SS, whereas the levels of butyrate/isobutyrate (4:0) (OR = 0.822; 95% CI = 0.701-0.963; p = 0.016) are negatively correlated with the SS incidence. Most of these metabolites are associated with lipid and amino acid metabolism. Among lipids, the strongest risk-increasing factor was 2,3-dihydroxy-2-methylbutyrate (OR = 1.307; 95% CI = 1.054-1.621; p = 0.015), while the strongest risk-decreasing factor was hexadecadienoate (16:2n6) (OR = 0.774; 95% CI = 0.635-0.944; p = 0.011). Among amino acids, the strongest risk-increasing factor was N-acetylproline (OR = 1.178; 95% CI = 1.024-1.355; p = 0.022), and the strongest risk-decreasing factor was N-acetylserine (OR = 0.802; 95% CI = 0.694-0.926; p = 0.003). Furthermore, these metabolites are predominantly enriched in the arginine and proline metabolism pathway. Conclusion This study helped enhance our comprehension of the causal relationship between serum metabolites and SS, showing that some metabolites may influence the risk and development of this disease. These insights offer novel perspectives for the development of SS prediction and diagnosis.
Collapse
Affiliation(s)
- Yuqiao Li
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Li Chen
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaohan Huang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yue Wang
- Jiangsu Province Hospital of Chinese Medicine (Affiliated Hospital of Nanjing University of Chinese Medicine), Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Zhang Y, Ai C, Huang F, Zhao JL, Ling Y, Chen W, Li Z, Wang Y, Gao F, Li S, Gao W, Wang YS. β-Nicotinamide mononucleotide blocks UVB-induced collagen reduction via regulation of ROS/MAPK/AP-1 and stimulation of mitochondrial proline biosynthesis. Photochem Photobiol Sci 2025; 24:293-306. [PMID: 40025354 DOI: 10.1007/s43630-025-00692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/08/2025] [Indexed: 03/04/2025]
Abstract
β-Nicotinamide mononucleotide (NMN), as a precursor of long-lived protein co-factor nicotinamide adenine dinucleotide (NAD+) in the human body, has demonstrated promising clinical value in treating photoaging and skin wounds. Previous research showed that NMN possessed significant skin protection against UVB-induced photoaging and promoted collagen synthesis. However, its potential mechanism remains unclear. This study aimed to investigate whether NMN improved UVB-induced collagen degradation by regulating ROS/MAPK/AP-1 signaling and stimulating mitochondrial proline biosynthesis. The results showed that NMN notably inhibited UVB-induced ROS production and down-regulated the MAPK/AP-1 signaling pathway. In addition, NMN significantly increased proline levels in mitochondria, which acted as the primary raw materials for collagen synthesis. Further mechanistic analysis revealed that NMN increased the levels of mitochondrial NAD+ and NADP(H). Besides, NMN supplementation activated pyrroline-5-carboxylatesynthetase (P5CS), a key enzyme in proline biosynthesis, by increasing SIRT3 levels. However, the promoting effects of NMN on proline and collagen synthesis were significantly inhibited when 3-TYP, a SIRT3 inhibitor, was combined applied. Meanwhile, the effects of NMN on collagen synthesis were reversed when the solute carrier family 25 member 51, a mammalian mitochondrial NAD+ transporter, was knocked down. Moreover, animal experiments indicated that NMN ameliorated UVB-induced collagen fiber degradation by activating the SIRT3/P5CS signaling. These results revealed that NMN could combat UVB-induced collagen depletion by regulating the ROS/MAPK/AP-1 and proline synthesis.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Chen Ai
- Department of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Fangzhou Huang
- Department of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Ji-Li Zhao
- Department of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Yixin Ling
- Department of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Weijing Chen
- Department of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Zhenzhu Li
- Department of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Yu Wang
- Department of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Fei Gao
- Department of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Siqi Li
- Department of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Wei Gao
- Department of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China.
| | - Yu-Shuai Wang
- Department of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China.
| |
Collapse
|
3
|
Renzetti M, Funck D, Trovato M. Proline and ROS: A Unified Mechanism in Plant Development and Stress Response? PLANTS (BASEL, SWITZERLAND) 2024; 14:2. [PMID: 39795262 PMCID: PMC11723217 DOI: 10.3390/plants14010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025]
Abstract
The proteinogenic amino acid proline plays crucial roles in both plant development and stress responses, far exceeding its role in protein synthesis. However, the molecular mechanisms and the relative importance of these additional functions of proline remain under study. It is well documented that both stress responses and developmental processes are associated with proline accumulation. Under stress conditions, proline is believed to confer stress tolerance, while under physiological conditions, it assists in developmental processes, particularly during the reproductive phase. Due to proline's properties as a compatible osmolyte and potential reactive oxygen species (ROS) scavenger, most of its beneficial effects have historically been attributed to the physicochemical consequences of its accumulation in plants. However, emerging evidence points to proline metabolism as the primary driver of these beneficial effects. Recent reports have shown that proline metabolism, in addition to supporting reproductive development, can modulate root meristem size by controlling ROS accumulation and distribution in the root meristem. The dynamic interplay between proline and ROS highlights a sophisticated regulatory network essential for plant resilience and survival. This fine-tuning mechanism, enabled by the pro-oxidant and antioxidant properties of compartmentalized proline metabolism, can modulate redox balance and ROS homeostasis, potentially explaining many of the multiple roles attributed to proline. This review uniquely integrates recent findings on the dual role of proline in both ROS scavenging and signaling, provides an updated overview of the most recent research published to date, and proposes a unified mechanism that could account for many of the multiple roles assigned to proline in plant development and stress defense. By focusing on the interplay between proline and ROS, we aim to provide a comprehensive understanding of this proposed mechanism and highlight the potential applications in improving crop resilience to environmental stress. Additionally, we address current gaps in understanding and suggest future research directions to further elucidate the complex roles of proline in plant biology.
Collapse
Affiliation(s)
- Marco Renzetti
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy;
| | - Dietmar Funck
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany;
| | - Maurizio Trovato
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
4
|
Tanner JJ, Ji J, Bogner AN, Scott GK, Patel SM, Seravalli J, Gates KS, Benz CC, Becker DF. Noncovalent Inhibition and Covalent Inactivation of Proline Dehydrogenase by Analogs of N-Propargylglycine. Biochemistry 2024; 63:2855-2867. [PMID: 39437336 PMCID: PMC11602192 DOI: 10.1021/acs.biochem.4c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The flavoenzyme proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the oxidation of l-proline to Δ1-pyrroline-5-carboxylate. The enzyme is a target for chemical probe discovery because of its role in the metabolism of certain cancer cells. N-propargylglycine is the first and best characterized mechanism-based covalent inactivator of PRODH. This compound consists of a recognition module (glycine) that directs the inactivator to the active site and an alkyne warhead that reacts with the FAD after oxidative activation, leading to covalent modification of the FAD N5 atom. Here we report structural and kinetic data on analogs of N-propargylglycine with the goals of understanding the initial docking step of the inactivation mechanism and to test the allyl group as a warhead. The crystal structures of PRODH complexed with unreactive analogs in which N is replaced by S show how the recognition module mimics the substrate proline by forming ion pairs with conserved arginine and lysine residues. Further, the C atom adjacent to the alkyne warhead is optimally positioned for hydride transfer to the FAD, providing the structural basis for the first bond-breaking step of the inactivation mechanism. The structures also suggest new strategies for designing improved N-propargylglycine analogs. N-allylglycine, which consists of a glycine recognition module and allyl warhead, is shown to be a covalent inactivator; however, it is less efficient than N-propargylglycine in both enzyme inactivation and cellular assays. Crystal structures of the N-allylglycine-inactivated enzyme are consistent with covalent modification of the N5 by propanal.
Collapse
Affiliation(s)
- John J. Tanner
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States
- Department of Chemistry, University of Missouri, Columbia, MO 65211, United States
| | - Juan Ji
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States
| | - Alexandra N. Bogner
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States
| | - Gary K. Scott
- Buck Institute for Research on Aging, Novato, CA, 94945, United States
| | - Sagar M. Patel
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Javier Seravalli
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Kent S. Gates
- Department of Chemistry, University of Missouri, Columbia, MO 65211, United States
| | | | - Donald F. Becker
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| |
Collapse
|
5
|
Naba A. Mechanisms of assembly and remodelling of the extracellular matrix. Nat Rev Mol Cell Biol 2024; 25:865-885. [PMID: 39223427 PMCID: PMC11931590 DOI: 10.1038/s41580-024-00767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
The extracellular matrix (ECM) is the complex meshwork of proteins and glycans that forms the scaffold that surrounds and supports cells. It exerts key roles in all aspects of metazoan physiology, from conferring physical and mechanical properties on tissues and organs to modulating cellular processes such as proliferation, differentiation and migration. Understanding the mechanisms that orchestrate the assembly of the ECM scaffold is thus crucial to understand ECM functions in health and disease. This Review discusses novel insights into the compositional diversity of matrisome components and the mechanisms that lead to tissue-specific assemblies and architectures tailored to support specific functions. The Review then highlights recently discovered mechanisms, including post-translational modifications and metabolic pathways such as amino acid availability and the circadian clock, that modulate ECM secretion, assembly and remodelling in homeostasis and human diseases. Last, the Review explores the potential of 'matritherapies', that is, strategies to normalize ECM composition and architecture to achieve a therapeutic benefit.
Collapse
Affiliation(s)
- Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
6
|
Olawuni B, Bode BP. Asparagine as a signal for glutamine sufficiency via asparagine synthetase: a fresh evidence-based framework in physiology and oncology. Am J Physiol Cell Physiol 2024; 327:C1335-C1346. [PMID: 39344414 DOI: 10.1152/ajpcell.00316.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Among the 20 proteinogenic amino acids, glutamine (GLN) and asparagine (ASN) represent a unique cohort in containing a terminal amide in their side chain, and share a direct metabolic relationship, with glutamine generating asparagine through the ATP-dependent asparagine synthetase (ASNS) reaction. Circulating glutamine levels and metabolic flux through cells and tissues greatly exceed those for asparagine, and "glutamine addiction" in cancer has likewise received considerable attention. However, historic and recent evidence collectively suggest that in spite of its modest presence, asparagine plays an outsized regulatory role in cellular function. Here, we present a unifying evidence-based hypothesis that the amides constitute a regulatory signaling circuit, with glutamine as a driver and asparagine as a second messenger that allosterically regulates key biochemical and physiological functions, particularly cell growth and survival. Specifically, it is proposed that ASNS serves as a sensor of substrate sufficiency for S-phase entry and progression in proliferating cells. ASNS-generated asparagine serves as a subsequent second messenger that modulates the activity of key regulatory proteins and promotes survival in the face of cellular stress, and serves as a feed-forward driver of S-phase progression in cell growth. We propose that this signaling pathway be termed the amide signaling circuit (ASC) in homage to the SLC1A5-encoded ASCT2 that transports both glutamine and asparagine in a bidirectional manner, and has been implicated in the pathogenesis of a broad spectrum of human cancers. Support for the ASC model is provided by the recent discovery that glutamine is sensed in primary cilia via ASNS during metabolic stress.
Collapse
Affiliation(s)
- Babatunde Olawuni
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States
| | - Barrie P Bode
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States
- Division of Research and Innovation Partnerships, Northern Illinois University, DeKalb, Illinois, United States
| |
Collapse
|
7
|
Meeks KR, Bogner AN, Tanner JJ. Screening a knowledge-based library of low molecular weight compounds against the proline biosynthetic enzyme 1-pyrroline-5-carboxylate 1 (PYCR1). Protein Sci 2024; 33:e5072. [PMID: 39133178 PMCID: PMC11193152 DOI: 10.1002/pro.5072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 08/13/2024]
Abstract
Δ1-pyrroline-5-carboxylate reductase isoform 1 (PYCR1) is the last enzyme of proline biosynthesis and catalyzes the NAD(P)H-dependent reduction of Δ1-pyrroline-5-carboxylate to L-proline. High PYCR1 gene expression is observed in many cancers and linked to poor patient outcomes and tumor aggressiveness. The knockdown of the PYCR1 gene or the inhibition of PYCR1 enzyme has been shown to inhibit tumorigenesis in cancer cells and animal models of cancer, motivating inhibitor discovery. We screened a library of 71 low molecular weight compounds (average MW of 131 Da) against PYCR1 using an enzyme activity assay. Hit compounds were validated with X-ray crystallography and kinetic assays to determine affinity parameters. The library was counter-screened against human Δ1-pyrroline-5-carboxylate reductase isoform 3 and proline dehydrogenase (PRODH) to assess specificity/promiscuity. Twelve PYCR1 and one PRODH inhibitor crystal structures were determined. Three compounds inhibit PYCR1 with competitive inhibition parameter of 100 μM or lower. Among these, (S)-tetrahydro-2H-pyran-2-carboxylic acid (70 μM) has higher affinity than the current best tool compound N-formyl-l-proline, is 30 times more specific for PYCR1 over human Δ1-pyrroline-5-carboxylate reductase isoform 3, and negligibly inhibits PRODH. Structure-affinity relationships suggest that hydrogen bonding of the heteroatom of this compound is important for binding to PYCR1. The structures of PYCR1 and PRODH complexed with 1-hydroxyethane-1-sulfonate demonstrate that the sulfonate group is a suitable replacement for the carboxylate anchor. This result suggests that the exploration of carboxylic acid isosteres may be a promising strategy for discovering new classes of PYCR1 and PRODH inhibitors. The structure of PYCR1 complexed with l-pipecolate and NADH supports the hypothesis that PYCR1 has an alternative function in lysine metabolism.
Collapse
Affiliation(s)
- Kaylen R. Meeks
- Department of BiochemistryUniversity of MissouriColumbiaMissouriUSA
| | - Alexandra N. Bogner
- Department of BiochemistryUniversity of MissouriColumbiaMissouriUSA
- Present address:
Lilly Biotechnology CenterEli Lilly and CompanySan DiegoCaliforniaUSA
| | - John J. Tanner
- Department of BiochemistryUniversity of MissouriColumbiaMissouriUSA
- Department of ChemistryUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
8
|
Meeks KR, Ji J, Protopopov MV, Tarkhanova OO, Moroz YS, Tanner JJ. Novel Fragment Inhibitors of PYCR1 from Docking-Guided X-ray Crystallography. J Chem Inf Model 2024; 64:1704-1718. [PMID: 38411104 PMCID: PMC11058006 DOI: 10.1021/acs.jcim.3c01879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The proline biosynthetic enzyme Δ1-pyrroline-5-carboxylate (P5C) reductase 1 (PYCR1) is one of the most consistently upregulated enzymes across multiple cancer types and central to the metabolic rewiring of cancer cells. Herein, we describe a fragment-based, structure-first approach to the discovery of PYCR1 inhibitors. Thirty-seven fragment-like carboxylic acids in the molecular weight range of 143-289 Da were selected from docking and then screened using X-ray crystallography as the primary assay. Strong electron density was observed for eight compounds, corresponding to a crystallographic hit rate of 22%. The fragments are novel compared to existing proline analog inhibitors in that they block both the P5C substrate pocket and the NAD(P)H binding site. Four hits showed inhibition of PYCR1 in kinetic assays, and one has lower apparent IC50 than the current best proline analog inhibitor. These results show proof-of-concept for our inhibitor discovery approach and provide a basis for fragment-to-lead optimization.
Collapse
Affiliation(s)
- Kaylen R Meeks
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Juan Ji
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | | | - Olga O Tarkhanova
- Chemspace LLC, 85 Chervonotkatska Street, Suite 1, Kyïv 02094, Ukraine
| | - Yurii S Moroz
- Chemspace LLC, 85 Chervonotkatska Street, Suite 1, Kyïv 02094, Ukraine
- Department of Chemistry, Taras Shevchenko National University of Kyïv, Kyïv 01601, Ukraine
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
9
|
Sawicka MM, Sawicki K, Jadeszko M, Bielawska K, Supruniuk E, Reszeć J, Prokop-Bielenia I, Polityńska B, Jadeszko M, Rybaczek M, Latoch E, Gorbacz K, Łysoń T, Miltyk W. Proline Metabolism in WHO G4 Gliomas Is Altered as Compared to Unaffected Brain Tissue. Cancers (Basel) 2024; 16:456. [PMID: 38275897 PMCID: PMC10814259 DOI: 10.3390/cancers16020456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Proline metabolism has been identified as a significant player in several neoplasms, but knowledge of its role in gliomas is limited despite it providing a promising line of pursuit. Data on proline metabolism in the brain are somewhat historical. This study aims to investigate alterations of proline metabolism in gliomas of WHO grade 4 (GG4) in the context of the brain. A total of 20 pairs of samples were studied, consisting of excised tumor and unaffected brain tissue, obtained when partial brain resection was required to reach deep-seated lesions. Levels of proline oxidase/proline dehydrogenase (POX/PRODH), Δ1-pyrroline-5-carboxylate reductases (PYCR1/2/3), prolidase (PEPD), and metalloproteinases (MMP-2, MMP-9) were assessed, along with the concentration of proline and proline-related metabolites. In comparison to normal brain tissue, POX/PRODH expression in GG4 was found to be suppressed, while PYCR1 expression and activity of PEPD, MMP-2, and -9 were upregulated. The GG4 proline concentration was 358% higher. Hence, rewiring of the proline metabolism in GG4 was confirmed for the first time, with a low-POX/PRODH/high-PYCR profile. High PEPD and MMPs activity is in keeping with GG4-increased collagen turnover and local aggressiveness. Further studies on the mechanisms of the interplay between altered proline metabolism and the GG4 microenvironment are warranted.
Collapse
Affiliation(s)
- Magdalena M. Sawicka
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (K.B.); (W.M.)
| | - Karol Sawicki
- Department of Neurosurgery, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland; (K.S.); (M.J.); (M.R.); (K.G.); (T.Ł.)
| | - Marek Jadeszko
- Department of Neurosurgery, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland; (K.S.); (M.J.); (M.R.); (K.G.); (T.Ł.)
| | - Katarzyna Bielawska
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (K.B.); (W.M.)
| | - Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Joanna Reszeć
- Department of Medical Pathomorphology, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland;
| | - Izabela Prokop-Bielenia
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland;
| | - Barbara Polityńska
- Department of Psychology and Philosophy, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland;
| | - Mateusz Jadeszko
- Department of Vascular Surgery and Transplantation, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland;
| | - Magdalena Rybaczek
- Department of Neurosurgery, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland; (K.S.); (M.J.); (M.R.); (K.G.); (T.Ł.)
| | - Eryk Latoch
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland;
| | - Krzysztof Gorbacz
- Department of Neurosurgery, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland; (K.S.); (M.J.); (M.R.); (K.G.); (T.Ł.)
| | - Tomasz Łysoń
- Department of Neurosurgery, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland; (K.S.); (M.J.); (M.R.); (K.G.); (T.Ł.)
| | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (K.B.); (W.M.)
| |
Collapse
|
10
|
Hu S, He W, Bazer FW, Johnson GA, Wu G. Synthesis of glycine from 4-hydroxyproline in tissues of neonatal pigs with intrauterine growth restriction. Exp Biol Med (Maywood) 2023; 248:1446-1458. [PMID: 37837389 PMCID: PMC10666732 DOI: 10.1177/15353702231199080] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/04/2023] [Indexed: 10/16/2023] Open
Abstract
This study tested the hypothesis that the synthesis of glycine from 4-hydroxyproline (an abundant amino acid in milk and neonatal blood) was impaired in tissues of piglets with intrauterine growth restriction (IUGR), thereby contributing to a severe glycine deficiency in these compromised neonates. At 0, 7, 14, and 21 days of age, IUGR piglets were euthanized, and tissues (liver, small intestine, kidney, pancreas, stomach, skeletal muscle, and heart) were obtained for metabolic studies, as well as the determination of enzymatic activities, cell-specific localization, and expression of mRNAs for glycine-synthetic enzymes. The results indicated relatively low enzymatic activities for 4-hydroxyproline oxidase (OH-POX), proline oxidase, serine hydroxymethyltransferase, threonine dehydrogenase (TDH), alanine: glyoxylate transaminase, and 4-hydroxy-2-oxoglutarate aldolase in the kidneys and liver from 0- to 21-day-old IUGR pigs, in the pancreas of 7- to 21-day-old IUGR pigs, and in the small intestine and skeletal muscle (except TDH) of 21-day-old IUGR pigs. Accordingly, the rates of conversion of 4-hydroxyproline into glycine were relatively low in tissues of IUGR piglets. The expression of mRNAs for glycine-synthetic enzymes followed the patterns of enzymatic activities and was also low. Immunohistochemical analyses revealed the relatively low abundance of OH-POX protein in the liver, kidney, and small intestine of IUGR piglets, and the lack of OH-POX zonation in their livers. These novel results provide a metabolic basis to explain why the endogenous synthesis of glycine is insufficient for optimum growth of IUGR piglets and have important implications for improving the nutrition and health of other mammalian neonates including humans with IUGR.
Collapse
Affiliation(s)
- Shengdi Hu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
11
|
Hu S, He W, Bazer FW, Johnson GA, Wu G. Synthesis of glycine from 4-hydroxyproline in tissues of neonatal pigs. Exp Biol Med (Maywood) 2023; 248:1206-1220. [PMID: 37632196 PMCID: PMC10621473 DOI: 10.1177/15353702231181360] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/01/2023] [Indexed: 08/27/2023] Open
Abstract
Glycine from sow's milk only meets 20% of the requirement of suckling piglets. However, how glycine is synthesized endogenously in neonates is not known. This study determined glycine synthesis from 4-hydroxyproline (an abundant amino acid in milk and neonatal blood) in tissues of sow-reared piglets with normal birth weights. Piglets were euthanized at 0, 7, 14 and 21 days of age, and their tissues were used to determine glycine synthesis from 0 to 5 mM 4-hydroxyproline, activities and mRNA expression of key glycine-synthetic enzymes, and their cell-specific localization. Activities of 4-hydroxyproline oxidase (OH-POX), proline oxidase (POX), serine hydroxymethyltransferase (SHMT), threonine dehydrogenase (TDH), alanine:glyoxylate transaminase (AGT), and 4-hydroxy-2-oxoglutarate aldolase (HOA) occurred in the kidneys and liver from all age groups of piglets, and in the pancreas of 7- to 21-day-old piglets. Activities of OH-POX and HOA were absent from the small intestine of newborn pigs but present in the small intestine of 7- to 21-day-old piglets and in the skeletal muscle of 14- to 21-day-old piglets. Between days 0 and 21 of age, the enzymatic activities of OH-POX, AGT, and HOA decreased in the liver and kidneys but increased in the pancreas and small intestine with age. The mRNA levels of these three enzymes changed in a manner similar to their enzymatic activities. In contrast to OH-POX, AGT, and HOA, the enzymatic activities of POX, SHMT, and TDH were present in the kidneys, liver, and intestine of all age groups of piglets. Glycine was synthesized from 0.1 to 5 mM 4-hydroxyproline in the liver and kidney from 0- to 21-day-old piglets, as well as the pancreas, small intestine, and skeletal muscle from 14- to 21-day-old piglets in a concentration-dependent manner. Collectively, our findings indicate that 4-hydroxyproline is used for the synthesis of glycine in tissues of piglets to compensate for the deficiency of glycine in milk.
Collapse
Affiliation(s)
- Shengdi Hu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
12
|
Wu G. Nutrition and Gut Health: Recent Advances and Implications for Development of Functional Foods. Int J Mol Sci 2023; 24:10075. [PMID: 37373221 DOI: 10.3390/ijms241210075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The small intestine is a highly differentiated and complex organ with many nutritional, physiological, and immunological functions [...].
Collapse
Affiliation(s)
- Guoyao Wu
- Departments of Animal Science and Medical Physiology and Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
13
|
Zhang N, Fu J, Gao X, Lu F, Lu Y, Liu S. Integrated Brain Metabolomics and Network Pharmacology Analysis to Reveal the Improvement Effect of Bai Chan Ting on Parkinson's Disease. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6113093. [PMID: 36523484 PMCID: PMC9747319 DOI: 10.1155/2022/6113093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/29/2022] [Accepted: 11/21/2022] [Indexed: 09/27/2023]
Abstract
BACKGROUND Baichanting (BCT),a traditional Chinese medicine prescription, is a combination of Acanthopanax senticosus, Paeonia lactiflora, and Uncaria three herbs, which has the effect of benefiting the kidney and calming the liver. The study was aimed at investigating the protective effect of BCT against Parkinson's disease using an integrated strategy of network pharmacology and brain metabolomics. MATERIALS AND METHODS By integrating network pharmacology with metabolomic research, the protective effect of BCT against PD was investigated using a transgenic mouse model for α-synuclein. The metabolite level and gene level components of BCT that might be anti-PD were separated out. Indicators of behavior and pharmacodynamics were employed to gauge the effectiveness of BCT on PD in the preliminary stages. Network pharmacology, which may be the target of BCT, screened the active substances and target genes. The use of metabolomics to identify potential biomarkers of PD, and then through network pharmacology and metabolic pathways to determine their regulatory enzymes and regulatory genes, improve the pathway mechanism of the disease, has important guiding significance for the in-depth study of the pathogenesis of PD. RESULTS 101 putative target genes were identified by the network pharmacology analysis in relation to the treatment of PD with BCT. According to the functional enrichment analysis, the proposed mechanism was primarily related to the transport of neurotransmitters, the metabolism of arachidonic acid, dopamine, and alpha-amino acids, as well as the transport of dopamine and the negative regulation of amino acid transport. 25 distinct endogenous metabolites were shown to be potential biomarkers for the BCT for treating PD based on metabolomics. These metabolites were mostly implicated in the important methionine and cysteine, tyrosine, histidine, and arginine and proline metabolic pathways. These results somewhat agreed with those of the network pharmacology analysis. CONCLUSIONS In conclusion, this study showed that BCT could delay the occurrence and development of PD by improving the brain metabolic disorder of α-Syn mice, which revealed the mechanism of BCT through multitarget and multipathway treatment, and provided a new explanation for the mechanism of anti-PD action. Our research, on the other hand, demonstrated that the network pharmacology-integrated metabolomics approach was a potent tool for discovering the active ingredients and mechanisms underlying the pharmacological effects of traditional Chinese medicine.
Collapse
Affiliation(s)
- Na Zhang
- Heilongjiang Drug Safety Evaluation Center, Heilongjiang, China
| | - Jiaqi Fu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xin Gao
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yi Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
14
|
Minchiotti G, D’Aniello C, Fico A, De Cesare D, Patriarca EJ. Capturing Transitional Pluripotency through Proline Metabolism. Cells 2022; 11:cells11142125. [PMID: 35883568 PMCID: PMC9323356 DOI: 10.3390/cells11142125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/03/2022] Open
Abstract
In this paper, we summarize the current knowledge of the role of proline metabolism in the control of the identity of Embryonic Stem Cells (ESCs). An imbalance in proline metabolism shifts mouse ESCs toward a stable naïve-to-primed intermediate state of pluripotency. Proline-induced cells (PiCs), also named primitive ectoderm-like cells (EPLs), are phenotypically metastable, a trait linked to a rapid and reversible relocalization of E-cadherin from the plasma membrane to intracellular membrane compartments. The ESC-to-PiC transition relies on the activation of Erk and Tgfβ/Activin signaling pathways and is associated with extensive remodeling of the transcriptome, metabolome and epigenome. PiCs maintain several properties of naïve pluripotency (teratoma formation, blastocyst colonization and 3D gastruloid development) and acquire a few traits of primed cells (flat-shaped colony morphology, aerobic glycolysis metabolism and competence for primordial germ cell fate). Overall, the molecular and phenotypic features of PiCs resemble those of an early-primed state of pluripotency, providing a robust model to study the role of metabolic perturbations in pluripotency and cell fate decisions.
Collapse
|
15
|
Qian CJ, Tong YY, Wu LK, Wang YC, Teng XS, Yao J. Circ_0000705 facilitates proline metabolism of esophageal squamous cell carcinoma cells by targeting miR-621/PYCR1 axis. Discov Oncol 2022; 13:50. [PMID: 35731336 PMCID: PMC9218025 DOI: 10.1007/s12672-022-00513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022] Open
Abstract
CircRNAs have been found to play crucial roles in the metabolism and progression of cancers, but their roles and mechanisms in esophageal squamous cell carcinoma (ESCC) have not been fully elucidated. This work is aimed to explore the role and mechanism of hsa_circ_0000705 (circ_0000705) in ESCC. Circ_0000705 expression was up-regulated in ESCC tissues and cell lines, and high circ_0000705 expression was correlated with poor survival. Circ_0000705 facilitated cell proliferation, invasion, migration and proline metabolism of ESCC cells. The inhibitory effects of circ_0000705 knockdown on cell invasion, migration and proline metabolism were partly rescued by miR-621 inhibition or PYCR1 over-expression. Furthermore, circ_0000705 expression is negatively correlated with miR-621 expression, and positively correlated with PYCR1 in ESCC tissues. Mechanistically, circ_0000705 acted as a ceRNA by sponging miR-621, thereby facilitating PYCR1 expression in ESCC cells. In conclusion, circ_0000705 promoted proline metabolism and malignant progression of ESCC by regulating the miR‑621/PYCR1 axis.
Collapse
Affiliation(s)
- Cui-Juan Qian
- Early Gastrointestinal Cancer Research Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, Zhejiang Province, China
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Yi-Yang Tong
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Lin-Ken Wu
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Yi-Chao Wang
- Department of Medical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Xiao-Sheng Teng
- Early Gastrointestinal Cancer Research Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, Zhejiang Province, China.
- Department of Gastroenterology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, Zhejiang Province, China.
| | - Jun Yao
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang Province, China.
- Department of Gastroenterology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, Zhejiang Province, China.
| |
Collapse
|
16
|
Abstract
Amino acids (AAs) are required for syntheses of proteins and low-molecular-weight substances with enormous physiological importance. Since 1912, AAs have been classified as nutritionally essential amino acids (EAAs) or nonessential amino acids (NEAAs) for animals. EAAs are those AAs that are either not synthesized or insufficiently synthesized de novo in the organisms. It was assumed that all NEAAs (now known as AAs that are synthesizable in animal cells de novo [AASAs]) were formed sufficiently in animals and were not needed in diets. However, studies over the past three decades have shown that sufficient dietary AASAs (e.g. glutamine, glutamate, glycine, and proline) are necessary for the maximum growth and optimum health of pigs, chickens, and fish. Thus, the concept of "ideal protein" (protein with an optimal EAA pattern that precisely meets the physiological needs of animals), which was originally proposed in the 1950s but ignored AASAs, is not ideal in animal nutrition. Ideal diets must provide all physiologically and nutritionally essential AAs. Improved patterns of AAs in diets for swine and chickens as well as zoo and companion animals have been proposed in recent years. Animal-sourced feedstuffs supply abundant EAAs and AASAs (including glutamate, glutamine, glycine, proline, 4-hydroxyproline, and taurine) for diets of swine, poultry, fish, and crustaceans to improve their growth, development, reproduction, and health, while sustaining global animal production. Nutritionists should move beyond the "ideal protein" concept to consider optimum ratios and amounts of all proteinogenic AAs in diets for mammals, birds, and aquatic animals, and, in the case of carnivores, also taurine.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Peng Li
- North American Renderers Association, Alexandria, VA 22314, USA
| |
Collapse
|