1
|
Johal AS, Al-Shekaili HH, Abedrabbo M, Kehinde AZ, Towriss M, Koe JC, Hewton KG, Thomson SB, Ciernia AV, Leavitt B, Parker SJ. Restricting lysine normalizes toxic catabolites associated with ALDH7A1 deficiency in cells and mice. Cell Rep 2024; 43:115069. [PMID: 39661514 DOI: 10.1016/j.celrep.2024.115069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/04/2024] [Accepted: 11/22/2024] [Indexed: 12/13/2024] Open
Abstract
Lysine metabolism converges at α-aminoadipic semialdehyde dehydrogenase (ALDH7A1). Rare loss-of-function mutations in ALDH7A1 cause a toxic accumulation of lysine catabolites, including piperideine-6-carboxylate (P6C), that are thought to cause fatal seizures in children unless strictly managed with dietary lysine reduction. In this study, we perform metabolomics and expression analysis of tissues from Aldh7a1-deficient mice, which reveal tissue-specific differences in lysine metabolism and other metabolic pathways. We also develop a fluorescent biosensor to characterize lysine transporter activity and identify competitive substrates that reduce the accumulation of lysine catabolites in ALDH7A1-deficient HEK293 cells. Lastly, we show that intravenous administration of lysine α-oxidase from Trichoderma viride reduces lysine and P6C levels by >80% in mice. Our results improve our understanding of lysine metabolism and make inroads toward improving therapeutic strategies for lysine catabolic disorders.
Collapse
Affiliation(s)
- Amritpal S Johal
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Hilal H Al-Shekaili
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Muna Abedrabbo
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Abisola Z Kehinde
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Morgan Towriss
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jessica C Koe
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Keeley G Hewton
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Sarah B Thomson
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Annie V Ciernia
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Blair Leavitt
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Seth J Parker
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
2
|
Chen J, Cui L, Lu S, Xu S. Amino acid metabolism in tumor biology and therapy. Cell Death Dis 2024; 15:42. [PMID: 38218942 PMCID: PMC10787762 DOI: 10.1038/s41419-024-06435-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Amino acid metabolism plays important roles in tumor biology and tumor therapy. Accumulating evidence has shown that amino acids contribute to tumorigenesis and tumor immunity by acting as nutrients, signaling molecules, and could also regulate gene transcription and epigenetic modification. Therefore, targeting amino acid metabolism will provide new ideas for tumor treatment and become an important therapeutic approach after surgery, radiotherapy, and chemotherapy. In this review, we systematically summarize the recent progress of amino acid metabolism in malignancy and their interaction with signal pathways as well as their effect on tumor microenvironment and epigenetic modification. Collectively, we also highlight the potential therapeutic application and future expectation.
Collapse
Affiliation(s)
- Jie Chen
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Likun Cui
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Shaoteng Lu
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Sheng Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| |
Collapse
|