1
|
Zhang JQ, Takahashi A, Gu JY, Zhang X, Kyumoto-Nakamura Y, Kukita A, Uehara N, Hiura H, Yamaza T, Kukita T. In vitro and in vivo detection of tunneling nanotubes in normal and pathological osteoclastogenesis involving osteoclast fusion. J Transl Med 2021; 101:1571-1584. [PMID: 34537825 DOI: 10.1038/s41374-021-00656-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/09/2022] Open
Abstract
Osteoclasts are multinucleated cells formed through specific recognition and fusion of mononuclear osteoclast precursors derived from hematopoietic stem cells. Detailed cellular events concerning cell fusion in osteoclast differentiation remain ambiguous. Tunneling nanotubes (TNTs), actin-based membrane structures, play an important role in intercellular communication between cells. We have previously reported the presence of TNTs in the fusion process of osteoclastogenesis. Here we analyzed morphological details of TNTs using scanning electron microscopy. The osteoclast precursor cell line RAW-D was stimulated to form osteoclast-like cells, and morphological details in the appearance of TNTs were extensively analyzed. Osteoclast-like cells could be classified into three types; early osteoclast precursors, late osteoclast precursors, and multinucleated osteoclast-like cells based on the morphological characteristics. TNTs were frequently observed among these three types of cells. TNTs could be classified into thin, medium, and thick TNTs based on the diameter and length. The shapes of TNTs were dynamically changed from thin to thick. Among them, medium TNTs were often observed between two remote cells, in which side branches attached to the culture substrates and beaded bulge-like structures were often observed. Cell-cell interaction through TNTs contributed to cell migration and rapid transport of information between cells. TNTs were shown to be involved in cell-cell fusion between osteoclast precursors and multinucleated osteoclast-like cells, in which movement of membrane vesicles and nuclei was observed. Formation of TNTs was also confirmed in primary cultures of osteoclasts. Furthermore, we have successfully detected TNTs formed between osteoclasts observed in the bone destruction sites of arthritic rats. Thus, formation of TNTs may be important for the differentiation of osteoclasts both in vitro and in vivo. TNTs could be one target cellular structure for the regulation of osteoclast differentiation and function in bone diseases.
Collapse
Affiliation(s)
- Jing-Qi Zhang
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Akira Takahashi
- Department of Fixed Prosthodontics, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Jiong-Yan Gu
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Xiaoxu Zhang
- Department of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yukari Kyumoto-Nakamura
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Akiko Kukita
- Department of Research Center of Arthroplasty, Faculty of Medicine, Saga University, Saga, Japan
| | - Norihisa Uehara
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hidenobu Hiura
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Department of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takayoshi Yamaza
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Toshio Kukita
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
2
|
Chang YL, Hsieh CY, Yeh CY, Chang CH, Lin FH. Fabrication of Stromal Cell-Derived Factor-1 Contained in Gelatin/Hyaluronate Copolymer Mixed with Hydroxyapatite for Use in Traumatic Bone Defects. MICROMACHINES 2021; 12:822. [PMID: 34357232 PMCID: PMC8306626 DOI: 10.3390/mi12070822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022]
Abstract
Bone defects of orthopedic trauma remain a challenge in clinical practice. Regarding bone void fillers, besides the well-known osteoconductivity of most bone substitutes, osteoinductivity has also been gaining attention in recent years. It is known that stromal cell-derived factor-1 (SDF-1) can recruit mesenchymal stem cells (MSCs) in certain circumstances, which may also play an important role in bone regeneration. In this study, we fabricated a gelatin/hyaluronate (Gel/HA) copolymer mixed with hydroxyapatite (HAP) and SDF-1 to try and enhance bone regeneration in a bone defect model. After material characterization, these Gel/HA-HAP and Gel/HA-HAP-SDF-1 composites were tested for their biocompatibility and ability to recruit MSCs in vitro. A femoral condyle bone defect model of rats was used for in vivo studies. For the assessment of bone healing, micro-CT analysis, second harmonic generation (SHG) imaging, and histology studies were performed. As a result, the Gel/HA-HAP composites showed no systemic toxicity to rats. Gel/HA-HAP composite groups both showed better bone generation compared with the control group in an animal study, and the composite with the SDF-1 group even showed a trend of faster bone growth compared with the composite without SDF-1 group. In conclusion, in the management of traumatic bone defects, Gel/HA-HAP-SDF-1 composites can be a feasible material for use as bone void fillers.
Collapse
Affiliation(s)
- Yun-Liang Chang
- Department of Biomedical Engineering, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei City 10051, Taiwan; (Y.-L.C.); (C.-Y.H.)
- Department of Orthopaedic Surgery, National Taiwan University Hospital, No. 7, Chung Shan South Road, Taipei City 10002, Taiwan
| | - Chia-Ying Hsieh
- Department of Biomedical Engineering, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei City 10051, Taiwan; (Y.-L.C.); (C.-Y.H.)
| | - Chao-Yuan Yeh
- Integrative Stem Cell Center, China Medical University, No. 2, Yude Road, Taichung City 40447, Taiwan;
| | - Chih-Hao Chang
- Department of Orthopaedic Surgery, National Taiwan University Hospital, No. 7, Chung Shan South Road, Taipei City 10002, Taiwan
| | - Feng-Huei Lin
- Department of Biomedical Engineering, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei City 10051, Taiwan; (Y.-L.C.); (C.-Y.H.)
| |
Collapse
|
3
|
Estrada H, Rebling J, Sievert W, Hladik D, Hofmann U, Gottschalk S, Tapio S, Multhoff G, Razansky D. Intravital optoacoustic and ultrasound bio-microscopy reveal radiation-inhibited skull angiogenesis. Bone 2020; 133:115251. [PMID: 31978616 DOI: 10.1016/j.bone.2020.115251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/02/2023]
Abstract
Angiogenesis is critical in bone development and growth. Dense, large-scale, and multi-layered vascular networks formed by thin-walled sinusoidal vessels perfuse the plate bones and play an important role in bone repair. Yet, the intricate functional morphology of skull microvasculature remains poorly understood as it is difficult to visualize using existing intravital microscopy techniques. Here we introduced an intravital, fully-transcranial imaging approach based on hybrid optoacoustic and ultrasound bio-microscopy for large-scale observations and quantitative analysis of the vascular morphology, angiogenesis, vessel remodeling, and subsurface roughness in murine skulls. Our approach revealed radiation-inhibited angiogenesis in the skull bone. We also observed previously undocumented sinusoidal vascular networks spanning the entire skullcap, thus opening new vistas for studying the complex interactions between calvarial, pial, and cortical vascular systems.
Collapse
Affiliation(s)
- Héctor Estrada
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH, Zurich, Switzerland
| | - Johannes Rebling
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH, Zurich, Switzerland
| | - Wolfgang Sievert
- Center of Translational Cancer Research (TranslaTUM), Technical University of Munich, Germany; Department of Radiation Oncology, Klinikum rechts der Isar, Munich, Germany
| | - Daniela Hladik
- Institute of Radiation Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Urs Hofmann
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH, Zurich, Switzerland
| | - Sven Gottschalk
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Neuherberg, Germany
| | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Gabriele Multhoff
- Center of Translational Cancer Research (TranslaTUM), Technical University of Munich, Germany; Department of Radiation Oncology, Klinikum rechts der Isar, Munich, Germany; Institute of Pathology, Technical University of Munich, Germany
| | - Daniel Razansky
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH, Zurich, Switzerland; Center of Translational Cancer Research (TranslaTUM), Technical University of Munich, Germany; Institute of Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Neuherberg, Germany.
| |
Collapse
|
4
|
Chang YL, Hsieh CY, Yeh CY, Lin FH. The Development of Gelatin/Hyaluronate Copolymer Mixed with Calcium Sulfate, Hydroxyapatite, and Stromal-Cell-Derived Factor-1 for Bone Regeneration Enhancement. Polymers (Basel) 2019; 11:polym11091454. [PMID: 31491928 PMCID: PMC6780272 DOI: 10.3390/polym11091454] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/24/2019] [Accepted: 09/02/2019] [Indexed: 12/17/2022] Open
Abstract
In clinical practice, bone defects still remain a challenge. In recent years, apart from the osteoconductivity that most bone void fillers already provide, osteoinductivity has also been emphasized to promote bone healing. Stromal-cell-derived factor-1 (SDF-1) has been shown to have the ability to recruit mesenchymal stem cells (MSCs), which play an important role in the bone regeneration process. In this study, we developed a gelatin–hyaluronate (Gel-HA) copolymer mixed with calcium sulfate (CS), hydroxyapatite (HAP), and SDF-1 in order to enhance bone regeneration in a bone defect model. The composites were tested in vitro for biocompatibility and their ability to recruit MSCs after material characterization. For the in vivo test, a rat femoral condyle bone defect model was used. Micro computed tomography (Micro-CT), two-photon excitation microscopy, and histology analysis were performed to assess bone regeneration. As expected, enhanced bone regeneration was well observed in the group filled with Gel-HA/CS/HAP/SDF-1 composites compared with the control group in our animal model. Furthermore, detailed blood analysis of rats showed no obvious systemic toxicity or side effects after material implantation. In conclusion, the Gel-HA/CS/HAP/SDF-1 composite may be a safe and applicable material to enhance bone regeneration in bone defects.
Collapse
Affiliation(s)
- Yun-Liang Chang
- Department of Biomedical Engineering, National Taiwan University, No. 1, Sec.1, Jen-Ai Road, Taipei City 10051, Taiwan
- Department of Orthopaedic Surgery, National Taiwan University Hospital, No. 7, Chung Shan South Road, Taipei City 10002, Taiwan
| | - Chia-Ying Hsieh
- Department of Biomedical Engineering, National Taiwan University, No. 1, Sec.1, Jen-Ai Road, Taipei City 10051, Taiwan
| | - Chao-Yuan Yeh
- Integrative Stem Cell Center, China Medical University, No. 2, Yude Road, Taichung City 40447, Taiwan
| | - Feng-Huei Lin
- Department of Biomedical Engineering, National Taiwan University, No. 1, Sec.1, Jen-Ai Road, Taipei City 10051, Taiwan.
| |
Collapse
|
5
|
Yeh SCA, Wilk K, Lin CP, Intini G. In Vivo 3D Histomorphometry Quantifies Bone Apposition and Skeletal Progenitor Cell Differentiation. Sci Rep 2018; 8:5580. [PMID: 29615817 PMCID: PMC5882859 DOI: 10.1038/s41598-018-23785-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/20/2018] [Indexed: 01/07/2023] Open
Abstract
Histomorphometry and Micro-CT are commonly used to assess bone remodeling and bone microarchitecture. These approaches typically require separate cohorts of animals to analyze 3D morphological changes and involve time-consuming immunohistochemistry preparation. Intravital Microscopy (IVM) in combination with mouse genetics may represent an attractive option to obtain bone architectural measurements while performing longitudinal monitoring of dynamic cellular processes in vivo. In this study we utilized two-photon, multicolor fluorescence IVM together with a lineage tracing reporter mouse model to image skeletal stem cells (SSCs) in their calvarial suture niche and analyze their differentiation fate after stimulation with an agonist of the canonical Wnt pathway (recombinant Wnt3a). Our in vivo histomorphometry analyses of bone formation, suture volume, and cellular dynamics showed that recombinant Wnt3a induces new bone formation, differentiation and incorporation of SSCs progeny into newly forming bone. IVM technology can therefore provide additional dynamic 3D information to the traditional static 2D histomorphometry.
Collapse
Affiliation(s)
- Shu-Chi A Yeh
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, 02115, USA.,Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Katarzyna Wilk
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, 02115, USA
| | - Charles P Lin
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA. .,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| | - Giuseppe Intini
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, 02115, USA. .,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
6
|
Scheuren A, Wehrle E, Flohr F, Müller R. Bone mechanobiology in mice: toward single-cell in vivo mechanomics. Biomech Model Mechanobiol 2017; 16:2017-2034. [PMID: 28735414 DOI: 10.1007/s10237-017-0935-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 07/11/2017] [Indexed: 01/27/2023]
Abstract
Mechanically driven bone (re)modeling is a multiscale process mediated through complex interactions between multiple cell types and their microenvironments. However, the underlying mechanisms of how cells respond to mechanical signals are still unclear and are at the focus of the field of bone mechanobiology. Traditionally, this complex process has been addressed by reducing the system to single scales and cell types. It is only recently that more integrative approaches have been established to study bone mechanobiology across multiple scales in which mechanical load at the organ level is related to molecular responses at the cellular level. The availability of mouse loading models and imaging techniques with improved spatial and temporal resolution has made it possible to track dynamic bone (re)modeling at the tissue and cellular level in vivo. Coupled with advanced computational models, the (re)modeling activities at the tissue scale can be associated with the mechanical microenvironment. However, methods are lacking to link the molecular responses of different cell types to their local mechanical microenvironment and bone (re)modeling activities occurring at the tissue scale. With recent improvements in "omics" technologies and single-cell molecular biology, it is now possible to sequence the complete genome and transcriptome of single cells. These technologies offer unique opportunities to comprehensively investigate the cellular transcriptional profiles within their specific microenvironment. By combining single-cell "omics" technologies with well-established tissue-scale models of bone mechanobiology, we propose a mechanomics approach to locally analyze the transcriptome of single cells with respect to their local 3D mechanical in vivo environment.
Collapse
Affiliation(s)
- Ariane Scheuren
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Esther Wehrle
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Felicitas Flohr
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland.
| |
Collapse
|
7
|
Sano H, Kikuta J, Furuya M, Kondo N, Endo N, Ishii M. Intravital bone imaging by two-photon excitation microscopy to identify osteocytic osteolysis in vivo. Bone 2015; 74:134-9. [PMID: 25624000 DOI: 10.1016/j.bone.2015.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/13/2015] [Accepted: 01/21/2015] [Indexed: 10/24/2022]
Abstract
Bone is a highly dynamic organ in which several cell types function cooperatively. Among these, osteocytes have recently emerged as an important regulator of bone homeostasis, although their mechanism of regulation is unclear. Here, intravital bone imaging by two-photon excitation microscopy allowed us to directly visualize 'osteocytic osteolysis', or resorption of bone in the lacuno-canalicular system. Osteocyte lacunae and the canalicular network in the cortex of murine tibiae were imaged by in vivo calcein staining, and local acidification in these structures was monitored using a topically applied pH sensor. We also demonstrated that sciatic neurectomy causes significant acidification around osteocytic lacunae and enlargement of lacuno-canalicular areas. These results provide strong evidence for osteocytic osteolysis, and demonstrate that two-photon intravital microscopy is useful for analysis of this phenomenon.
Collapse
Affiliation(s)
- Hiroshige Sano
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan; Department of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan; WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan; JST, CREST, Tokyo, Japan
| | - Masayuki Furuya
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan; WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Naoki Kondo
- Department of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Naoto Endo
- Department of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan; WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan; JST, CREST, Tokyo, Japan.
| |
Collapse
|