1
|
Aparicio-Bautista DI, Jiménez-Ortega RF, Becerra-Cervera A, Aquino-Gálvez A, de León-Suárez VP, Casas-Ávila L, Salmerón J, Hidalgo-Bravo A, Rivera-Paredez B, Velázquez-Cruz R. Interaction between MARK3 (rs11623869), PLCB4 (rs6086746) and GEMIN2 (rs2277458) variants with bone mineral density and serum 25-hidroxivitamin D levels in Mexican Mestizo women. Front Endocrinol (Lausanne) 2024; 15:1392063. [PMID: 38715801 PMCID: PMC11074919 DOI: 10.3389/fendo.2024.1392063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/03/2024] [Indexed: 06/04/2024] Open
Abstract
Introduction Understanding the genetic factors contributing to variations in bone mineral density (BMD) and vitamin D could provide valuable insights into the pathogenesis of osteoporosis. This study aimed to evaluate the association of single nucleotide variants in MARK3 (rs11623869), PLCB4 (rs6086746), and GEMIN2 (rs2277458) with BMD in Mexican women. Methods The gene-gene interaction was evaluated in these variants in serum 25(OH)D levels and BMD. A genetic risk score (GRS) was created on the basis of the three genetic variants. Genotyping was performed using predesigned TaqMan assays. Results A significant association was found between the rs6086746-A variant and BMD at the total hip, femoral neck, and lumbar spine, in women aged 45 years or older. However, no association was observed between the variants rs11623869 and rs2277458. The rs11623869 × rs2277458 interaction was associated with total hip (p=0.002) and femoral neck BMD (p=0.013). Similarly, for vitamin D levels, we observed an interaction between the variants rs6086746 × rs2277458 (p=0.021). GRS revealed a significant association with total hip BMD (p trend=0.003) and femoral neck BMD (p trend=0.006), as well as increased vitamin D levels (p trend=0.0003). These findings provide evidence of the individual and joint effect of the MARK3, PLCB4, and GEMIN2 variants on BMD and serum vitamin D levels in Mexican women. Discussion This knowledge could help to elucidate the interaction mechanism between BMD-related genetic variants and 25OHD, contributing to the determination of the pathogenesis of osteoporosis and its potential implications during early interventions.
Collapse
Affiliation(s)
- Diana I. Aparicio-Bautista
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Rogelio F. Jiménez-Ortega
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Departamento de Ciencias de la Acupuntura. Universidad Estatal del Valle de Ecatepec. Ecatepec de Morelos, Estado de Mexico, Mexico
| | - Adriana Becerra-Cervera
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico City, Mexico
| | - Arnoldo Aquino-Gálvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | | | - Leonora Casas-Ávila
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación, Mexico City, Mexico
| | - Jorge Salmerón
- Centro de Investigación en Políticas, Población y Salud, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alberto Hidalgo-Bravo
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación, Mexico City, Mexico
| | - Berenice Rivera-Paredez
- Centro de Investigación en Políticas, Población y Salud, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| |
Collapse
|
2
|
Sanyal S, Rajput S, Sadhukhan S, Rajender S, Mithal A, Chattopadhyay N. Polymorphisms in the Runx2 and osteocalcin genes affect BMD in postmenopausal women: a systematic review and meta-analysis. Endocrine 2024; 84:63-75. [PMID: 38055125 DOI: 10.1007/s12020-023-03621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023]
Abstract
PURPOSE Runx2 and osteocalcin have pivotal roles in bone homeostasis. Polymorphism of these two genes could alter the function of osteoblasts and consequently bone mineral density (BMD). Attempts to understand the relationship between these polymorphisms and BMD in postmenopausal women across a variety of populations have yielded inconsistent results. This meta-analysis seeks to define the relationship between these polymorphisms with BMD in postmenopausal women. METHODS Eligible studies were identified from three electronic databases. Data were extracted from the eligible studies (4 studies on Runx2 and 6 studies on osteocalcin), and associations of Runx2 T > C and osteocalcin HindIII polymorphisms with BMD in postmenopausal women were assessed using standard difference in means (SDM) and 95% confidence intervals (CI) as statistical measures. RESULTS A significant difference in the lumbar spine (LS) BMD in postmenopausal women was observed between the TT and CC homozygotes for the Runx2 T > C (SDM = -0.445, p-value = 0.034). The mutant genotypes (CC) showed significantly lower LS BMD in comparison to wild type genotypes under recessive model of genetic analysis (TC + TT vs. CC: SDM = -0.451, p-value = 0.032). For osteocalcin, HindIII polymorphism, the mutant genotypes (HH) was associated with significantly higher BMD for both LS and femoral neck (FN) than the wild type (hh) homozygotes (SDM = 0.152, p-value = 0.008 and SDM = 0.139, p-value = 0.016 for LS and FN, respectively). There was no association between total hip (TH) BMD and the osteocalcin HindIII polymorphism. CONCLUSIONS Runx2 T > C and osteocalcin HindIII polymorphisms influence the level of BMD in postmenopausal women and may be used as predictive markers of osteoporosis.
Collapse
Affiliation(s)
- Somali Sanyal
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh, 226018, India.
| | - Swati Rajput
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sreyanko Sadhukhan
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Singh Rajender
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
| | - Ambrish Mithal
- Institute of Endocrinology and Diabetes, Max Healthcare, Institutional Area, Press Enclave Road, Saket, New Delhi, India.
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Pan Y, Lu W, Meng W, Liao W, Hu A, Wu B, Xiong F. A novel single-base deletion of the RUNX Family Transcription Factor 2 gene associated with cleidocranial dysplasia. Eur J Oral Sci 2023; 131:e12910. [PMID: 36598486 DOI: 10.1111/eos.12910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023]
Abstract
Cleidocranial dysplasia (CCD) is a rare, autosomal dominant hereditary disorder characterized by skeletal malformations and dental abnormalities. The purpose of this study was to explore the functional role of a novel mutation in the pathogenesis of CCD. Genomic DNA was extracted from peripheral blood mononuclear cells collected from family members of a Chinese patient with CCD. An analysis of their RUNX Family Transcription Factor 2 (RUNX2) gene sequences was performed by PCR amplification and Sanger sequencing. The function of the mutant RUNX2 was studied by bioinformatics, real-time PCR, western blotting, and subcellular localization analysis. Sanger sequencing identified a novel single-base deletion (NM_001024630.4:c.132delG;NP_001019801.3: Val45Trpfs* 99) in the RUNX2 gene present in the Chinese patient with CCD. In vitro, functional studies showed altered protein localization and increased expression of mutant RUNX2 mRNA and mutant Runt-related transcription factor 2 (RUNX2). Luciferase reporter assay demonstrated that the novel RUNX2 mutations significantly increased the transactivation activity of RUNX2 on the osteocalcin gene promoter. In conclusion, we identified a patient with sporadic CCD carrying a novel deletion/frameshift mutation of the RUNX2 gene and performed screening and functional analyses to determine the cause of the CCD phenotype. This study provides new insights into the pathogenesis of CCD.3.
Collapse
Affiliation(s)
- Yuhua Pan
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Wanyu Lu
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Weidong Meng
- Department of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenxiao Liao
- Department of Oral Emergency, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Aiqin Hu
- Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Buling Wu
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, Guangdong, China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong, China.,Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Živković M, Stefanović N, Glišić B, Brajović G, Miličić B, Kostić M, Popović B. WNT10A and RUNX2 mutations associated with non-syndromic tooth agenesis. Eur J Oral Sci 2022; 130:e12896. [PMID: 36250548 DOI: 10.1111/eos.12896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/31/2022] [Indexed: 12/13/2022]
Abstract
The goal of this study was to examine the prevalence of WNT10A and RUNX2 mutations and assess their potential impact on the phenotype of non-syndromic tooth agenesis. The study included 30 participants with non-syndromic tooth agenesis, divided into hypodontia (n = 24) and oligodontia forms (n = 6), and 42 unaffected family members. Genomic DNA from buccal epithelial cells was used for polymerase chain reaction amplification of functionally important exons of the WNT10A and RUNX2 genes. Direct sequencing reactions were performed to confirm the presence of mutations. The trend of increasing prevalence of WNT10A mutations and a slight increase in the prevalence of RUNX2 mutations were revealed in tooth agenesis cases compared to unaffected family members. There was a higher prevalence of hypodontia than oligodontia, increased frequency of females over males with missing teeth, and a wide phenotypic variability was observed in individuals and families analyzed. The common missense mutations (p.Phe228Ile, p.Arg113Cys, p.Asp217Asn, and p.Gly165Arg) and c.114-56T>C in the WNT10A gene and in-frame-deletion/insertions (11A, 24Q, 30Q), synonymous variant c.240G>A, and 424-33dupC in the RUNX2 gene were identified. These findings highlight an important role of WNT10A and RUNX2 mutations in the genetic etiology of non-syndromic tooth agenesis.
Collapse
Affiliation(s)
- Marija Živković
- Department of Orthodontics, University of Belgrade, School of Dental Medicine, Belgrade, Serbia
| | - Neda Stefanović
- Department of Orthodontics, University of Belgrade, School of Dental Medicine, Belgrade, Serbia
| | - Branislav Glišić
- Department of Orthodontics, University of Belgrade, School of Dental Medicine, Belgrade, Serbia
| | - Gavrilo Brajović
- Department of Physiology, University of Belgrade, School of Dental Medicine, Belgrade, Serbia
| | - Biljana Miličić
- Department for Medical Statistics and Informatics, University of Belgrade, School of Dental Medicine, Belgrade, Serbia
| | - Marija Kostić
- Faculty of Hotel Management and Tourism, University of Kragujevac, Vrnjacka Banja, Serbia
| | - Branka Popović
- Department of Human Genetics, University of Belgrade, School of Dental Medicine, Belgrade, Serbia
| |
Collapse
|
5
|
Study of selected genes of Wnt signaling pathway in relation to the parameters in the bone tissue of the laying hens. Saudi J Biol Sci 2021; 29:2526-2531. [PMID: 35531234 PMCID: PMC9072936 DOI: 10.1016/j.sjbs.2021.12.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 11/02/2022] Open
Abstract
The Wnt signaling pathway plays a critical role in almost all aspects of skeletal development and homeostasis. Many studies suggest the importance of this signaling pathway in connection with bone metabolism through many skeletal disorders caused by mutations in Wnt signaling genes. The knowledge gained through targeting this pathway is of great value for skeletal health and diseases, for example of increased bone mass in the case of osteoporosis. Our objective was to focus on the detection of single nucleotide polymorphisms and investigate the associations between possible polymorphisms in selected genes that are part of those signaling pathways and parameters of bones in hens of ISA Brown hybrids (bone breaking strength, length, width, and bone mass). Different regions of the GPR177, ESR1 and RUNX2 genes were studied, using PCR and sequencing, in a total of forty-eight samples for each marker. Thirteen polymorphisms have been discovered in selected regions of studied genes, whereas these polymorphisms were only within the GPR177 gene. Eight of these polymorphisms were synonymous and five were in the intron. The tested regions of the ESR1 and RUNX2 genes were monomorphic. The only statistically significant difference was found within the GPR177 gene (exon 2) and the bone length parameter, in the c.443 + 86G > A polymorphism. However, this polymorphism was found in the intron, and no other one was found within the selected regions to show associations with the observed bone parameters.
Collapse
|
6
|
Pérez-Campo FM, Santurtún A, García-Ibarbia C, Pascual MA, Valero C, Garcés C, Sañudo C, Zarrabeitia MT, Riancho JA. Osterix and RUNX2 are Transcriptional Regulators of Sclerostin in Human Bone. Calcif Tissue Int 2016; 99:302-309. [PMID: 27154028 DOI: 10.1007/s00223-016-0144-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/15/2016] [Indexed: 10/21/2022]
Abstract
Sclerostin, encoded by the SOST gene, works as an inhibitor of the Wnt pathway and therefore is an important regulator of bone homeostasis. Due to its potent action as an inhibitor of bone formation, blocking sclerostin activity is the purpose of recently developed anti-osteoporotic treatments. Two bone-specific transcription factors, RUNX2 and OSX, have been shown to interact and co-ordinately regulate the expression of bone-specific genes. Although it has been recently shown that sclerostin is targeted by OSX in mice, there is currently no information of whether this is also the case in human cells. We have identified SP-protein family and AML1 consensus binding sequences at the human SOST promoter and have shown that OSX, together with RUNX2, binds to a specific region close to the transcription start site. Furthermore, we show that OSX and RUNX2 activate SOST expression in a co-ordinated manner in vitro and that SOST expression levels show a significant positive correlation with OSX/RUNX2 expression levels in human bone. We also confirmed previous results showing an association of several SOST/RUNX2 polymorphisms with bone mineral density.
Collapse
Affiliation(s)
- Flor M Pérez-Campo
- Faculty of Medicine Department of Molecular Biology, University of Cantabria, Santander, Spain
| | - Ana Santurtún
- Unit of Legal Medicine, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Carmen García-Ibarbia
- Department of Internal Medicine, Hospital U. Marqués de Valdecilla-IDIVAL, University of Cantabria, Avda. Valdecilla S/N, 39008, Santander, Spain
| | - María A Pascual
- Service of Traumatology and Orthopedic Surgery, Hospital U. Marqués de Valdecilla, University of Cantabria, Santander, Spain
| | - Carmen Valero
- Department of Internal Medicine, Hospital U. Marqués de Valdecilla-IDIVAL, University of Cantabria, Avda. Valdecilla S/N, 39008, Santander, Spain
| | - Carlos Garcés
- Service of Traumatology and Orthopedic Surgery, Hospital U. Marqués de Valdecilla, University of Cantabria, Santander, Spain
| | - Carolina Sañudo
- Department of Internal Medicine, Hospital U. Marqués de Valdecilla-IDIVAL, University of Cantabria, Avda. Valdecilla S/N, 39008, Santander, Spain
| | - María T Zarrabeitia
- Unit of Legal Medicine, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - José A Riancho
- Department of Internal Medicine, Hospital U. Marqués de Valdecilla-IDIVAL, University of Cantabria, Avda. Valdecilla S/N, 39008, Santander, Spain.
| |
Collapse
|
7
|
Panach L, Pineda B, Mifsut D, Tarín JJ, Cano A, García-Pérez MÁ. The role of CD40 and CD40L in bone mineral density and in osteoporosis risk: A genetic and functional study. Bone 2016; 83:94-103. [PMID: 26545336 DOI: 10.1016/j.bone.2015.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/02/2015] [Accepted: 11/02/2015] [Indexed: 01/19/2023]
Abstract
Compelling data are revealing that the CD40/CD40L system is involved in bone metabolism. Furthermore, we have previously demonstrated that polymorphisms in both genes are associated with bone phenotypes. The aim of this study is to further characterize this association and to identify the causal functional mechanism. We conducted an association study of BMD with 15 SNPs in CD40/CD40L genes in a population of 779 women. In addition, we assessed the functionality of this association through the study of the allele-dependent expression of CD40 and CD40L in peripheral blood leukocytes (PBLs) and in human osteoblasts (OBs) obtained from bone explants by qPCR and by sequencing. When an allelic imbalance (AI) was detected, studies on allele-dependent in vitro transcription rate and on CpG methylation in the gene promoter were also performed. Our results confirm the genetic association between SNP rs116535 (T>C) of CD40L gene with LS-BMD. Regarding CD40 gene, two SNPs showed nominal P-values<0.05 for FN- and LS-BMD (Z-scores), although the association was not significant after correcting for multiple testing. Homozygous TT women for SNP rs1883832 (C>T) of CD40 gene showed a trend to have lower levels of OPG (Q-value=0.059), especially when women of BMD-quartile ends were selected (P<0.05). Regarding functionality, we detected an AI for rs1883832 with the C allele the most expressed in OBs and in PBLs. Since the rs116535 of CD40L gene did not show AI, it was not further analyzed. Finally, we described a differential methylation of CpGs in the CD40 promoter among women of high in comparison to low BMD. Our results suggest that the CD40/CD40L system plays a role in regulating BMD. Effectively, our data suggest that a decreased production of OPG could be the cause of the lower BMD observed in TT women for rs1883832 of the CD40 gene and that the degree of methylation of CpGs in the CD40 promoter could contribute to the acquisition of BMD. One possibility that deserves further study is whether the degree of methylation of the CD40 gene affects the level of CD40 expression and, consequently, the level of OPG.
Collapse
Affiliation(s)
- Layla Panach
- Research Foundation, Institute of Health Research INCLIVA, 46010 Valencia, Spain
| | - Begoña Pineda
- Research Foundation, Institute of Health Research INCLIVA, 46010 Valencia, Spain
| | - Damián Mifsut
- Orthopedic Surgery and Traumatology, Clinic Hospital, Institute of Health Research INCLIVA, 46010 Valencia, Spain
| | - Juan J Tarín
- Department of Functional Biology and Physical Anthropology, University of Valencia, 46100 Burjassot, Spain
| | - Antonio Cano
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain
| | - Miguel Ángel García-Pérez
- Research Foundation, Institute of Health Research INCLIVA, 46010 Valencia, Spain; Department of Genetics, University of Valencia, 46100 Burjassot, Spain.
| |
Collapse
|
8
|
Mastushita M, Kitoh H, Subasioglu A, Kurt Colak F, Dundar M, Mishima K, Nishida Y, Ishiguro N. A Glutamine Repeat Variant of the RUNX2 Gene Causes Cleidocranial Dysplasia. Mol Syndromol 2015; 6:50-3. [PMID: 25852448 DOI: 10.1159/000370337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2014] [Indexed: 11/19/2022] Open
Abstract
Cleidocranial dysplasia (CCD), an autosomal dominant skeletal dysplasia characterized by hypoplastic clavicles and delayed closure of the cranial sutures, is caused by mutations of the runt-related transcription factor 2 (RUNX2) gene. The RUNX2 gene consists of a glutamine and alanine repeat domain (Q/A domain, 23Q/17A), a DNA-binding Runt domain and a proline/serine/threonine-rich domain. We report on a familial case of CCD with a novel mutation within the Q/A domain of the RUNX2 gene, which is an insertion in exon 1 (p.Q71_E72insQQQQ) representing the Q-repeat variant (27Q/17A). Functional analysis of the 27Q variant revealed abolished transactivation capacity of the mutated RUNX2 protein. This is the first case report that demonstrated a glutamine repeat variant of the RUNX2 gene causes CCD.
Collapse
Affiliation(s)
- Masaki Mastushita
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Kitoh
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Asli Subasioglu
- Department of Medical Genetics, Izmir Katip Celebi University Ataturk Training and Research Hospital, Izmir, Turkey
| | - Fatma Kurt Colak
- Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| | - Munis Dundar
- Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| | - Kenichi Mishima
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Nishida
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Ishiguro
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
9
|
Panach L, Mifsut D, Tarín JJ, Cano A, García-Pérez MÁ. Replication study of three functional polymorphisms associated with bone mineral density in a cohort of Spanish women. J Bone Miner Metab 2014; 32:691-8. [PMID: 24337955 DOI: 10.1007/s00774-013-0539-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 11/04/2013] [Indexed: 10/25/2022]
Abstract
Gene candidate and genome-wide association studies have revealed tens of loci of susceptibility for osteoporosis. Some limitations such as sample size, use of confounding variables, and control for multiple testing and for population stratification, however, represent common problems in these studies that make replication in independent cohorts desirable and even necessary. The main objective of the present study is to replicate previous data on three functional polymorphisms in a cohort of Spanish women. To that end, we performed an association study of three functional polymorphisms previously associated with bone phenotypes in the LRP5, TNFRSF11B, and FGFBP1 genes with low bone mineral density (BMD) in a cohort of 721 Spanish women, most of them postmenopausal. We detected a strong significant association, even when correcting for multiple comparisons, for polymorphism rs312009 in the LRP5 gene with low BMD at the lumbar-spine site. These were women with the CC genotype, which showed the worst bone parameters. Moreover, these women had a higher risk of osteoporosis (adjusted odds ratio 2.82, P = 0.001) than women with the TT/TC genotype. This association seems to be caused because the rs312009 single nucleotide polymorphism (SNP) is located at a binding site for the transcription factor RUNX2 at the 5' region of the LRP5 gene, and the T allele seems to be a better transcriber than the C allele. Regarding the other two SNPs, only the rs4876869 SNP in the TNFRSF11B gene showed a suggestive trend for both skeletal sites. These results underscore the significance of the LRP5 gene in bone metabolism and emphasize the significance of the replication of previous results in independent cohorts.
Collapse
Affiliation(s)
- Layla Panach
- Research Foundation, Institute of Health Research INCLIVA, Valencia, Spain
| | | | | | | | | |
Collapse
|
10
|
Pineda B, Serna E, Laguna-Fernández A, Noguera I, Panach L, Hermenegildo C, Tarín JJ, Cano A, García-Pérez MÁ. Gene expression profile induced by ovariectomy in bone marrow of mice: a functional approach to identify new candidate genes associated to osteoporosis risk in women. Bone 2014; 65:33-41. [PMID: 24815918 DOI: 10.1016/j.bone.2014.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 04/16/2014] [Accepted: 05/01/2014] [Indexed: 01/24/2023]
Abstract
Osteoporosis is a multifactorial skeletal pathology with a main genetic component. To date, however, the majority of genes associated with this pathology remain unknown since genes cataloged to date only explain a part of the heritability of bone phenotypes. In the present study, we have used a genome-wide gene expression approach by means of microarrays to identify new candidate genes involved in the physiopathology of osteoporosis, using as a model the ovariectomized (OVX) mice by comparing global bone marrow gene expression of the OVX mice with those of SHAM operated mice. One hundred and eighty transcripts were found to be differentially expressed between groups. The analysis showed 23 significant regulatory networks, of which the top five canonical pathways included B-cell development, primary immunodeficiency signaling, PI3K signaling in B-cells, phospholipase C signaling, and FcgRIIB signaling in B-cells. Twelve differentially expressed genes were validated by MALDI-TOF mass spectrometry with good reproducibility. Finally, the association to bone phenotypes of SNPs in genes whose expression was increased (IL7R and CD79A) or decreased (GPX3 and IRAK3) by OVX in mice was analyzed in a cohort of 706 postmenopausal women. We detected an association of a SNP in a gene involved in the detoxification of free radicals like glutathione peroxidase 3 (GPX3) with femoral neck BMD (rs8177447, P=0.043) and two SNPs in the Ig-alpha protein of the B-cell antigen component gene (CD79A) with lumbar spine BMD (rs3810153 and rs1428922, P=0.016 and P=0.001, respectively). These results reinforce the role of antioxidant pathways and of B-cells in bone metabolism. Furthermore, it shows that a genome-wide gene expression approach in animal models is a useful method for detecting genes associated to BMD and osteoporosis risk in humans.
Collapse
Affiliation(s)
- Begoña Pineda
- Research Foundation, Institute of Health Research INCLIVA, Valencia, Spain
| | - Eva Serna
- Research Unit - INCLIVA, Faculty of Medicine, University of Valencia, Spain
| | | | - Inmaculada Noguera
- Research Unit - INCLIVA, Faculty of Medicine, University of Valencia, Spain
| | - Layla Panach
- Research Foundation, Institute of Health Research INCLIVA, Valencia, Spain
| | - Carlos Hermenegildo
- Research Foundation, Institute of Health Research INCLIVA, Valencia, Spain; Department of Physiology, University of Valencia, Spain
| | - Juan J Tarín
- Department of Functional Biology and Physical Anthropology, University of Valencia, Spain
| | - Antonio Cano
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Spain
| | - Miguel Ángel García-Pérez
- Research Foundation, Institute of Health Research INCLIVA, Valencia, Spain; Department of Genetics, University of Valencia, Spain.
| |
Collapse
|
11
|
Auerkari EI, Suryandari DA, Umami SS, Kusdhany LS, Siregar TWA, Rahardjo TBW, Talbot C, Hogervorst E. Gene promoter polymorphism of RUNX2 and risk of osteoporosis in postmenopausal Indonesian women. SAGE Open Med 2014; 2:2050312114531571. [PMID: 26770724 PMCID: PMC4607188 DOI: 10.1177/2050312114531571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/23/2014] [Indexed: 12/13/2022] Open
Abstract
Objectives: Osteoporosis is a metabolic bone disease of reduced bone mass density (BMD) and elevated risk of fracture due to an imbalance in bone formation and resorption. The risk and incidence of osteoporosis increase towards advanced age, particularly in postmenopausal women, and the risk is known to be affected by the variation in the expression of the associated regulatory genes. This work aimed to clarify the impact of variation in RUNX2 (runt domain transcription factor 2), which is an osteoblast-specific transcription factor that normally stimulates bone formation and osteoblast differentiation, regarding single-nucleotide polymorphism within RUNX2 promoter (P1) and risk of osteoporosis in postmenopausal Indonesian women. Methods: Using DNA sampling from blood, the variation at the single-nucleotide polymorphism (-330, G→T, rs59983488) at the RUNX2 P1 promoter was investigated using polymerase chain reaction–restriction fragment length polymorphism for 180 consenting postmenopausal Indonesian women. The subjects were examined for bone mass density and classification to normal and those with osteopenia or osteoporosis by T-scoring with dual-energy X-ray absorptiometry. Chi-square testing and logistic regression were mainly used for statistical assessment. Results: The results showed a general trend with increased risk of osteoporosis associated with the genotype TT (mutant type) and the corresponding T allele of the tested polymorphism of RUNX2 promoter P1. The trend was, however, not significant in multivariate testing adjusted for age and time after menopause. Conclusion: To confirm the potential risk with TT genotype would require testing of a much larger sample of subjects. As the tested single-nucleotide polymorphism only represents one of the relevant candidate locations of RUNX2, the results are taken nevertheless to suggest an impact by overall RUNX2 variation in the risk of osteoporosis in Indonesian postmenopausal women.
Collapse
Affiliation(s)
- Elza I Auerkari
- Department of Oral Biology, Faculty of Dentistry, University of Indonesia, Jakarta, Indonesia; Centre for Ageing Studies, University of Indonesia, Jakarta, Indonesia
| | - Dwi A Suryandari
- Department of Medical Biology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Sri S Umami
- Department of Medical Biology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Lindawati S Kusdhany
- Centre for Ageing Studies, University of Indonesia, Jakarta, Indonesia; Department of Prosthodontics, Faculty of Dentistry, University of Indonesia, Jakarta, Indonesia
| | - Tut Wuri A Siregar
- Department of Oral Biology, Faculty of Dentistry, University of Indonesia, Jakarta, Indonesia
| | - Tri Budi W Rahardjo
- Centre for Ageing Studies, University of Indonesia, Jakarta, Indonesia; Department of Prosthodontics, Faculty of Dentistry, University of Indonesia, Jakarta, Indonesia
| | | | - Eef Hogervorst
- Department of Human Life Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
12
|
Morrison NA, Stephens AS, Osato M, Pasco JA, Fozzard N, Stein GS, Polly P, Griffiths LR, Nicholson GC. Polyalanine repeat polymorphism in RUNX2 is associated with site-specific fracture in post-menopausal females. PLoS One 2013; 8:e72740. [PMID: 24086263 PMCID: PMC3781152 DOI: 10.1371/journal.pone.0072740] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 07/12/2013] [Indexed: 12/29/2022] Open
Abstract
Runt related transcription factor 2 (RUNX2) is a key regulator of osteoblast differentiation. Several variations within the RUNX2 gene have been found to be associated with significant changes in BMD, which is a major risk factor for fracture. In this study we report that an 18 bp deletion within the polyalanine tract (17A>11A) of RUNX2 is significantly associated with fracture. Carriers of the 11A allele were found to be nearly twice as likely to have sustained fracture. Within the fracture category, there was a significant tendency of 11A carriers to present with fractures of distal radius and bones of intramembranous origin compared to bones of endochondral origin (p = 0.0001). In a population of random subjects, the 11A allele was associated with decreased levels of serum collagen cross links (CTx, p = 0.01), suggesting decreased bone turnover. The transactivation function of the 11A allele showed a minor quantitative decrease. Interestingly, we found no effect of the 11A allele on BMD at multiple skeletal sites. These findings suggest that the 11A allele is a biologically relevant polymorphism that influences serum CTx and confers enhanced fracture risk in a site-selective manner related to intramembranous bone ossification.
Collapse
Affiliation(s)
- Nigel A. Morrison
- School of Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
- * E-mail:
| | | | - Motomi Osato
- Centre for Translational Medicine, Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Julie A. Pasco
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Nicolette Fozzard
- School of Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Gary S. Stein
- Vermont Cancer Center for Basic and Translational Research, University of Vermont, Burlington, Vermont, United States of America
| | - Patsie Polly
- Department of Pathology and Inflammation and Infection Research Centre, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Lyn R. Griffiths
- School of Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Geoff C. Nicholson
- Rural Clinical School, School of Medicine, The University of Queensland, Toowoomba, Queensland, Australia
| |
Collapse
|
13
|
Zanatta M, Valenti MT, Donatelli L, Zucal C, Dalle Carbonare L. Runx-2 gene expression is associated with age-related changes of bone mineral density in the healthy young-adult population. J Bone Miner Metab 2012; 30:706-14. [PMID: 22903460 DOI: 10.1007/s00774-012-0373-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 06/21/2012] [Indexed: 01/06/2023]
Abstract
Bone mineral density (BMD) and peak bone mass (PBM) are important determinants of skeletal resistance. The development of bone densitometry improved the possibility of studying BMD and the influence of genetic and environmental factors on bone. Heredity factors are important for BMD, and Runx-2 is accepted as a regulator of osteoblasts and bone formation. The aim of our study was to evaluate the behavior of Runx-2 during skeletal maturity in the healthy young-adult population. We analyzed spine and hip BMD in 153 volunteers, 98 women and 55 men, using dual-energy X-ray absorptiometry. In a subgroup of these volunteers, a sample of peripheral blood was taken to perform gene expression analysis of Runx-2 both in peripheral mesenchymal stem cells (MSCs; 28 subjects) and in peripheral mononuclear cells (PBMCs; 140 subjects). In our work BMD was comparable in both genders after puberty, then became higher in men than women during the third and fourth decades. PBM was achieved in the third decade in women and in the fourth in men. More interestingly, Runx-2 gene expression highly correlated with BMD in both genders. MSCs and PBMCs showed the same gene expression profile of Runx-2. In conclusion, PBM is reached earlier in females, BMD becomes higher in males later in life, and BMD and PBM are strictly associated with Runx-2. In addition, PBMC should be considered an important source for gene expression analysis in bone diseases.
Collapse
Affiliation(s)
- Mirko Zanatta
- Department of Medicine, Clinic of Internal Medicine, Section D, University of Verona, Piazzale Scuro, Verona, Italy
| | | | | | | | | |
Collapse
|
14
|
Morrison NA, Stephens AA, Osato M, Polly P, Tan TC, Yamashita N, Doecke JD, Pasco J, Fozzard N, Jones G, Ralston SH, Sambrook PN, Prince RL, Nicholson GC. Glutamine repeat variants in human RUNX2 associated with decreased femoral neck BMD, broadband ultrasound attenuation and target gene transactivation. PLoS One 2012; 7:e42617. [PMID: 22912713 PMCID: PMC3418257 DOI: 10.1371/journal.pone.0042617] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/09/2012] [Indexed: 12/28/2022] Open
Abstract
RUNX2 is an essential transcription factor required for skeletal development and cartilage formation. Haploinsufficiency of RUNX2 leads to cleidocranial displaysia (CCD) a skeletal disorder characterised by gross dysgenesis of bones particularly those derived from intramembranous bone formation. A notable feature of the RUNX2 protein is the polyglutamine and polyalanine (23Q/17A) domain coded by a repeat sequence. Since none of the known mutations causing CCD characterised to date map in the glutamine repeat region, we hypothesised that Q-repeat mutations may be related to a more subtle bone phenotype. We screened subjects derived from four normal populations for Q-repeat variants. A total of 22 subjects were identified who were heterozygous for a wild type allele and a Q-repeat variant allele: (15Q, 16Q, 18Q and 30Q). Although not every subject had data for all measures, Q-repeat variants had a significant deficit in BMD with an average decrease of 0.7SD measured over 12 BMD-related parameters (p = 0.005). Femoral neck BMD was measured in all subjects (-0.6SD, p = 0.0007). The transactivation function of RUNX2 was determined for 16Q and 30Q alleles using a reporter gene assay. 16Q and 30Q alleles displayed significantly lower transactivation function compared to wild type (23Q). Our analysis has identified novel Q-repeat mutations that occur at a collective frequency of about 0.4%. These mutations significantly alter BMD and display impaired transactivation function, introducing a new class of functionally relevant RUNX2 mutants.
Collapse
Affiliation(s)
- Nigel A Morrison
- School of Medical Sciences, Griffith University, Southport, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|