1
|
Chu A, Zirngibl RA, Manolson MF. The V-ATPase a3 Subunit: Structure, Function and Therapeutic Potential of an Essential Biomolecule in Osteoclastic Bone Resorption. Int J Mol Sci 2021; 22:ijms22136934. [PMID: 34203247 PMCID: PMC8269383 DOI: 10.3390/ijms22136934] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022] Open
Abstract
This review focuses on one of the 16 proteins composing the V-ATPase complex responsible for resorbing bone: the a3 subunit. The rationale for focusing on this biomolecule is that mutations in this one protein account for over 50% of osteopetrosis cases, highlighting its critical role in bone physiology. Despite its essential role in bone remodeling and its involvement in bone diseases, little is known about the way in which this subunit is targeted and regulated within osteoclasts. To this end, this review is broadened to include the three other mammalian paralogues (a1, a2 and a4) and the two yeast orthologs (Vph1p and Stv1p). By examining the literature on all of the paralogues/orthologs of the V-ATPase a subunit, we hope to provide insight into the molecular mechanisms and future research directions specific to a3. This review starts with an overview on bone, highlighting the role of V-ATPases in osteoclastic bone resorption. We then cover V-ATPases in other location/functions, highlighting the roles which the four mammalian a subunit paralogues might play in differential targeting and/or regulation. We review the ways in which the energy of ATP hydrolysis is converted into proton translocation, and go in depth into the diverse role of the a subunit, not only in proton translocation but also in lipid binding, cell signaling and human diseases. Finally, the therapeutic implication of targeting a3 specifically for bone diseases and cancer is discussed, with concluding remarks on future directions.
Collapse
|
2
|
Zirngibl RA, Wang A, Yao Y, Manolson MF, Krueger J, Dupuis L, Mendoza-Londono R, Voronov I. Novel c.G630A TCIRG1 mutation causes aberrant splicing resulting in an unusually mild form of autosomal recessive osteopetrosis. J Cell Biochem 2019; 120:17180-17193. [PMID: 31111556 DOI: 10.1002/jcb.28979] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/22/2022]
Abstract
Autosomal recessive osteopetrosis (ARO) is a severe genetic bone disease characterized by high bone density due to mutations that affect formation or function of osteoclasts. Mutations in the a3 subunit of the vacuolar-type H+ -ATPase (encoded by T-cell immune regulator 1 [TCIRG1]) are responsible for ~50% of all ARO cases. We identified a novel TCIRG1 (c.G630A) mutation responsible for an unusually mild form of the disease. To characterize this mutation, osteoclasts were differentiated using peripheral blood monocytes from the patient (c.G630A/c.G630A), male sibling (+/+), unaffected female sibling (+/c.G630A), and unaffected parent (+/c.G630A). Osteoclast formation, bone-resorbing function, TCIRG1 protein, and mRNA expression levels were assessed. The c.G630A mutation did not affect osteoclast differentiation; however, bone-resorbing function was decreased. Both TCIRG1 protein and full-length TCIRG1 mRNA expression levels were also diminished in the affected patient's sample. The c.G630A mutation replaces the last nucleotide of exon 6 and may cause splicing defects. We analyzed the TCIRG1 splicing pattern between exons 4 to 8 and detected deletions of exons 5, 6, 7, and 5-6 (ΔE56). These deletions were only observed in c.G630A/c.G630A and +/c.G630A samples, but not in +/+ controls. Among these deletions, only ΔE56 maintained the reading frame and was predicted to generate an 85 kDa protein. Exons 5-6 encode an uncharacterized portion of the cytoplasmic N-terminal domain of a3, a domain not involved in proton translocation. To investigate the effect of ΔE56 on V-ATPase function, we transformed yeast with plasmids carrying full-length or truncated Vph1p, the yeast ortholog of a3. Both proteins were expressed; however, ΔE56-Vph1p transformed yeast failed to grow on Zn2+ -containing plates, a growth assay dependent on V-ATPase-mediated vacuolar acidification. In conclusion, our results show that the ΔE56 truncated protein is not functional, suggesting that the mild ARO phenotype observed in the patient is likely due to the residual full-length protein expression.
Collapse
Affiliation(s)
- Ralph A Zirngibl
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Wang
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Yeqi Yao
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Morris F Manolson
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Joerg Krueger
- Division of Hematology/Oncology and Blood and Marrow Transplant, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lucie Dupuis
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Roberto Mendoza-Londono
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Irina Voronov
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
TCIRG1 and SNX10 gene mutations in the patients with autosomal recessive osteopetrosis. Gene 2019; 702:83-88. [PMID: 30898715 DOI: 10.1016/j.gene.2019.02.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/08/2019] [Accepted: 02/25/2019] [Indexed: 11/21/2022]
Abstract
Autosomal recessive osteopetrosis (ARO) is a rare genetic bone disease characterized by dense and fragile bone, caused by a defect in osteoclasts responsible for the bone destruction. In this study, we aimed to investigate the mutations in TCIRG1 and SNX10 that are responsible for 50% and 4% of the cases, respectively. All amplicons were sequenced by Sanger sequencing following PCR amplification. As a result, six different mutations of the TCIRG1 gene were found in five of the twelve unrelated cases. These include two novel mutations, namely c.630 + 1G > T mutation and c.1778_1779delTG mutation of the gene which are identified as homozygous. A compound heterozygosity of known mutations c.649_674del26 and c.1372G > A and homozygous presence of the known c.2235 + 1G > A mutation were also observed in different patients. In addition, as a result of the prenatal testing in a family with osteopetrosis infant, the c.1674-1G > A mutation was detected as homozygous for the fetus. In TCIRG1, c.166C > T change, which is indicated as likely benign according to ClinVar database, was heterozygous. Several known polymorphisms; c.117 + 83 T > C, c.417 + 11A > G and c.714-19C > A in TCIRG1 gene; c.24 + 36 T > A and c.112-84G > A in SNX10 gene were also detected. In conclusion, our study revealed that five of the twelve cases carry at least one mutation of TCIRG1 gene. Further studies with more patients and other genes would help better understanding of genetic etiology of the disease.
Collapse
|
4
|
Ajmal M, Mir A, Wahid S, Khor CC, Foo JN, Siddiqi S, Kauser M, Malik SA, Nasir M. Identification and in silico characterization of a novel p.P208PfsX1 mutation in V-ATPase a3 subunit associated with autosomal recessive osteopetrosis in a Pakistani family. BMC MEDICAL GENETICS 2017; 18:148. [PMID: 29237407 PMCID: PMC5729456 DOI: 10.1186/s12881-017-0506-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/29/2017] [Indexed: 11/15/2022]
Abstract
Background Osteopetrosis is a rare inherited bone disorder mainly described as an increased bone density caused by defective osteoclastic bone resorption. To date, genetic variants of eleven genes have been reported so far to be associated with different types of osteopetrosis. However, malignant infantile osteopetrosis, a lethal form of the disease, is mostly (50%) caused by mutation(s) in TCIRG1 gene. In this study, we investigated a consanguineous Pakistani family clinically and genetically to elucidate underlying molecular basis of the infantile osteopetrosis. Methods DNA samples from five family members were subjected to SNP-array based whole genome homozygosity mapping. Data was analyzed and potentially pathogenic mutation was identified by Sanger sequencing of two affected as well as three phenotypically healthy individuals in the family. The significance of identified pathogenic variation and its impact on protein structure and function was studied using various bioinformatics tools. Results DNA samples from five family members were subjected to genome-wide SNP array genotyping and homozygosity mapping which identified ~4 Mb region on chr11 harboring the TCIRG1 gene. Sanger sequencing unveiled a novel homozygous deletion c. 624delC in exon 6 of the TCIRG1 gene encodes a3 subunit of V-ATPase complex. The identified deletion resulted in a frame shift producing a truncated protein of 208 aa. In silico analysis of premature termination of the a3 subunit of V-ATPase complex revealed deleterious effects on the protein structure, predicting impaired or complete loss of V-ATPase function causing infantile osteopetrosis. Conclusions Since a3 subunit of V-ATPase complex plays a crucial role in bone resorption process, structurally abnormal a3 subunit might have adversely affected bone resorption process, leading to infantile osteopetrosis in Pakistani family. Therefore, the present study not only expands the genotypic spectrum of osteopetrosis but also improve understandings of the role of V-ATPase a3 subunit in bone resorption process. Moreover, our findings should help in genetic counseling and provide further insight into the disease pathogenesis and potential targeted therapy. Electronic supplementary material The online version of this article (10.1186/s12881-017-0506-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Muhammad Ajmal
- Institute of Biomedical and Genetic Engineering, 24-Mauve area, G-9/1, Islamabad, 44000, Pakistan
| | - Asif Mir
- Department of Biotechnology, International Islamic university, Islamabad, Pakistan
| | - Sughra Wahid
- KRL General Hospital, Pediatric Department 24-Mauve area, G-9/1, Islamabad, 44000, Pakistan
| | - Chiea Chuen Khor
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jia Nee Foo
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Saima Siddiqi
- Institute of Biomedical and Genetic Engineering, 24-Mauve area, G-9/1, Islamabad, 44000, Pakistan
| | - Mehran Kauser
- Institute of Biomedical and Genetic Engineering, 24-Mauve area, G-9/1, Islamabad, 44000, Pakistan
| | - Salman Akbar Malik
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, 44000, Pakistan
| | - Muhammad Nasir
- Institute of Biomedical and Genetic Engineering, 24-Mauve area, G-9/1, Islamabad, 44000, Pakistan.
| |
Collapse
|
5
|
Zhang XY, He JW, Fu WZ, Wang C, Zhang ZL. Novel mutations of TCIRG1 cause a malignant and mild phenotype of autosomal recessive osteopetrosis (ARO) in four Chinese families. Acta Pharmacol Sin 2017; 38:1456-1465. [PMID: 28816234 DOI: 10.1038/aps.2017.108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/11/2017] [Indexed: 01/04/2023]
Abstract
Human autosomal recessive osteopetrosis (ARO), also known as infantile malignant osteopetrosis, is a rare genetic bone disorder that often causes death. Mutations in T-cell immune regulator 1 (TCIRG1) are a frequent cause of human ARO. Six additional genes (TNFSF11, TNFRSF11A, CLCN7, OSTM1, SNX10, PLEKHM1) were also found to be associated with human ARO. In order to expand the mutation spectrum and clinical diversity for a better understanding of the ARO phenotype and to further investigate the clinical characteristics of benign subjects with ARO, we here report five individuals with ARO from four unrelated Chinese families. X-ray examination was conducted and bone turnover markers were assayed. The gene of T-cell immune regulator 1 (TCIRG1) was screened and analyzed. Monocyte-induced osteoclasts were prepared and their resorption ability was studied in vitro. We identified five novel mutations (c.66delC, c.1020+1_1020+5dup, c.2181C>A, c.2236+6T>G, c.692delA) in these patients. Four patients displayed a malignant phenotype, three of them died, and one who received bone marrow transplantation survived. The remaining one, a 24-year-old male from a consanguineous family, was diagnosed based on radiological findings but presented no neurological or hematological defects. He was homozygous for c.2236+6T>G in intron 18; this mutation influenced the splicing process. An in vitro functional study of this novel splicing defect showed no resorption pits on dentine slices. TCIRG1-dependent osteopetrosis with a mild clinical course was observed for the first time in Chinese population. The present findings add to the wide range of phenotypes of Chinese patients with TCIRG1-dependent ARO and enrich the database of TCIRG1 mutations.
Collapse
|
6
|
Sobacchi C, Pangrazio A, Lopez AGM, Gomez DPV, Caldana ME, Susani L, Vezzoni P, Villa A. As little as needed: the extraordinary case of a mild recessive osteopetrosis owing to a novel splicing hypomorphic mutation in the TCIRG1 gene. J Bone Miner Res 2014; 29:1646-50. [PMID: 24535816 PMCID: PMC4258090 DOI: 10.1002/jbmr.2203] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/23/2014] [Accepted: 02/09/2014] [Indexed: 01/22/2023]
Abstract
Mutations in the TCIRG1 gene, coding for a subunit of the osteoclast proton pump, are responsible for more than 50% of cases of human malignant autosomal recessive osteopetrosis (ARO), a rare inherited bone disease with increased bone density owing to a failure in bone resorption. A wide variety of mutations has been described, including missense, nonsense, small deletions/insertions, splice-site mutations, and large genomic deletions, all leading to a similar severe presentation. So far, to the best of our knowledge, no report of a mild phenotype owing to recessive TCIRG1 mutations is present neither in our series of more than 100 TCIRG1-dependent ARO patients nor in the literature. Here we describe an 8-year-old patient referred to us with a clinical diagnosis of ARO, based on radiological findings; of note, no neurological or hematological defects were present in this girl. Surprisingly, we identified a novel nucleotide change in intron 15 of the TCIRG1 gene at the homozygous state, leading to the production of multiple aberrant transcripts, but also, more importantly, of a limited amount of the normal transcript. Our results show that a low level of normal TCIRG1 protein can dampen the clinical presentation of TCIRG1-dependent ARO. On this basis, a small amount of protein might be sufficient to rescue, at least partially, the severe ARO phenotype, and this is particularly important when gene therapy approaches are considered. In addition, we would also recommend that the TCIRG1 gene be included in the molecular diagnosis of mild forms of human ARO.
Collapse
Affiliation(s)
- Cristina Sobacchi
- Unitá Operativa di Supporto (UOS)/Institute of Genetic and Biomedical Research (IRGB), Milan Unit, National Research Council (CNR), Milan, Italy; Humanitas Clinical and Research Center, Rozzano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Boyce RW, Varela A, Chouinard L, Bussiere JL, Chellman GJ, Ominsky MS, Pyrah IT. Infant cynomolgus monkeys exposed to denosumab in utero exhibit an osteoclast-poor osteopetrotic-like skeletal phenotype at birth and in the early postnatal period. Bone 2014; 64:314-25. [PMID: 24727159 DOI: 10.1016/j.bone.2014.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/14/2014] [Accepted: 04/01/2014] [Indexed: 01/14/2023]
Abstract
RANKL is a key regulator of bone resorption and osteoclastogenesis. Denosumab is a fully human IgG2 monoclonal antibody that inhibits bone resorption by binding and inhibiting the activity of RANKL. To determine the effects of denosumab on pre- and postnatal skeletal growth and development, subcutaneous injections of 0 (control) or 50 mg/kg/month denosumab were given to pregnant cynomolgus monkeys from approximately gestation day (GD) 20 until parturition (up to 6 doses). For up to 6 months postpartum (birth day [BD] 180/181), evaluation of the infants included skeletal radiographs, bone biomarkers, and oral examinations for assessment of tooth eruption. Infant bones were collected at necropsy for densitometry, biomechanical testing, and histopathologic evaluation from control and denosumab-exposed infants on BD1 (or within 2 weeks of birth) and BD181, and from infants that died or were euthanized moribund from BD5 to BD69. In all denosumab-exposed infants, biomarkers of bone resorption and formation were markedly decreased at BD1 and BD14 and slightly greater at BD91 vs. control, then similar to control values by BD181. Spontaneous long bone fractures were detected clinically or radiographically in 4 denosumab-exposed infants at BD28 and BD60, with evidence of radiographic healing at ≥BD60. In BD1 infants exposed to denosumab in utero, radiographic evaluations of the skeleton revealed decreased long bone length; a generalized increased radio-opacity of the axial and appendicular skeleton and bones at the base of the skull with decreased or absent marrow cavities, widened growth plates, flared/club-shaped metaphysis, altered jaw/skull shape, and reduced jaw length; and delayed development of secondary ossification centers. Densitometric evaluations in these infants demonstrated a marked increase in bone mineral density at trabecular sites, but cortical bone mineral density was decreased. Histologically, long bone cortices were attenuated and there was an absence of osteoclasts. Bones with active endochondral ossification consisted largely of a dense network of retained primary spongiosa with reduced marrow space consistent with an osteopetrotic phenotype. A minimal increase in growth plate thickness largely due to the expansion of the hypertrophic zone was present. Retained woven bone was observed in bones formed by intramembranous ossification, consistent with absence of bone remodeling. These changes in bone tissue composition and geometry were reflected in reduced biomechanical strength and material properties of bones from denosumab-exposed infants. Material property changes were characterized by increased tissue brittleness reflected in reductions in calculated material toughness at the femur diaphysis and lack of correlation between energy and bone mass at the vertebra; these changes were likely the basis for the increased skeletal fragility (fractures). Although tooth eruption was not impaired in denosumab-exposed infants, the reduced growth and increased bone density of the mandible resulted in dental abnormalities consisting of tooth malalignment and dental dysplasia. Radiographic changes at BD1 persisted at BD28, with evidence of resumption of bone resorption and remodeling observed in most infants at BD60 and/or BD90. In 2 infants euthanized on BD60 and BD69, there was histologic and radiographic evidence of subphyseal/metaphyseal bone resorption accompanied by multiple foci of ossification in growth plates that were markedly increased in thickness. In infants necropsied at BD181, where systemic exposure to denosumab had been below limits of quantitation for approximately 3months, there was largely full recovery from all bone-related changes observed earlier postpartum, including tissue brittleness. Persistent changes included dental dysplasia, decreased bone length, reduced cortical thickness, and decreased peak load and ultimate strength at the femur diaphysis. In conclusion, the skeletal and secondary dental effects observed in infant monkeys exposed in utero to denosumab are consistent with the anticipated pharmacological activity of denosumab as a monoclonal antibody against RANKL and inhibitor of osteoclastogenesis. The resulting inhibition of resorption impaired both bone modeling and remodeling during skeletal development and growth. The skeletal phenotype of these infant monkeys resembles human infants with osteoclast-poor osteopetrosis due to inactivating mutations of RANK or RANKL.
Collapse
Affiliation(s)
- Rogely W Boyce
- Department of Comparative Biology and Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | - Aurore Varela
- Charles River Preclinical Services-Montreal, 22022 Transcanadienne, Senneville, QC H9X 3R3, Canada.
| | - Luc Chouinard
- Charles River Preclinical Services-Montreal, 22022 Transcanadienne, Senneville, QC H9X 3R3, Canada.
| | - Jeanine L Bussiere
- Department of Comparative Biology and Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | - Gary J Chellman
- Charles River Preclinical Services-Nevada, 6995 Longley Lane, Reno, NV 89511, USA.
| | - Michael S Ominsky
- Department of Metabolic Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | - Ian T Pyrah
- Department of Comparative Biology and Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| |
Collapse
|
8
|
Bussiere JL, Pyrah I, Boyce R, Branstetter D, Loomis M, Andrews-Cleavenger D, Farman C, Elliott G, Chellman G. Reproductive toxicity of denosumab in cynomolgus monkeys. Reprod Toxicol 2013; 42:27-40. [PMID: 23886817 DOI: 10.1016/j.reprotox.2013.07.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/09/2013] [Accepted: 07/13/2013] [Indexed: 11/16/2022]
Abstract
Denosumab is a monoclonal antibody that inhibits bone resorption by targeting RANKL, an essential mediator of osteoclast formation, function, and survival. Reproductive toxicity of denosumab was assessed in cynomolgus monkeys in an embryofetal development study (dosing GD20-50) and a pre-postnatal toxicity study (dosing GD20-parturition). In the embryofetal toxicity study, denosumab did not elicit maternal toxicity, fetal harm or teratogenicity. In the pre-postnatal toxicity study, there were increased stillbirths, and one maternal death due to dystocia. There was no effect on maternal mammary gland histomorphology, lactation, or fetal growth. In infants exposed in utero, there was increased postnatal mortality, decreased body weight gain, and decreased growth/development. Denosumab-related effects in infants were present in bones and lymph nodes. There was full recovery at 6 months of age from most bone-related changes observed earlier postpartum. The effects observed in mothers and infants were consistent with the pharmacological action of denosumab.
Collapse
Affiliation(s)
- Jeanine L Bussiere
- Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Pangrazio A, Caldana ME, Lo Iacono N, Mantero S, Vezzoni P, Villa A, Sobacchi C. Autosomal recessive osteopetrosis: report of 41 novel mutations in the TCIRG1 gene and diagnostic implications. Osteoporos Int 2012; 23:2713-8. [PMID: 22231430 DOI: 10.1007/s00198-011-1878-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/09/2011] [Indexed: 12/24/2022]
Abstract
UNLABELLED Here we report 41 novel mutations in the TCIRG1 gene that is responsible for the disease in more than 50% of ARO patients. The characterisation of mutations in this gene might be useful in the process of drug design for osteoporosis treatment. INTRODUCTION Autosomal recessive osteopetrosis (ARO) is a genetically heterogeneous disorder due to reduced bone resorption by osteoclasts. In this process, a crucial role is played by the proton pump V-ATPase. Biallelic mutations in the TCIRG1 gene, encoding for the a3 subunit of this pump, are responsible for more than one half of ARO patients. METHODS Patients with a clinical diagnosis of ARO have been collected for 7 years and mutation analysis of the TCIRG1 gene was performed using direct DNA sequencing of PCR-amplified exons according to both a standard protocol and a modified one. RESULTS We report here 41 novel mutations identified in 67 unpublished patients, all with biallelic mutations. In particular, we describe two novel large genomic deletions and two splice site mutations in the 5' UTR of the TCIRG1 gene, in patients previously classified as mono-allelic. CONCLUSIONS Our data highlights the importance of two large genomic deletions and mutations in the 5' UTR with respect to patient management and, more critically, to prenatal diagnosis. With the present work, we strongly contribute to the molecular dissection of TCIRG1-deficient ARO and identify several protein residues which are fundamental for proton pump function and could thus be the target of future drugs designed to inhibit osteoclast resorptive activity.
Collapse
Affiliation(s)
- A Pangrazio
- Milan Unit, Institute of Genetic and Biomedical Research (IRGB), National Research Council, 20138, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|