1
|
Gross AM, Plotkin SR, Watts NB, Fisher MJ, Klesse LJ, Lessing AJ, McManus ML, Larson AN, Oberlander B, Rios JJ, Sarnoff H, Simpson BN, Ullrich NJ, Stevenson DA. Potential endpoints for assessment of bone health in persons with neurofibromatosis type 1. Clin Trials 2024; 21:29-39. [PMID: 37772407 PMCID: PMC10920397 DOI: 10.1177/17407745231201338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Neurofibromatosis type 1 is a genetic syndrome characterized by a wide variety of tumor and non-tumor manifestations. Bone-related issues, such as scoliosis, tibial dysplasia, and low bone mineral density, are a significant source of morbidity for this population with limited treatment options. Some of the challenges to developing such treatments include the lack of consensus regarding the optimal methods to assess bone health in neurofibromatosis type 1 and limited data regarding the natural history of these manifestations. In this review, the Functional Committee of the Response Evaluation in Neurofibromatosis and Schwannomatosis International Collaboration: (1) presents the available techniques for measuring overall bone health and metabolism in persons with neurofibromatosis type 1, (2) reviews data for use of each of these measures in the neurofibromatosis type 1 population, and (3) describes the strengths and limitations for each method as they might be used in clinical trials targeting neurofibromatosis type 1 bone manifestations. The Response Evaluation in Neurofibromatosis and Schwannomatosis International Collaboration supports the development of a prospective, longitudinal natural history study focusing on the bone-related manifestations and relevant biomarkers of neurofibromatosis type 1. In addition, we suggest that the neurofibromatosis type 1 research community consider adding the less burdensome measurements of bone health as exploratory endpoints in ongoing or planned clinical trials for other neurofibromatosis type 1 manifestations to expand knowledge in the field.
Collapse
Affiliation(s)
- Andrea M Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Scott R Plotkin
- Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Nelson B Watts
- Mercy Health Osteoporosis and Bone Health Services, Cincinnati, OH, USA
| | - Michael J Fisher
- Division of Oncology, The Children's Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Laura J Klesse
- Division of Hematology/Oncology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | | | | | - A Noelle Larson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
| | - Herb Sarnoff
- Research and Development, Infixion Bioscience, Inc., San Diego, CA, USA
| | - Brittany N Simpson
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Nicole J Ullrich
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - David A Stevenson
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Stanford, CA, USA
| |
Collapse
|
2
|
Nyman JS, Ketsiri T, Louie EA, Harkins KD, Manhard MK, Gochberg DF, Lee DH, Desai MJ, Maslow J, Tanner SB, Does MD. Toward the use of MRI measurements of bound and pore water in fracture risk assessment. Bone 2023; 176:116863. [PMID: 37527697 PMCID: PMC10528882 DOI: 10.1016/j.bone.2023.116863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
The current clinical assessment of fracture risk lacks information about the inherent quality of a person's bone tissue. Working toward an imaging-based approach to quantify both a bone tissue quality marker (tissue hydration as water bound to the matrix) and a bone microstructure marker (porosity as water in pores), we hypothesized that the concentrations of bound water (Cbw) are lower and concentrations of pore water (Cpw) are higher in patients with osteoporosis (OP) than in age- and sex-matched adults without the disease. Using recent developments in ultrashort echo time (UTE) magnetic resonance imaging (MRI), maps of Cbw and Cpw were acquired from the uninjured distal third radius (Study 1) of 20 patients who experienced a fragility fracture of the distal radius (Fx) and 20 healthy controls (Non-Fx) and from the tibia mid-diaphysis (Study 2) of 30 women with clinical OP (low T-scores) and 15 women without OP (normal T-scores). In Study 1, Cbw was significantly lower (p = 0.0018) and Cpw was higher (p = 0.0022) in the Fx than in the Non-Fx group. In forward stepwise, logistic regression models using Bayesian Information Criterion for selecting the best set of predictors (from imaging parameters, age, BMI, and DXA scanner type), the area-under-the-receiver operator characteristics-curve (AUC with 95 % confidence intervals) was 0.73 (0.56, 0.86) for hip aBMD (best predictors without MRI) and 0.86 (0.70, 0.95) for the combination of Cbw and Cpw (best predictors overall). In Study 2, Cbw was significantly lower (p = 0.0005) in women with OP (23.8 ± 4.3 1H mol/L) than in women without OP (29.9 ± 6.4 1H mol/L); Cpw was significantly higher by estimate of 2.9 1H mol/L (p = 0.0298) with clinical OP, but only when accounting for the type of UTE-MRI scan with 3D providing higher values than 2D (p < 0.0001). Lastly, Cbw, but not Cpw, was sensitive to bone forming osteoporosis medications over 12-months. UTE-MRI-derived measurements of bound and pore water concentrations are potential, aBMD-independent predictors of fracture risk.
Collapse
Affiliation(s)
- Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S., Suite 4200, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, 1310 24th Ave. S., Nashville, TN 37212, USA; Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center,1211 Medical Center Dr., Nashville, TN 37212, USA.
| | - Thammathida Ketsiri
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, USA; Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S., Nashville, TN 37232, USA
| | - Elizabeth A Louie
- Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S., Nashville, TN 37232, USA
| | - Kevin D Harkins
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, USA; Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S., Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Ave. S., Nashville, TN 37232, USA
| | - Mary Kate Manhard
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Daniel F Gochberg
- Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S., Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Ave. S., Nashville, TN 37232, USA
| | - Donald H Lee
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S., Suite 4200, Nashville, TN 37232, USA
| | - Mihir J Desai
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S., Suite 4200, Nashville, TN 37232, USA
| | - Jed Maslow
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S., Suite 4200, Nashville, TN 37232, USA
| | - S Bobo Tanner
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center,1211 Medical Center Dr., Nashville, TN 37212, USA; Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center, 1161 21st Ave. S., Nashville, TN 37232, USA
| | - Mark D Does
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, USA; Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S., Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Ave. S., Nashville, TN 37232, USA; Department of Electrical Engineering and Computer Science, Vanderbilt University, 400 24th Ave. S., Nashville, TN 37212, USA.
| |
Collapse
|
3
|
Texture Parameters Measured by UHF-MRI and CT Scan Provide Information on Bone Quality in Addition to BMD: A Biomechanical Ex Vivo Study. Diagnostics (Basel) 2022; 12:diagnostics12123143. [PMID: 36553150 PMCID: PMC9777398 DOI: 10.3390/diagnostics12123143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/03/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
The current definition of osteoporosis includes alteration of bone quality. The assessment of bone quality is improved by the development of new texture analysis softwares. Our objectives were to assess if proximal femoral trabecular bone texture measured in Ultra high field (UHF) 7 Tesla MRI and CT scan were related to biomechanical parameters, and if the combination of texture parameters and areal bone mineral density (aBMD) measured by dual-energy X-ray absorptiometry provided a better prediction of femoral failure than aBMD alone. The aBMD of 16 proximal femur ends from eight cadavers were investigated. Nineteen textural parameters were computed in three regions or volumes of interest for each specimen on UHF MRI and CT scan. Then, the corresponding failure load and failure stress were calculated thanks to mechanical compression test. aBMD was not correlated to failure load (R2 = 0.206) and stress (R2 = 0.153). The failure load was significantly correlated with ten parameters in the greater trochanter using UHF MRI, and with one parameter in the neck and the greater trochanter using CT scan. Eight parameters in the greater trochanter using UHF MRI combined with aBMD improved the failure load prediction, and seven parameters improved the failure stress prediction. Our results suggest that textural parameters provide additional information on the fracture risk of the proximal femur when aBMD is not contributive.
Collapse
|
4
|
Kozakiewicz M, Wach T. Exploring the Importance of Corticalization Occurring in Alveolar Bone Surrounding a Dental Implant. J Clin Med 2022; 11:7189. [PMID: 36498764 PMCID: PMC9738071 DOI: 10.3390/jcm11237189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Several measures describing the transformation of trabecular bone to cortical bone on the basis of analysis of intraoral radiographs are known (including bone index or corticalization index, CI). At the same time, it has been noted that after functional loading of dental implants such transformations occur in the bone directly adjacent to the fixture. Intuitively, it seems that this is a process conducive to the long-term maintenance of dental implants and certainly necessary when immediate loading is applied. The authors examined the relationship of implant design features to marginal bone loss (MBL) and the intensity of corticalization over a 10-year period of functional loading. This study is a general description of the phenomenon of peri-implant bone corticalization and an attempt to interpret this phenomenon to achieve success of implant treatment in the long term. Corticalization significantly increased over the first 5-year functional loading (CI from 200 ± 146 initially to 282 ± 182, p < 0.001) and maintained a high level (CI = 261 ± 168) in the 10-year study relative to the reference bone (149 ± 178). MBL significantly increased throughout the follow-up period—5 years: 0.83 ± 1.26 mm (p < 0.001), 10 years: 1.48 ± 2.01 mm (p < 0.001). MBL and radiographic bone structure (CI) were evaluated in relation to intraosseous implant design features and prosthetic work performed. In the scope of the study, it can be concluded that the phenomenon of peri-implant jawbone corticalization seems an unfavorable condition for the future fate of bone-anchored implants, but it requires further research to fully explain the significance of this phenomenon.
Collapse
Affiliation(s)
- Marcin Kozakiewicz
- Department of Maxillofacial Surgery, Medical University of Lodz, 113 Żeromskiego Str., 90-549 Lodz, Poland
| | | |
Collapse
|
5
|
Osteoporosis Screening: Applied Methods and Technological Trends. Med Eng Phys 2022; 108:103887. [DOI: 10.1016/j.medengphy.2022.103887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/15/2022]
|
6
|
Soldati E, Pithioux M, Guenoun D, Bendahan D, Vicente J. Assessment of Bone Microarchitecture in Fresh Cadaveric Human Femurs: What Could Be the Clinical Relevance of Ultra-High Field MRI. Diagnostics (Basel) 2022; 12:diagnostics12020439. [PMID: 35204529 PMCID: PMC8870786 DOI: 10.3390/diagnostics12020439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
MRI could be applied for bone microarchitecture assessment; however, this technique is still suffering from low resolution compared to the trabecular dimension. A clear comparative analysis between MRI and X-ray microcomputed tomography (μCT) regarding microarchitecture metrics is still lacking. In this study, we performed a comparative analysis between μCT and 7T MRI with the aim of assessing the image resolution effect on the accuracy of microarchitecture metrics. We also addressed the issue of air bubble artifacts in cadaveric bones. Three fresh cadaveric femur heads were scanned using 7T MRI and µCT at high resolution (0.051 mm). Samples were submitted to a vacuum procedure combined with vibration to reduce the volume of air bubbles. Trabecular interconnectivity, a new metric, and conventional histomorphometric parameters were quantified using MR images and compared to those derived from µCT at full resolution and downsized resolutions (0.102 and 0.153 mm). Correlations between bone morphology and mineral density (BMD) were evaluated. Air bubbles were reduced by 99.8% in 30 min, leaving partial volume effects as the only source of bias. Morphological parameters quantified with 7T MRI were not statistically different (p > 0.01) to those computed from μCT images, with error up to 8% for both bone volume fraction and trabecular spacing. No linear correlation was found between BMD and all morphological parameters except trabecular interconnectivity (R2 = 0.69 for 7T MRI-BMD). These results strongly suggest that 7T MRI could be of interest for in vivo bone microarchitecture assessment, providing additional information about bone health and quality.
Collapse
Affiliation(s)
- Enrico Soldati
- Aix Marseille Univ, CNRS, IUSTI, 13453 Marseille, France;
- Aix Marseille Univ, CNRS, CRMBM, 13385 Marseille, France;
- Aix Marseille Univ, CNRS, ISM, 13288 Marseille, France; (M.P.); (D.G.)
- Correspondence:
| | - Martine Pithioux
- Aix Marseille Univ, CNRS, ISM, 13288 Marseille, France; (M.P.); (D.G.)
- Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology, 13274 Marseille, France
| | - Daphne Guenoun
- Aix Marseille Univ, CNRS, ISM, 13288 Marseille, France; (M.P.); (D.G.)
- Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Radiology, 13274 Marseille, France
| | - David Bendahan
- Aix Marseille Univ, CNRS, CRMBM, 13385 Marseille, France;
| | - Jerome Vicente
- Aix Marseille Univ, CNRS, IUSTI, 13453 Marseille, France;
| |
Collapse
|
7
|
Soldati E, Escoffier L, Gabriel S, Ogier AC, Chagnaud C, Mattei JP, Cammilleri S, Bendahan D, Guis S. Assessment of in vivo bone microarchitecture changes in an anti-TNFα treated psoriatic arthritic patient. PLoS One 2021; 16:e0251788. [PMID: 34010320 PMCID: PMC8133422 DOI: 10.1371/journal.pone.0251788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/04/2021] [Indexed: 01/22/2023] Open
Abstract
Objective Psoriatic arthritis (PsA) is an inflammatory rheumatic disease, mediated in part by TNFα and associated with bone loss. Anti-TNFα treatment should inhibit this phenomenon and reduce the systemic bone loss. Ultra-high field MRI (UHF MRI) may be used to quantify bone microarchitecture (BM) in-vivo. In this study, we quantified BM using UHF MRI in a PsA patient and followed up the changes related to anti-TNFα treatment. Subjects and methods A non-treated PsA patient with knee arthritis and 7 gender-matched controls were scanned using a gradient re-echo sequence at UHF MRI. After a year of Adalimumab treatment, the patient underwent a second UHF MRI. A PET-FNa imaging was performed before and after treatment to identify and localize the abnormal metabolic areas. BM was characterized using typical morphological parameters quantified in 32 regions of interest (ROIs) located in the patella, proximal tibia, and distal femur. Results Before treatment, the BM parameters were statistically different from controls in 24/32 ROIs with differences reaching up to 38%. After treatment, BM parameters were normalized for 15 out of 24 ROIs. The hypermetabolic areas disclosed by PET-FNa before the treatment partly resumed after the treatment. Conclusion Thanks to UHF MRI, we quantified in vivo BM anomalies in a PsA patient and we illustrated a major reversion after one year of treatment. Moreover, BM results highlighted that the abnormalities were not only localized in hypermetabolic regions identified by PET-FNa, suggesting that the bone loss was global and not related to inflammation.
Collapse
Affiliation(s)
- Enrico Soldati
- Aix-Marseille Université, CNRS, CRMBM-CEMEREM, Marseille, France.,Aix-Marseille Université, CNRS, IUSTI, Marseille, France.,Aix-Marseille Université, CNRS, ISM, Marseille, France
| | - Lucas Escoffier
- Aix-Marseille Université, Service de Rhumatologie, AP-HM, Marseille, France
| | - Sophie Gabriel
- Aix-Marseille Université, Service de Médecine Nucléaire, AP-HM, Institut Fresnel, Marseille, France
| | - Augustin C Ogier
- Aix-Marseille Université, CNRS, CRMBM-CEMEREM, Marseille, France.,Aix-Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France
| | | | - Jean P Mattei
- Aix-Marseille Université, CNRS, CRMBM-CEMEREM, Marseille, France.,Aix-Marseille Université, Service de Rhumatologie, AP-HM, Marseille, France
| | - Serge Cammilleri
- Aix-Marseille Université, Service de Médecine Nucléaire, AP-HM, Institut Fresnel, Marseille, France
| | - David Bendahan
- Aix-Marseille Université, CNRS, CRMBM-CEMEREM, Marseille, France
| | - Sandrine Guis
- Aix-Marseille Université, CNRS, CRMBM-CEMEREM, Marseille, France.,Aix-Marseille Université, Service de Rhumatologie, AP-HM, Marseille, France
| |
Collapse
|
8
|
Soldati E, Rossi F, Vicente J, Guenoun D, Pithioux M, Iotti S, Malucelli E, Bendahan D. Survey of MRI Usefulness for the Clinical Assessment of Bone Microstructure. Int J Mol Sci 2021; 22:2509. [PMID: 33801539 PMCID: PMC7958958 DOI: 10.3390/ijms22052509] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Bone microarchitecture has been shown to provide useful information regarding the evaluation of skeleton quality with an added value to areal bone mineral density, which can be used for the diagnosis of several bone diseases. Bone mineral density estimated from dual-energy X-ray absorptiometry (DXA) has shown to be a limited tool to identify patients' risk stratification and therapy delivery. Magnetic resonance imaging (MRI) has been proposed as another technique to assess bone quality and fracture risk by evaluating the bone structure and microarchitecture. To date, MRI is the only completely non-invasive and non-ionizing imaging modality that can assess both cortical and trabecular bone in vivo. In this review article, we reported a survey regarding the clinically relevant information MRI could provide for the assessment of the inner trabecular morphology of different bone segments. The last section will be devoted to the upcoming MRI applications (MR spectroscopy and chemical shift encoding MRI, solid state MRI and quantitative susceptibility mapping), which could provide additional biomarkers for the assessment of bone microarchitecture.
Collapse
Affiliation(s)
- Enrico Soldati
- CRMBM, CNRS, Aix Marseille University, 13385 Marseille, France;
- IUSTI, CNRS, Aix Marseille University, 13013 Marseille, France;
- ISM, CNRS, Aix Marseille University, 13288 Marseille, France; (D.G.); (M.P.)
| | - Francesca Rossi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.R.); (S.I.); (E.M.)
| | - Jerome Vicente
- IUSTI, CNRS, Aix Marseille University, 13013 Marseille, France;
| | - Daphne Guenoun
- ISM, CNRS, Aix Marseille University, 13288 Marseille, France; (D.G.); (M.P.)
- Department of Radiology, Institute for Locomotion, Saint-Marguerite Hospital, ISM, CNRS, APHM, Aix Marseille University, 13274 Marseille, France
| | - Martine Pithioux
- ISM, CNRS, Aix Marseille University, 13288 Marseille, France; (D.G.); (M.P.)
- Department of Orthopedics and Traumatology, Institute for Locomotion, Saint-Marguerite Hospital, ISM, CNRS, APHM, Aix Marseille University, 13274 Marseille, France
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.R.); (S.I.); (E.M.)
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.R.); (S.I.); (E.M.)
| | - David Bendahan
- CRMBM, CNRS, Aix Marseille University, 13385 Marseille, France;
| |
Collapse
|
9
|
Daly RM, Gianoudis J, Kersh ME, Bailey CA, Ebeling PR, Krug R, Nowson CA, Hill K, Sanders KM. Effects of a 12-Month Supervised, Community-Based, Multimodal Exercise Program Followed by a 6-Month Research-to-Practice Transition on Bone Mineral Density, Trabecular Microarchitecture, and Physical Function in Older Adults: A Randomized Controlled Trial. J Bone Miner Res 2020; 35:419-429. [PMID: 31498937 DOI: 10.1002/jbmr.3865] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/25/2019] [Accepted: 08/17/2019] [Indexed: 01/06/2023]
Abstract
Multicomponent exercise programs are recommended to reduce fracture risk; however, their effectiveness in real-world community settings remain uncertain. This 18-month randomized controlled trial investigated the effects of a 12-month, community-based, supervised multicomponent exercise program followed by a 6-month "research-to-practice" transition on areal bone mineral density (BMD), trabecular bone microarchitecture, functional performance, and falls in older adults at increased fracture risk. One-hundred and sixty-two adults aged ≥60 years with osteopenia or at increased falls risk were randomized to the Osteo-cise: Strong Bones for Life multicomponent exercise program (n = 81) or a control group (n = 81). Exercise consisted of progressive resistance, weight-bearing impact, and balance training (3-days/week) performed at community leisure centers. Overall 148 (91%) participants completed the trial, and mean exercise adherence was 59% after 12 months and 45% during the final 6 months. After 12 months, there were significant net beneficial effects of exercise on lumbar spine and femoral neck BMD (1.0% to 1.1%, p < 0.05), muscle strength (10% to 13%, p < 0.05), and physical function (timed stair climb 5%; four-square step test 6%; sit-to-stand 16%, p ranging <0.05 to <0.001), which persisted after the 6-month transition. There were no significant effects of the 18-month intervention on distal femur or proximal tibia trabecular bone microarchitecture or falls incidence, but per protocol analysis (≥66% exercise adherence) revealed there was a significant net benefit of exercise (mean [95% confidence interval] 2.8% [0.2, 5,4]) on proximal tibia trabecular bone volume fraction (Osteo-cise 1.5% [-1.2, 4.2]; controls -1.3% [-2.6, 0.1]) after 18 months due to changes in trabecular number (Osteo-cise 1.7% [-0.9, 4.3]; controls -1.1% [-2.4, 0.2]) but not trabecular thickness (Osteo-cise - 0.2% [-0.5, 0.2]; controls -0.2% [-0.4, 0.0]). In conclusion, this study supports the effectiveness of the Osteo-cise: Strong Bones for Life program as a real-world, pragmatic, evidence-based community exercise program to improve multiple musculoskeletal health outcomes in older adults at increased fracture risk. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Robin M Daly
- Institute for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Jenny Gianoudis
- Institute for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Mariana E Kersh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christine A Bailey
- Department of Medicine, The University of Melbourne, Melbourne, Australia
| | - Peter R Ebeling
- Department of Medicine, The University of Melbourne, Melbourne, Australia.,Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia
| | - Roland Krug
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Caryl A Nowson
- Institute for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Keith Hill
- School of Physiotherapy and Exercise Science, Curtin University, Perth, Australia
| | - Kerrie M Sanders
- Department of Medicine, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
10
|
Sahbani K, Cardozo CP, Bauman WA, Tawfeek HA. Abaloparatide exhibits greater osteoanabolic response and higher cAMP stimulation and β-arrestin recruitment than teriparatide. Physiol Rep 2019; 7:e14225. [PMID: 31565870 PMCID: PMC6766518 DOI: 10.14814/phy2.14225] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/26/2022] Open
Abstract
Teriparatide and abaloparatide are parathyroid hormone receptor 1 (PTHR1) analogs with unexplained differential efficacy for the treatment of osteoporosis. Therefore, we compared the effects of abaloparatide and teriparatide on bone structure, turnover, and levels of receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin (OPG). Wild-type (WT) female mice were injected daily with vehicle or 20-80 µg/kg/day of teriparatide or abaloparatide for 30 days. Femurs and spines were examined by microcomputed tomography scanning and serum levels of bone turnover markers, RANKL, and OPG, were measured by ELISA. Both analogs similarly increased the distal femoral fractional trabecular bone volume, connectivity, and number, and reduced the structure model index (SMI) at 20-80 µg/kg/day doses. However, only abaloparatide exhibited a significant increase (13%) in trabecular thickness at 20 µg/kg/day dose. Femoral cortical evaluation showed that abaloparatide caused a greater dose-dependent increase in cortical thickness than teriparatide. Both teriparatide and abaloparatide increased lumbar 5 vertebral trabecular connectivity but had no or modest effect on other indices. Biochemical analysis demonstrated that abaloparatide promoted greater elevation of procollagen type 1 intact N-terminal propeptide, a bone formation marker, and tartrate-resistant acid phosphatase 5b levels, a bone resorption marker, and lowered the RANKL/OPG ratio. Furthermore, PTHR1 signaling was compared in cells treated with 0-100 nmol/L analog. Interestingly, abaloparatide had a markedly lower EC50 for cAMP formation (2.3-fold) and β-arrestin recruitment (1.6-fold) than teriparatide. Therefore, abaloparatide-improved efficacy can be attributed to enhanced bone formation and cortical structure, reduced RANKL/OPG ratio, and amplified Gs-cAMP and β-arrestin signaling.
Collapse
Affiliation(s)
- Karim Sahbani
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters Veterans Affairs Medical CenterBronxNew York
| | - Christopher P. Cardozo
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters Veterans Affairs Medical CenterBronxNew York
- Department of MedicineThe Icahn School of Medicine at Mount SinaiNew YorkNew York
- Department of Rehabilitation MedicineThe Icahn School of Medicine at Mount SinaiNew YorkNew York
- Department of Pharmacologic ScienceThe Icahn School of Medicine at Mount SinaiNew YorkNew York
| | - William A. Bauman
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters Veterans Affairs Medical CenterBronxNew York
- Department of MedicineThe Icahn School of Medicine at Mount SinaiNew YorkNew York
| | - Hesham A. Tawfeek
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters Veterans Affairs Medical CenterBronxNew York
- Department of MedicineThe Icahn School of Medicine at Mount SinaiNew YorkNew York
| |
Collapse
|
11
|
Diez-Perez A, Brandi ML, Al-Daghri N, Branco JC, Bruyère O, Cavalli L, Cooper C, Cortet B, Dawson-Hughes B, Dimai HP, Gonnelli S, Hadji P, Halbout P, Kaufman JM, Kurth A, Locquet M, Maggi S, Matijevic R, Reginster JY, Rizzoli R, Thierry T. Radiofrequency echographic multi-spectrometry for the in-vivo assessment of bone strength: state of the art-outcomes of an expert consensus meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Aging Clin Exp Res 2019; 31:1375-1389. [PMID: 31422565 PMCID: PMC6763416 DOI: 10.1007/s40520-019-01294-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/24/2019] [Indexed: 01/19/2023]
Abstract
PURPOSE The purpose of this paper was to review the available approaches for bone strength assessment, osteoporosis diagnosis and fracture risk prediction, and to provide insights into radiofrequency echographic multi spectrometry (REMS), a non-ionizing axial skeleton technique. METHODS A working group convened by the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis met to review the current image-based methods for bone strength assessment and fracture risk estimation, and to discuss the clinical perspectives of REMS. RESULTS Areal bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA) is the consolidated indicator for osteoporosis diagnosis and fracture risk assessment. A more reliable fracture risk estimation would actually require an improved assessment of bone strength, integrating also bone quality information. Several different approaches have been proposed, including additional DXA-based parameters, quantitative computed tomography, and quantitative ultrasound. Although each of them showed a somewhat improved clinical performance, none satisfied all the requirements for a widespread routine employment, which was typically hindered by unclear clinical usefulness, radiation doses, limited accessibility, or inapplicability to spine and hip, therefore leaving several clinical needs still unmet. REMS is a clinically available technology for osteoporosis diagnosis and fracture risk assessment through the estimation of BMD on the axial skeleton reference sites. Its automatic processing of unfiltered ultrasound signals provides accurate BMD values in view of fracture risk assessment. CONCLUSIONS New approaches for improved bone strength and fracture risk estimations are needed for a better management of osteoporotic patients. In this context, REMS represents a valuable approach for osteoporosis diagnosis and fracture risk prediction.
Collapse
Affiliation(s)
- Adolfo Diez-Perez
- Department of Internal Medicine, Hospital del Mar/IMIM and CIBERFES, Autonomous University of Barcelona, Passeig Maritim 25-29, 08003, Barcelona, Spain.
| | - Maria Luisa Brandi
- FirmoLab Fondazione F.I.R.M.O., Florence, Italy
- Department of Biological, Experimental and Clinical Science, University of Florence, Florence, Italy
| | - Nasser Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Jaime C Branco
- NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Olivier Bruyère
- WHO Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, University of Liège, Liège, Belgium
| | - Loredana Cavalli
- FirmoLab Fondazione F.I.R.M.O., Florence, Italy
- Department of Biological, Experimental and Clinical Science, University of Florence, Florence, Italy
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Bernard Cortet
- Department of Rheumatology and EA 4490, University-Hospital of Lille, Lille, France
| | - Bess Dawson-Hughes
- Bone Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Hans Peter Dimai
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Stefano Gonnelli
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Peyman Hadji
- Frankfurter Hormon und Osteoporose Zentrum, Frankfurt, Germany
| | | | - Jean-Marc Kaufman
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Andreas Kurth
- Department of Orthopaedic Surgery and Osteology, Klinikum Frankfurt, Frankfurt, Germany
- Mayor Teaching Hospital, Charite Medical School, Berlin, Germany
| | - Medea Locquet
- Department of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
| | - Stefania Maggi
- National Research Council, Aging Program, Institute of Neuroscience, Padua, Italy
| | - Radmila Matijevic
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Clinical Center of Vojvodina, Clinic for Orthopedic Surgery, Novi Sad, Serbia
| | - Jean-Yves Reginster
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
- WHO Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, University of Liège, Liège, Belgium
| | - René Rizzoli
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Thomas Thierry
- Department of Rheumatology, Hospital Nord, CHU St Etienne, St Etienne, France
- INSERM 1059, University of Lyon, St Etienne, France
| |
Collapse
|
12
|
Alizai H, Chang G, Regatte RR. MR Imaging of the Musculoskeletal System Using Ultrahigh Field (7T) MR Imaging. PET Clin 2019; 13:551-565. [PMID: 30219187 DOI: 10.1016/j.cpet.2018.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
MR imaging is an indispensable instrument for the diagnosis of musculoskeletal diseases. In vivo MR imaging at 7T offers many advantages, including increased signal-to-noise ratio, higher spatial resolution, improved spectral resolution for spectroscopy, improved sensitivity for X-nucleus imaging, and decreased image acquisition times. There are also however technical challenges of imaging at a higher field strength compared with 1.5 and 3T MR imaging systems. We discuss the many potential opportunities as well as the challenges presented by 7T MR imaging systems and highlight recent developments in in vivo research imaging of musculoskeletal applications in general and cartilage, skeletal muscle, and bone in particular.
Collapse
Affiliation(s)
- Hamza Alizai
- Department of Radiology, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA.
| | - Gregory Chang
- Department of Radiology, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA
| | - Ravinder R Regatte
- Department of Radiology, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA
| |
Collapse
|
13
|
Austin AG, Raynor WY, Reilly CC, Zadeh MZ, Werner TJ, Zhuang H, Alavi A, Rajapakse CS. Evolving Role of MR Imaging and PET in Assessing Osteoporosis. PET Clin 2019; 14:31-41. [DOI: 10.1016/j.cpet.2018.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
Agten CA, Honig S, Saha PK, Regatte R, Chang G. Subchondral bone microarchitecture analysis in the proximal tibia at 7-T MRI. Acta Radiol 2018; 59:716-722. [PMID: 28899123 DOI: 10.1177/0284185117732098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Bone remodels in response to mechanical loads and osteoporosis results from impaired ability of bone to remodel. Bone microarchitecture analysis provides information on bone quality beyond bone mineral density (BMD). Purpose To compare subchondral bone microarchitecture parameters in the medial and lateral tibia plateau in individuals with and without fragility fractures. Material and Methods Twelve female patients (mean age = 58 ± 15 years; six with and six without previous fragility fractures) were examined with dual-energy X-ray absorptiometry (DXA) and 7-T magnetic resonance imaging (MRI) of the proximal tibia. A transverse high-resolution three-dimensional fast low-angle shot sequence was acquired (0.234 × 0.234 × 1 mm). Digital topological analysis (DTA) was applied to the medial and lateral subchondral bone of the proximal tibia. The following DTA-based bone microarchitecture parameters were assessed: apparent bone volume; trabecular thickness; profile-edge-density (trabecular bone erosion parameter); profile-interior-density (intact trabecular rods parameter); plate-to-rod ratio; and erosion index. We compared femoral neck T-scores and bone microarchitecture parameters between patients with and without fragility fracture. Results There was no statistical significant difference in femoral neck T-scores between individuals with and without fracture (-2.4 ± 0.9 vs. -1.8 ± 0.7, P = 0.282). Apparent bone volume in the medial compartment was lower in patients with previous fragility fracture (0.295 ± 0.022 vs. 0.317 ± 0.009; P = 0.016). Profile-edge-density, a trabecular bone erosion parameter, was higher in patients with previous fragility fracture in the medial (0.008 ± 0.003 vs. 0.005 ± 0.001) and lateral compartment (0.008 ± 0.002 vs. 0.005 ± 0.001); both P = 0.025. Other DTA parameters did not differ between groups. Conclusion 7-T MRI and DTA permit detection of subtle changes in subchondral bone quality when differences in BMD are not evident.
Collapse
Affiliation(s)
- Christoph A Agten
- Center for Musculoskeletal Care, Department of Radiology, NYU School of Medicine, New York, NY, USA
- NYU Langone Medical Center, New York, NY, USA
| | - Stephen Honig
- NYU Langone Medical Center, New York, NY, USA
- Osteoporosis Center, Hospital for Joint Diseases, School of Medicine, New York University, New York, NY, USA
| | - Punam K Saha
- Structural Imaging Laboratory, Departments of ECE and Radiology, University of Iowa, Iowa City, IA, USA
| | - Ravinder Regatte
- NYU Langone Medical Center, New York, NY, USA
- Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Gregory Chang
- Center for Musculoskeletal Care, Department of Radiology, NYU School of Medicine, New York, NY, USA
- NYU Langone Medical Center, New York, NY, USA
| |
Collapse
|
15
|
West SL, Rajapakse CS, Rayner T, Miller R, Slinger MA, Wells GD. The reproducibility of measuring trabecular bone parameters using a commercially available high-resolution magnetic resonance imaging approach: A pilot study. Bone Rep 2018; 8:180-186. [PMID: 29955637 PMCID: PMC6020268 DOI: 10.1016/j.bonr.2018.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 04/09/2018] [Accepted: 04/23/2018] [Indexed: 02/02/2023] Open
Abstract
Bone imaging is currently the best non-invasive way to assess changes to bone associated with aging or chronic disease. However, common imaging techniques such as dual energy x-ray absorptiometry are associated with limitations. Magnetic resonance imaging (MRI) is a radiation-free technique that can measure bone microarchitecture. However, published MRI bone assessment protocols use specialized MRI coils and sequences and therefore have limited transferability across institutions. We developed a protocol on a Siemens 3 Tesla MRI machine, using a commercially available coil (Siemens 15 CH knee coil), and manufacturer supplied sequences to acquire images at the tibia. We tested the reproducibility of the FSE and the GE Axial sequences and hypothesized that both would generate reproducible trabecular bone parameters. Eight healthy adults (age 25.5 ± 5.4 years) completed three measurements of each MRI sequence at the tibia. Each of the images was processed for 8 different bone parameters (such as volumetric bone volume fraction). We computed the coefficient of variation (CV) and intraclass correlation coefficients (ICC) to assess reproducibility and reliability. Both sequences resulted in trabecular parameters that were reproducible (CV <5% for most) and reliable (ICC >80% for all). Our study is one of the first to report that a commercially available MRI protocol can result in reproducible data, and is significant as MRI may be an accessible method to measure bone microarchitecture in clinical or research environments. This technique requires further testing, including validation and evaluation in other populations. Trabecular bone is difficult to measure using commercial MRI techniques Reproducibility of a MRI protocol measuring trabecular bone was assessed Tibia trabecular bone was reproducible using a knee coil and a FSE Axial sequence Tibia trabecular bone was reproducible using a knee coil and a GE Axial sequence
Collapse
Affiliation(s)
- Sarah L West
- Department of Biology, Trent/Fleming School of Nursing, Trent University, Peterborough, Ontario, Canada.,Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chamith S Rajapakse
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Department of Orthopaedic Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Tammy Rayner
- Radiology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rhiannon Miller
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Department of Orthopaedic Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Michelle A Slinger
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Department of Orthopaedic Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Greg D Wells
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Chang G, Rajapakse CS, Chen C, Welbeck A, Egol K, Regatte RR, Saha PK, Honig S. 3-T MR Imaging of Proximal Femur Microarchitecture in Subjects with and without Fragility Fracture and Nonosteoporotic Proximal Femur Bone Mineral Density. Radiology 2018; 287:608-619. [PMID: 29457963 DOI: 10.1148/radiol.2017170138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose To determine if 3-T magnetic resonance (MR) imaging of proximal femur microarchitecture can allow discrimination of subjects with and without fragility fracture who do not have osteoporotic proximal femur bone mineral density (BMD). Materials and Methods Sixty postmenopausal women (30 with and 30 without fragility fracture) who had BMD T scores of greater than -2.5 in the hip were recruited. All subjects underwent dual-energy x-ray absorptiometry to assess BMD and 3-T MR imaging of the same hip to assess bone microarchitecture. World Health Organization Fracture Risk Assessment Tool (FRAX) scores were also computed. We used the Mann-Whitney test, receiver operating characteristics analyses, and Spearman correlation estimates to assess differences between groups, discriminatory ability with parameters, and correlations among BMD, microarchitecture, and FRAX scores. Results Patients with versus without fracture showed a lower trabecular plate-to-rod ratio (median, 2.41 vs 4.53, respectively), lower trabecular plate width (0.556 mm vs 0.630 mm, respectively), and lower trabecular thickness (0.114 mm vs 0.126 mm) within the femoral neck, and higher trabecular rod disruption (43.5 vs 19.0, respectively), higher trabecular separation (0.378 mm vs 0.323 mm, respectively), and lower trabecular number (0.158 vs 0.192, respectively), lower trabecular connectivity (0.015 vs 0.027, respectively) and lower trabecular plate-to-rod ratio (6.38 vs 8.09, respectively) in the greater trochanter (P < .05 for all). Trabecular plate-to-rod ratio, plate width, and thickness within the femoral neck (areas under the curve [AUCs], 0.654-0.683) and trabecular rod disruption, number, connectivity, plate-to-rod ratio, and separation within the greater trochanter (AUCs, 0.662-0.694) allowed discrimination of patients with fracture from control subjects. Femoral neck, total hip, and spine BMD did not differ between and did not allow discrimination between groups. FRAX scores including and not including BMD allowed discrimination between groups (AUCs, 0.681-0.773). Two-factor models (one MR imaging microarchitectural parameter plus a FRAX score without BMD) allowed discrimination between groups (AUCs, 0.702-0.806). There were no linear correlations between BMD and microarchitectural parameters (Spearman ρ, -0.198 to 0.196). Conclusion 3-T MR imaging of proximal femur microarchitecture allows discrimination between subjects with and without fragility fracture who have BMD T scores of greater than -2.5 and may provide different information about bone quality than that provided by dual-energy x-ray absorptiometry. © RSNA, 2018.
Collapse
Affiliation(s)
- Gregory Chang
- From the Department of Radiology, Center for Biomedical Imaging (G.C., A.W., R.R.R.), Department of Orthopaedic Surgery, Hospital for Joint Diseases (K.E.), and Division of Rheumatology, Osteoporosis Center, Hospital for Joint Diseases (S.H.), NYU Langone Medical Center, 660 First Ave, New York, NY 10016; Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pa (C.S.R.); and College of Engineering, University of Iowa, Iowa City, Iowa (C.C., P.K.S.)
| | - Chamith S Rajapakse
- From the Department of Radiology, Center for Biomedical Imaging (G.C., A.W., R.R.R.), Department of Orthopaedic Surgery, Hospital for Joint Diseases (K.E.), and Division of Rheumatology, Osteoporosis Center, Hospital for Joint Diseases (S.H.), NYU Langone Medical Center, 660 First Ave, New York, NY 10016; Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pa (C.S.R.); and College of Engineering, University of Iowa, Iowa City, Iowa (C.C., P.K.S.)
| | - Cheng Chen
- From the Department of Radiology, Center for Biomedical Imaging (G.C., A.W., R.R.R.), Department of Orthopaedic Surgery, Hospital for Joint Diseases (K.E.), and Division of Rheumatology, Osteoporosis Center, Hospital for Joint Diseases (S.H.), NYU Langone Medical Center, 660 First Ave, New York, NY 10016; Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pa (C.S.R.); and College of Engineering, University of Iowa, Iowa City, Iowa (C.C., P.K.S.)
| | - Arakua Welbeck
- From the Department of Radiology, Center for Biomedical Imaging (G.C., A.W., R.R.R.), Department of Orthopaedic Surgery, Hospital for Joint Diseases (K.E.), and Division of Rheumatology, Osteoporosis Center, Hospital for Joint Diseases (S.H.), NYU Langone Medical Center, 660 First Ave, New York, NY 10016; Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pa (C.S.R.); and College of Engineering, University of Iowa, Iowa City, Iowa (C.C., P.K.S.)
| | - Kenneth Egol
- From the Department of Radiology, Center for Biomedical Imaging (G.C., A.W., R.R.R.), Department of Orthopaedic Surgery, Hospital for Joint Diseases (K.E.), and Division of Rheumatology, Osteoporosis Center, Hospital for Joint Diseases (S.H.), NYU Langone Medical Center, 660 First Ave, New York, NY 10016; Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pa (C.S.R.); and College of Engineering, University of Iowa, Iowa City, Iowa (C.C., P.K.S.)
| | - Ravinder R Regatte
- From the Department of Radiology, Center for Biomedical Imaging (G.C., A.W., R.R.R.), Department of Orthopaedic Surgery, Hospital for Joint Diseases (K.E.), and Division of Rheumatology, Osteoporosis Center, Hospital for Joint Diseases (S.H.), NYU Langone Medical Center, 660 First Ave, New York, NY 10016; Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pa (C.S.R.); and College of Engineering, University of Iowa, Iowa City, Iowa (C.C., P.K.S.)
| | - Punam K Saha
- From the Department of Radiology, Center for Biomedical Imaging (G.C., A.W., R.R.R.), Department of Orthopaedic Surgery, Hospital for Joint Diseases (K.E.), and Division of Rheumatology, Osteoporosis Center, Hospital for Joint Diseases (S.H.), NYU Langone Medical Center, 660 First Ave, New York, NY 10016; Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pa (C.S.R.); and College of Engineering, University of Iowa, Iowa City, Iowa (C.C., P.K.S.)
| | - Stephen Honig
- From the Department of Radiology, Center for Biomedical Imaging (G.C., A.W., R.R.R.), Department of Orthopaedic Surgery, Hospital for Joint Diseases (K.E.), and Division of Rheumatology, Osteoporosis Center, Hospital for Joint Diseases (S.H.), NYU Langone Medical Center, 660 First Ave, New York, NY 10016; Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pa (C.S.R.); and College of Engineering, University of Iowa, Iowa City, Iowa (C.C., P.K.S.)
| |
Collapse
|
17
|
Correlative Analysis of Vertebral Trabecular Bone Microarchitecture and Mechanical Properties: A Combined Ultra-high Field (7 Tesla) MRI and Biomechanical Investigation. Spine (Phila Pa 1976) 2017; 42:E1165-E1172. [PMID: 28338579 DOI: 10.1097/brs.0000000000002163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN High-resolution imaging and biomechanical investigation of ex-vivo vertebrae. OBJECTIVE The aim of this study was to assess bone microarchitecture of cadaveric vertebrae using ultra-high field (UHF) 7 Tesla magnetic resonance imaging (MRI) and to determine whether the corresponding microarchitecture parameters were related to bone mineral density (BMD) and bone strength assessed by dual-energy x-ray absorptiometry (DXA) and mechanical compression tests. SUMMARY OF BACKGROUND DATA Limitations of DXA for the assessment of bone fragility and osteoporosis have been recognized and criteria of microarchitecture alteration have been included in the definition of osteoporosis. Although vertebral fracture is the most common osteoporotic fracture, no study has assessed directly vertebral trabecular bone microarchitecture. METHODS BMD of 24 vertebrae (L2, L3, L4) from eight cadavers was investigated using DXA. The bone volume fraction (BVF), trabecular thickness (Tb.Th), and trabecular spacing (Tb.Sp) of each vertebra were quantified using UHF MRI. Measurements were performed by two operators to characterize the inter-rater reliability. The whole set of specimens underwent mechanical compression tests to failure and the corresponding failure stress was calculated. RESULTS The inter-rater reliability for bone microarchitecture parameters was good with intraclass correlation coefficients ranging from 0.82 to 0.94. Failure load and stress were significantly correlated with BVF, Tb.Sp, and BMD (P < 0.05). Tb.Th was only correlated with the failure stress (P < 0.05). Multiple regression analysis demonstrated that the combination of BVF and BMD improved the prediction of the failure stress from an adjusted R = 0.384 for BMD alone to an adjusted R = 0.414. CONCLUSION We demonstrated for the first time that the vertebral bone microarchitecture assessed with UHF MRI was significantly correlated with biomechanical parameters. Our data suggest that the multimodal assessment of BMD and trabecular bone microarchitecture with UHF MRI provides additional information on the risk of vertebral bone fracture and might be of interest for the future investigation of selected osteoporotic patients. LEVEL OF EVIDENCE N /A.
Collapse
|
18
|
Harlow L, Sahbani K, Nyman JS, Cardozo CP, Bauman WA, Tawfeek HA. Daily parathyroid hormone administration enhances bone turnover and preserves bone structure after severe immobilization-induced bone loss. Physiol Rep 2017; 5:5/18/e13446. [PMID: 28963125 PMCID: PMC5617932 DOI: 10.14814/phy2.13446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/10/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023] Open
Abstract
Immobilization, as a result of motor‐complete spinal cord injury (SCI), is associated with severe osteoporosis. Whether parathyroid hormone (PTH) administration would reduce bone loss after SCI remains unclear. Thus, female mice underwent sham or surgery to produce complete spinal cord transection. PTH (80 μg/kg) or vehicle was injected subcutaneously (SC) daily starting on the day of surgery and continued for 35 days. Isolated tibias and femurs were examined by microcomputed tomography scanning (micro‐CT) and histology and serum markers of bone turnover were measured. Micro‐CT analysis of tibial metaphysis revealed that the SCI‐vehicle animals exhibited 49% reduction in fractional trabecular bone volume and 18% in trabecular thickness compared to sham‐vehicle controls. SCI‐vehicle animals also had 15% lower femoral cortical thickness and 16% higher cortical porosity than sham‐vehicle counterparts. Interestingly, PTH administration to SCI animals restored 78% of bone volume, increased connectivity to 366%, and lowered structure model index by 10% compared to sham‐vehicle animals. PTH further favorably attenuated femoral cortical bone loss to 5% and prevented the SCI‐associated cortical porosity. Histomorphometry evaluation of femurs of SCI‐vehicle animals demonstrated a marked 49% and 38% decline in osteoblast and osteoclast number, respectively, and 35% reduction in bone formation rate. In contrast, SCI‐PTH animals showed preserved osteoblast and osteoclast numbers and enhanced bone formation rate. Furthermore, SCI‐PTH animals had higher levels of bone formation and resorption markers than either SCI‐ or sham‐vehicle groups. Collectively, these findings suggest that intermittent PTH receptor activation is an effective therapeutic strategy to preserve bone integrity after severe immobilization.
Collapse
Affiliation(s)
- Lauren Harlow
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| | - Karim Sahbani
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery & Rehabilitation, Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Biomedical Engineering, Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christopher P Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York.,Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Rehabilitation Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Pharmacologic Science, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - William A Bauman
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York.,Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hesham A Tawfeek
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York .,Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
19
|
Chang G, Boone S, Martel D, Rajapakse CS, Hallyburton RS, Valko M, Honig S, Regatte RR. MRI assessment of bone structure and microarchitecture. J Magn Reson Imaging 2017; 46:323-337. [PMID: 28165650 PMCID: PMC5690546 DOI: 10.1002/jmri.25647] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is a disease of weak bone and increased fracture risk caused by low bone mass and microarchitectural deterioration of bone tissue. The standard-of-care test used to diagnose osteoporosis, dual-energy x-ray absorptiometry (DXA) estimation of areal bone mineral density (BMD), has limitations as a tool to identify patients at risk for fracture and as a tool to monitor therapy response. Magnetic resonance imaging (MRI) assessment of bone structure and microarchitecture has been proposed as another method to assess bone quality and fracture risk in vivo. MRI is advantageous because it is noninvasive, does not require ionizing radiation, and can evaluate both cortical and trabecular bone. In this review article, we summarize and discuss research progress on MRI of bone structure and microarchitecture over the last decade, focusing on in vivo translational studies. Single-center, in vivo studies have provided some evidence for the added value of MRI as a biomarker of fracture risk or treatment response. Larger, prospective, multicenter studies are needed in the future to validate the results of these initial translational studies. LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 5 J. MAGN. RESON. IMAGING 2017;46:323-337.
Collapse
Affiliation(s)
- Gregory Chang
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Sean Boone
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Dimitri Martel
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Chamith S Rajapakse
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert S Hallyburton
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Mitch Valko
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Stephen Honig
- Osteoporosis Center, Hospital for Joint Diseases, NYU Langone Medical Center, New York, New York, USA
| | - Ravinder R Regatte
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW This paper seeks to evaluate and compare recent advances in the clinical assessment of the changes in bone mechanical properties that take place as a result of osteoporosis and other metabolic bone diseases and their treatments. RECENT FINDINGS In addition to the standard of DXA-based areal bone mineral density (aBMD), a variety of methods, including imaging-based structural measurements, finite element analysis (FEA)-based techniques, and alternate methods including ultrasound, bone biopsy, reference point indentation, and statistical shape and density modeling, have been developed which allow for reliable prediction of bone strength and fracture risk. These methods have also shown promise in the evaluation of treatment-induced changes in bone mechanical properties. Continued technological advances allowing for increasingly high-resolution imaging with low radiation dose, together with the expanding adoption of DXA-based predictions of bone structure and mechanics, as well as the increasing awareness of the importance of bone material properties in determining whole-bone mechanics, lead us to anticipate substantial future advances in this field.
Collapse
Affiliation(s)
- Chantal M J de Bakker
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 426C Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Wei-Ju Tseng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 426C Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Yihan Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 426C Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Hongbo Zhao
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 426C Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA, 19104, USA
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 426C Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
21
|
Kraiger M, Schnizer B, Stollberger R. The vertebral trabecular model revisited: magnetic field distribution in the vicinity of osseous disconnections. Phys Med Biol 2016; 61:N618-N631. [DOI: 10.1088/0031-9155/61/23/n618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Trattnig S, Bogner W, Gruber S, Szomolanyi P, Juras V, Robinson S, Zbýň Š, Haneder S. Clinical applications at ultrahigh field (7 T). Where does it make the difference? NMR IN BIOMEDICINE 2016; 29:1316-34. [PMID: 25762432 DOI: 10.1002/nbm.3272] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 05/11/2023]
Abstract
Presently, three major MR vendors provide commercial 7-T units for clinical research under ethical permission, with the number of operating 7-T systems having increased to over 50. This rapid increase indicates the growing interest in ultrahigh-field MRI because of improved clinical results with regard to morphological as well as functional and metabolic capabilities. As the signal-to-noise ratio scales linearly with the field strength (B0 ) of the scanner, the most obvious application at 7 T is to obtain higher spatial resolution in the brain, musculoskeletal system and breast. Of specific clinical interest for neuro-applications is the cerebral cortex at 7 T, for the detection of changes in cortical structure as a sign of early dementia, as well as for the visualization of cortical microinfarcts and cortical plaques in multiple sclerosis. In the imaging of the hippocampus, even subfields of the internal hippocampal anatomy and pathology can be visualized with excellent resolution. The dynamic and static blood oxygenation level-dependent contrast increases linearly with the field strength, which significantly improves the pre-surgical evaluation of eloquent areas before tumor removal. Using susceptibility-weighted imaging, the plaque-vessel relationship and iron accumulation in multiple sclerosis can be visualized for the first time. Multi-nuclear clinical applications, such as sodium imaging for the evaluation of repair tissue quality after cartilage transplantation and (31) P spectroscopy for the differentiation between non-alcoholic benign liver disease and potentially progressive steatohepatitis, are only possible at ultrahigh fields. Although neuro- and musculoskeletal imaging have already demonstrated the clinical superiority of ultrahigh fields, whole-body clinical applications at 7 T are still limited, mainly because of the lack of suitable coils. The purpose of this article was therefore to review the clinical studies that have been performed thus far at 7 T, compared with 3 T, as well as those studies performed at 7 T that cannot be routinely performed at 3 T. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Siegfried Trattnig
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- CD Laboratory for Clinical Molecular MR Imaging
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Stephan Gruber
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Pavol Szomolanyi
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Imaging Methods, Institute of Measurement Sciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vladimir Juras
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Imaging Methods, Institute of Measurement Sciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Simon Robinson
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Štefan Zbýň
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Stefan Haneder
- Vascular and Abdominal Imaging, Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Mannheim, Germany
| |
Collapse
|
23
|
Abstract
Tissue-level mechanical properties characterize mechanical behavior independently of microscopic porosity. Specifically, quasi-static nanoindentation provides measurements of modulus (stiffness) and hardness (resistance to yielding) of tissue at the length scale of the lamella, while dynamic nanoindentation assesses time-dependent behavior in the form of storage modulus (stiffness), loss modulus (dampening), and loss factor (ratio of the two). While these properties are useful in establishing how a gene, signaling pathway, or disease of interest affects bone tissue, they generally do not vary with aging after skeletal maturation or with osteoporosis. Heterogeneity in tissue-level mechanical properties or in compositional properties may contribute to fracture risk, but a consensus on whether the contribution is negative or positive has not emerged. In vivo indentation of bone tissue is now possible, and the mechanical resistance to microindentation has the potential for improving fracture risk assessment, though determinants are currently unknown.
Collapse
Affiliation(s)
- Jeffry S Nyman
- Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. S., South Tower, Suite 4200, Nashville, TN, 37232, USA.
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA.
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Mathilde Granke
- Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. S., South Tower, Suite 4200, Nashville, TN, 37232, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Robert C Singleton
- Materials Science and Engineering Department, University of Tennessee, Knoxville, TN, 37996, USA
| | - George M Pharr
- Materials Science and Engineering Department, University of Tennessee, Knoxville, TN, 37996, USA
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
24
|
Jakob F, Genest F, Seefried L, Tsourdi E, Lapa C, Hofbauer LC. [Diagnostics in osteology]. Internist (Berl) 2016; 57:631-7. [PMID: 27307159 DOI: 10.1007/s00108-016-0081-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Clinical diagnostics in metabolic bone diseases cover a broad spectrum of conventional and state of the art methods ranging from the medical history and clinical examination to molecular imaging. Patient treatment is carried out in an interdisciplinary team due to the multiple interactions of bone with other organ systems. Diagnosis of osteoporosis is supported by high level national guidelines. A paradigm shift concerning the clinical relevance of bone mineral density measurement renders this now to be a strong risk factor rather than a diagnostic parameter, while strengthening the value of other clinical factors for risk assessment. The impact of parameters for muscle mass, structure and function is steadily increasing in all age groups. In order to identify underlying diseases that influence bone metabolism a panel of general laboratory diagnostic parameters is recommended. Markers for bone formation and resorption and specific parameters for the regulation of calcium and phosphate metabolism should be evaluated by specialists because they require diligence in preanalytics and experience in interpretation. Genetic diagnosis is well established for rare bone diseases while diagnostic panels are not yet available for routine diagnostics in polygenetic diseases such as osteoporosis. Conventional radiology is still very important to identify, e. g. fractures, osteolytic and osteoblastic lesions and extraosseous calcifications; however tomography-based methods which combine, e. g. scintigraphy or positron emission technologies with anatomical imaging are of increasing significance. Clinical diagnostics in osteology require profound knowledge and are subject to a dynamic evolution.
Collapse
Affiliation(s)
- F Jakob
- Experimentelle und Klinische Osteologie, Lehrstuhl Orthopädie und Orthopädische Klinik König-Ludwig-Haus, Brettreichstr. 11, 97074, Würzburg, Deutschland.
| | - F Genest
- Experimentelle und Klinische Osteologie, Lehrstuhl Orthopädie und Orthopädische Klinik König-Ludwig-Haus, Brettreichstr. 11, 97074, Würzburg, Deutschland
| | - L Seefried
- Experimentelle und Klinische Osteologie, Lehrstuhl Orthopädie und Orthopädische Klinik König-Ludwig-Haus, Brettreichstr. 11, 97074, Würzburg, Deutschland
| | - E Tsourdi
- Bereich für Endokrinologie, Diabetes und Knochenerkrankungen und Zentrum für Gesundes Altern, Universitätsklinikum der TU Dresden, Dresden, Deutschland
| | - C Lapa
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - L C Hofbauer
- Bereich für Endokrinologie, Diabetes und Knochenerkrankungen und Zentrum für Gesundes Altern, Universitätsklinikum der TU Dresden, Dresden, Deutschland
| |
Collapse
|
25
|
Bolog NV, Andreisek G. Reporting knee meniscal tears: technical aspects, typical pitfalls and how to avoid them. Insights Imaging 2016; 7:385-98. [PMID: 26883139 PMCID: PMC4877346 DOI: 10.1007/s13244-016-0472-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED Magnetic resonance imaging (MRI) is the most accurate imaging technique in the diagnosis of meniscal lesions and represents a standard tool in knee evaluation. MRI plays a critical role in influencing the treatment decision and enables information that would obviate unnecessary surgery including diagnostic arthroscopy. An accurate interpretation of the knee depends on several factors, starting with technical aspects including radiofrequency coils, imaging protocol and magnetic field strength. The use of dedicated high-resolution orthopaedic coils with a different number of integrated elements is mandatory in order to ensure high homogeneity of the signal and high-resolution images. The clinical imaging protocol of the knee includes different MRI sequences with high-spatial resolution in all orientations: sagittal, coronal, and axial. Usually, the slice thickness is 3 mm or less, even with standard two-dimensional fast spin echo sequences. A common potential reason for pitfalls and errors of interpretation is the unawareness of the normal tibial attachments and capsular attachment of the menisci. Complete description of meniscal tears implies that the radiologist should be aware of the patterns and the complex classification of the lesions. TEACHING POINTS • Technical factors may influence MRI interpretation. • Unawareness of the normal meniscal anatomy may lead to errors of interpretation. • Description of meniscal tears implies the knowledge of meniscal tear classification.
Collapse
Affiliation(s)
- Nicolae V Bolog
- Phoenix Swiss Med, Mittelweg 29, 4142, Munchenstein, Switzerland.
| | - Gustav Andreisek
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Ramistrasse 100, 8091, Zurich, Switzerland
| |
Collapse
|
26
|
Tascau L, Gardner T, Anan H, Yongpravat C, Cardozo CP, Bauman WA, Lee FY, Oh DS, Tawfeek HA. Activation of Protein Kinase A in Mature Osteoblasts Promotes a Major Bone Anabolic Response. Endocrinology 2016; 157:112-26. [PMID: 26488807 DOI: 10.1210/en.2015-1614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein kinase A (PKA) regulates osteoblast cell function in vitro and is activated by important bone mass modulating agents. We determined whether PKA activation in osteoblasts is sufficient to mediate a bone anabolic response. Thus, a mouse model conditionally expressing a constitutively active PKA (CA-PKA) in osteoblasts (CA-PKA-OB mouse) was developed by crossing a 2.3-kb α1 (I)-collagen promoter-Cre mouse with a floxed-CA-PKA mouse. Primary osteoblasts from the CA-PKA-OB mice exhibited higher basal PKA activity than those from control mice. Microcomputed tomographic analysis revealed that CA-PKA-OB female mice had an 8.6-fold increase in femoral but only 1.16-fold increase in lumbar 5 vertebral bone volume/total volume. Femur cortical thickness and volume were also higher in the CA-PKA-OB mice. In contrast, alterations in many femoral microcomputed tomographic parameters in male CA-PKA-OB mice were modest. Interestingly, the 3-dimensional structure model index was substantially lower both in femur and lumbar 5 of male and female CA-PKA-OB mice, reflecting an increase in the plate to rod-like structure ratio. In agreement, femurs from female CA-PKA-OB mice had greater load to failure and were stiffer compared with those of control mice. Furthermore, the CA-PKA-OB mice had higher levels of serum bone turnover markers and increased osteoblast and osteoclast numbers per total tissue area compared with control animals. In summary, constitutive activation of PKA in osteoblasts is sufficient to increase bone mass and favorably modify bone architecture and improve mechanical properties. PKA activation in mature osteoblasts is, therefore, an important target for designing anabolic drugs for treating diseases with bone loss.
Collapse
Affiliation(s)
- Liana Tascau
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Thomas Gardner
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Hussein Anan
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Charlie Yongpravat
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Christopher P Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - William A Bauman
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Francis Y Lee
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Daniel S Oh
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Hesham A Tawfeek
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| |
Collapse
|
27
|
Wong AKO, Beattie KA, Min KKH, Merali Z, Webber CE, Gordon CL, Papaioannou A, Cheung AMW, Adachi JD. A Trimodality Comparison of Volumetric Bone Imaging Technologies. Part III: SD, SEE, LSC Association With Fragility Fractures. J Clin Densitom 2015; 18:408-18. [PMID: 25129407 PMCID: PMC5092155 DOI: 10.1016/j.jocd.2014.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/13/2014] [Accepted: 07/03/2014] [Indexed: 11/29/2022]
Abstract
Part II of this 3-part series demonstrated 1-yr precision, standard error of the estimate, and 1-yr least significant change for volumetric bone outcomes determined using peripheral (p) quantitative computed tomography (QCT) and peripheral magnetic resonance imaging (pMRI) modalities in vivo. However, no clinically relevant outcomes have been linked to these measures of change. This study examined 97 women with mean age of 75 ± 9 yr and body mass index of 26.84 ± 4.77 kg/m(2), demonstrating a lack of association between fragility fractures and standard deviation, least significant change and standard error of the estimate-based unit differences in volumetric bone outcomes derived from both pMRI and pQCT. Only cortical volumetric bone mineral density and cortical thickness derived from high-resolution pQCT images were associated with an increased odds for fractures. The same measures obtained by pQCT erred toward significance. Despite the smaller 1-yr and short-term precision error for measures at the tibia vs the radius, the associations with fractures observed at the radius were larger than at the tibia for high-resolution pQCT. Unit differences in cortical thickness and cortical volumetric bone mineral density able to yield a 50% increase in odds for fractures were quantified here and suggested as a reference for future power computations.
Collapse
Affiliation(s)
- Andy K O Wong
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
| | - Karen A Beattie
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Kevin K H Min
- Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Zamir Merali
- Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Colin E Webber
- Department of Nuclear Medicine, Hamilton Health Sciences, Hamilton, ON, Canada
| | | | | | - Angela M W Cheung
- Osteoporosis Program, University Health Network, Toronto, ON, Canada
| | | |
Collapse
|
28
|
Hotca A, Rajapakse CS, Cheng C, Honig S, Egol K, Regatte RR, Saha PK, Chang G. In vivo measurement reproducibility of femoral neck microarchitectural parameters derived from 3T MR images. J Magn Reson Imaging 2015; 42:1339-45. [PMID: 25824566 DOI: 10.1002/jmri.24892] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/08/2015] [Indexed: 01/09/2023] Open
Abstract
PURPOSE To evaluate the within-day and between-day measurement reproducibility of in vivo 3D MRI assessment of trabecular bone microarchitecture of the proximal femur. MATERIALS AND METHODS This Health Insurance Portability and Accountability Act (HIPPA)-compliant, Institutional Review Board (IRB)-approved study was conducted on 11 healthy subjects (mean age = 57.4 ± 14.1 years) with written informed consent. All subjects underwent a 3T MRI hip scan in vivo (0.234 × 0.234 × 1.5 mm) at three timepoints: baseline, second scan same day (intrascan), and third scan 1 week later (interscan). We applied digital topological analysis and volumetric topological analysis to compute the following microarchitectural parameters within the femoral neck: total bone volume, bone volume fraction, markers of trabecular number (skeleton density), connectivity (junctions), plate-like structure (surfaces), plate width, and trabecular thickness. Reproducibility was assessed using root-mean-square coefficient of variation (RMS-CV) and intraclass correlation coefficient (ICC). RESULTS The within-day RMS-CVs ranged from 2.3% to 7.8%, and the between-day RMS-CVs ranged from 4.0% to 7.3% across all parameters. The within-day ICCs ranged from 0.931 to 0.989, and the between-day ICCs ranged from 0.934 to 0.971 across all parameters. CONCLUSION These results demonstrate high reproducibility for trabecular bone microarchitecture measures derived from 3T MR images of the proximal femur. The measurement reproducibility is within a range suitable for clinical cross-sectional and longitudinal studies in osteoporosis.
Collapse
Affiliation(s)
- Alexandra Hotca
- Department of Radiology, NYU Langone Medical Center, Center for Musculoskeletal Care, New York, New York, USA.,Department of Radiology, NYU Langone Medical Center, Center for Biomedical Imaging, New York, New York, USA
| | - Chamith S Rajapakse
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Chen Cheng
- Department of Radiology and Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Stephen Honig
- Osteoporosis Center, Hospital for Joint Diseases, NYU Langone Medical Center, New York, New York, USA
| | - Kenneth Egol
- Department of Orthopedic Surgery, Hospital for Joint Diseases, NYU Langone Medical Center, New York, New York, USA
| | - Ravinder R Regatte
- Department of Radiology, NYU Langone Medical Center, Center for Biomedical Imaging, New York, New York, USA
| | - Punam K Saha
- Department of Radiology and Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Gregory Chang
- Department of Radiology, NYU Langone Medical Center, Center for Musculoskeletal Care, New York, New York, USA.,Department of Radiology, NYU Langone Medical Center, Center for Biomedical Imaging, New York, New York, USA
| |
Collapse
|