1
|
Liu X, Gao M, Qin Y, Xiong Z, Zheng H, Willner I, Cai X, Li R. Exploring Nanozymes for Organic Substrates: Building Nano-organelles. Angew Chem Int Ed Engl 2024; 63:e202408277. [PMID: 38979699 DOI: 10.1002/anie.202408277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Since the discovery of the first peroxidase nanozyme (Fe3O4), numerous nanomaterials have been reported to exhibit intrinsic enzyme-like activity toward inorganic oxygen species, such as H2O2, oxygen, and O2 -. However, the exploration of nanozymes targeting organic compounds holds transformative potential in the realm of industrial synthesis. This review provides a comprehensive overview of the diverse types of nanozymes that catalyze reactions involving organic substrates and discusses their catalytic mechanisms, structure-activity relationships, and methodological paradigms for discovering new nanozymes. Additionally, we propose a forward-looking perspective on designing nanozyme formulations to mimic subcellular organelles, such as chloroplasts, termed "nano-organelles". Finally, we analyze the challenges encountered in nanozyme synthesis, characterization, nano-organelle construction and applications while suggesting directions to overcome these obstacles and enhance nanozyme research in the future. Through this review, our goal is to inspire further research efforts and catalyze advancements in the field of nanozymes, fostering new insights and opportunities in chemical synthesis.
Collapse
Affiliation(s)
- Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yunlong Qin
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Zhiqiang Xiong
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Itamar Willner
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Xiaoming Cai
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
2
|
Priyadarshini E, Minzar M, Pandey S, Rawat K. Synergistic reduction of nitrophenols by Au-CDs nanoconjugates with NaBH 4. NANOTECHNOLOGY 2024; 35:275101. [PMID: 38502954 DOI: 10.1088/1361-6528/ad355a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Developing sustainable and innovative approaches for the efficient reduction of nitrophenols is crucial for environmental remediation, for managing health concerns posed by their widespread presence as hazardous pollutants in industrial effluents and contaminated water. We report the use of 12.9 ± 1 nm (TEM data) sized gold carbon dot nanoconjugates (Au@CDs) for catalytic conversion of o, m, p-nitrophenols to aminophenols by sodium borohydride. A simple approach was followed to synthesize ultra-small and highly stable Au@CDs, using citric acid and PEG as reducing and stabilizing agents. X-ray diffraction analysis verified the formation of nano-crystalline nanoconjugates. These nanoconjugates showed a remarkable catalytic activity in the range of 0.22-0.33 s-1(varying with nanoconjugate concentration) which was much higher compared to conventional chemical methods of reduction. All the catalytic reaction experiments were performed at room temperature (27 ± 2 °C). Furthermore, an increase in rate constant was observed with increasing concentration of nanoconjugates. The catalytic activity of Au@CDs nanoconjugates was observed to be in order of m-nitrophenol > o-nitrophenol > p-nitrophenol with apparent rate constant (kaap) values of 0.068, 0.043 and 0.031, respectively. Comparative analysis with GNPs, CDs and Au@CDs nanoconjugates stated that the nanoconjugates had superior catalytic activity. The research can have significant implications in the development of new strategies for environmental remediation and biomedical applications.
Collapse
Affiliation(s)
| | - Mohd Minzar
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Saurabh Pandey
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Kamla Rawat
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|