1
|
Sun Y, Xiao Z, Yang S, Hao C, Zhao H, An Y. Advances and insights for DKK3 in non-cancerous diseases: a systematic review. PeerJ 2025; 13:e18935. [PMID: 39959827 PMCID: PMC11830365 DOI: 10.7717/peerj.18935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/14/2025] [Indexed: 02/18/2025] Open
Abstract
This review delves into the role of Dickkopf-3 (DKK3), a secreted glycoprotein and member of the Dickkopf family, in non-malignant diseases. DKK3 is particularly known for its regulatory effects on the Wnt signaling pathway, a critical mediator in various biological processes including cell proliferation, differentiation, and migration. Our review highlights DKK3's influence in disorders of the cardiovascular, respiratory, renal, and muscular systems, where it contributes to disease progression by modulating these key biological processes. As an emerging biomarker, DKK3's levels have been found to correlate with various disease states, underscoring its potential diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Yao Sun
- Intensive Care Unit, Peking University People’s Hospital, Beijing, China
| | - Zengli Xiao
- Intensive Care Unit, Peking University People’s Hospital, Beijing, China
| | - Shuguang Yang
- Intensive Care Unit, Peking University People’s Hospital, Beijing, China
| | - Chenxiao Hao
- Intensive Care Unit, Peking University People’s Hospital, Beijing, China
| | - Huiying Zhao
- Intensive Care Unit, Peking University People’s Hospital, Beijing, China
| | - Youzhong An
- Intensive Care Unit, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
2
|
Koguchi M, Mori Y, Kamimura M, Ito K, Tanaka H, Kurishima H, Koyama T, Mori N, Masahashi N, Aizawa T. Low Young's Modulus TiNbSn Alloy Locking Plates Accelerate Osteosynthesis in Rabbit Tibiae. TOHOKU J EXP MED 2023; 261:199-209. [PMID: 37704419 DOI: 10.1620/tjem.2023.j075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
A new beta TiNbSn alloy with a low Young's modulus of approximately 40 GPa has been developed to resolve the stress shielding by Young's modulus divergence. In this study, the efficacy of TiNbSn alloy locking plates on bone repair is compared to that of commercially pure titanium (CP-Ti). The TiNbSn alloy and CP-Ti, which have Young's moduli of 49.1 GPa and 107 GPa, respectively, were compared. Male Japanese white rabbits were anesthetized, and osteotomy and osteosynthesis with locking plates were performed on the right tibia. The bone repair was assessed using micro-computed tomography (CT), histomorphometry, immunohistochemistry, and mechanical testing. Micro-CT, histomorphometry, immunohistochemistry, and mechanical testing were performed four weeks after osteotomy. Six weeks after surgery, micro-CT and mechanical testing were performed. Micro-CT analysis at four weeks after surgery showed that the intramedullary fracture callus in the TiNbSn alloy group had more bone volume and numerous bridging structures compared to the CP-Ti group (CP-Ti vs. TiNbSn alloy, 34.3 ± 13.1 mm3 vs. 61.3 ± 19.6 mm3, p = 0.02; mean ± standard deviation). At four weeks post-osteotomy, the healed tibia showed significantly higher strength in the TiNbSn alloy group compared with CP-Ti (CP-Ti vs. TiNbSn alloy, 81.3 ± 31.2 N vs. 133.7 ± 46.6 N, p = 0.04). TiNbSn alloy locking plates had a more positive impact on bone formation and bone strength restoration than the CP-Ti locking plates during the early phase of bone healing.
Collapse
Affiliation(s)
- Masashi Koguchi
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Yu Mori
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Masayuki Kamimura
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Kentaro Ito
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Hidetatsu Tanaka
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Hiroaki Kurishima
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Tomoki Koyama
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Naoko Mori
- Department of Radiology, Akita University Graduate School of Medicine
| | | | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| |
Collapse
|
3
|
Baba K, Mori Y, Chiba D, Kuwahara Y, Kurishima H, Tanaka H, Kogure A, Kamimura M, Yamada N, Ohtsu S, Oyama M, Masahashi N, Hanada S, Itoi E, Aizawa T. TiNbSn stems with gradient changes of Young's modulus and stiffness reduce stress shielding compared to the standard fit-and-fill stems. Eur J Med Res 2023; 28:214. [PMID: 37400903 DOI: 10.1186/s40001-023-01199-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/26/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The difference between Young's moduli of the femur and the stem causes stress shielding (SS). TiNbSn (TNS) stem has a low Young's modulus and strength with gradient functional properties during the change in elastic modulus with heat treatment. The aim of this study was to investigate the inhibitory effect of TNS stems on SS and their clinical outcomes compared to conventional stems. METHODS This study was a clinical trial. Primary THA was performed using a TNS stem from April 2016 to September 2017 for patients in the TNS group. Unilateral THA was performed using a Ti6Al4V alloy stem from January 2007 to February 2011 for patients in the control group. The TNS and Ti6Al4V stems were matched in shape. Radiographs were obtained at the 1- and 3-year follow-ups. Two surgeons independently checked the SS grade and appearance of cortical hypertrophy (CH). The Japanese Orthopaedic Association (JOA) scores before and 1 year after surgery were assessed as clinical scores. RESULTS None of the patients in the TNS group had grade 3 or 4 SS. In contrast, in the control group, 24% and 40% of patients had grade 3 and 4 SS at the 1- and 3-year follow-ups, respectively. The SS grade was lower in the TNS group than in the control group at the 1- and 3-year follow-ups (p < 0.001). The frequencies of CH in both groups were no significant difference at the 1- and 3-year follow-ups. The JOA scores of the TNS group significantly improved at 1 year after surgery and were comparable to control group. CONCLUSION The TNS stem reduced SS at 1 and 3 years after THA compared to the proximal-engaging cementless stem, although the shapes of the stems matched. The TNS stem could reduce SS, stem loosening, and periprosthetic fractures. TRIAL REGISTRATION Current Controlled Trials. ISRCTN21241251. https://www.isrctn.com/search?q=21241251 . The date of registration was October 26, 2021. Retrospectively registered.
Collapse
Affiliation(s)
- Kazuyoshi Baba
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Yu Mori
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Daisuke Chiba
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Yoshiyuki Kuwahara
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Hiroaki Kurishima
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Hidetatsu Tanaka
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Atsushi Kogure
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Masayuki Kamimura
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Norikazu Yamada
- Department of Orthopaedic Surgery, Sendai Red Cross Hospital, 2‑43‑3 Yagiyamahoncho, Taihaku‑ku, Sendai, Miyagi, 982-8501, Japan
| | - Susumu Ohtsu
- Department of Orthopaedic Surgery, Osaki Citizen Hospital, 3-8-1 Furukawahonami, Osaki, Miyagi, 989-6183, Japan
| | - Masamizu Oyama
- Department of Orthopaedic Surgery, Sendai Red Cross Hospital, 2‑43‑3 Yagiyamahoncho, Taihaku‑ku, Sendai, Miyagi, 982-8501, Japan
| | - Naoya Masahashi
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Shuji Hanada
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku Rosai Hospital, 4-3-21 Dainohara, Aoba-ku, Sendai, Miyagi, 981-0911, Japan
| | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
4
|
Mori Y, Masahashi N, Aizawa T. A Review of Anodized TiNbSn Alloys for Improvement in Layer Quality and Application to Orthopedic Implants. MATERIALS 2022; 15:ma15155116. [PMID: 35897548 PMCID: PMC9331693 DOI: 10.3390/ma15155116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023]
Abstract
Titanium alloys are useful for application in orthopedic implants. However, complications, such as prosthetic infections and aseptic loosening, often occur after orthopedic devices are implanted. Therefore, innovation in surface modification techniques is essential to develop orthopedic materials with optimal properties at the biomaterial–bone interface. In this review, we present recent research on the improvement in the osteoconductivity and antibacterial effect of the Ti-33.6% Nb-4% Sn (TiNbSn) alloy by anodic oxidation and other related studies. TiNbSn alloys are excellent new titanium alloys with a low Young’s modulus, high tensile strength, and with gradient functional properties such as a thermally adjustable Young’s modulus and strength. Titanium dioxide (TiO2), when obtained by the anodic oxidation of a TiNbSn alloy, improves bone affinity and provides antibacterial performance owing to its photocatalytic activity. The safety of TiO2 and its strong bonding with metal materials make its method of preparation a promising alternative to conventional methods for improving the surface quality of orthopedic implants. Implementing anodization technology for TiNbSn alloys may alleviate orthopedic surgery-related complications, such as loosening, stress shielding, and infection after arthroplasty.
Collapse
Affiliation(s)
- Yu Mori
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan;
- Correspondence: ; Tel.: +81-22-717-7245; Fax: +81-22-717-7248
| | - Naoya Masahashi
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan;
| | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan;
| |
Collapse
|
5
|
Zhou Y, Zhang C, Zhou Z, Zhang C, Wang J. Identification of Key Genes and Pathways Associated with PIEZO1 in Bone-Related Disease Based on Bioinformatics. Int J Mol Sci 2022; 23:5250. [PMID: 35563641 PMCID: PMC9104149 DOI: 10.3390/ijms23095250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 12/20/2022] Open
Abstract
PIEZO1 is a mechano-sensitive ion channel that can sense various forms of mechanical stimuli and convert them into biological signals, affecting bone-related diseases. The present study aimed to identify key genes and signaling pathways in Piezo1-regulated bone-related diseases and to explain the potential mechanisms using bioinformatic analysis. The differentially expressed genes (DEGs) in tendon, femur, and humerus bone tissue; cortical bone; and bone-marrow-derived macrophages were identified with the criteria of |log2FC| > 1 and adjusted p-value < 0.05 analysis based on a dataset from GSE169261, GSE139121, GSE135282, and GSE133069, respectively, and visualized in a volcano plot. Venn diagram analyses were performed to identify the overlapping DEGs expressed in the above-mentioned tissues. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, protein−protein interaction (PPI) analysis, and module analysis were also conducted. Furthermore, qRT-PCR was performed to validate the above results using primary chondrocytes. As a result, a total of 222 overlapping DEGs and 12 mostly overlapping DEGs were identified. Key Piezo1-related genes, such as Lcn2, Dkk3, Obscn, and Tnnt1, were identified, and pathways, such as Wnt/β-catenin and PI3k-Akt, were also identified. The present informatic study provides insight, for the first time, into the potential therapeutic targets of Piezo1-regulated bone-related diseases
Collapse
Affiliation(s)
- Yuanyuan Zhou
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.Z.); (C.Z.)
| | - Chen Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.Z.); (C.Z.)
| | - Zhongguo Zhou
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane City 4072, Australia;
| | - Chao Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.Z.); (C.Z.)
| | - Jiali Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.Z.); (C.Z.)
| |
Collapse
|
6
|
Abstract
Fracture healing is a complex, multistep process that is highly sensitive to mechanical signaling. To optimize repair, surgeons prescribe immediate weight-bearing as-tolerated within 24 hours after surgical fixation; however, this recommendation is based on anecdotal evidence and assessment of bulk healing outcomes (e.g., callus size, bone volume, etc.). Given challenges in accurately characterizing the mechanical environment and the ever-changing properties of the regenerate, the principles governing mechanical regulation of repair, including their cell and molecular basis, are not yet well defined. However, the use of mechanobiological rodent models, and their relatively large genetic toolbox, combined with recent advances in imaging approaches and single-cell analyses is improving our understanding of the bone microenvironment in response to loading. This review describes the identification and characterization of distinct cell populations involved in bone healing and highlights the most recent findings on mechanical regulation of bone homeostasis and repair with an emphasis on osteo-angio coupling. A discussion on aging and its impact on bone mechanoresponsiveness emphasizes the need for novel mechanotherapeutics that can re-sensitize skeletal stem and progenitor cells to physical rehabilitation protocols.
Collapse
Affiliation(s)
- Tareq Anani
- Department of Orthopedic Surgery, New York University Langone Health, New York, NY 10010, USA
| | - Alesha B Castillo
- Department of Orthopedic Surgery, New York University Langone Health, New York, NY 10010, USA; Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA; Department of Veterans Affairs, New York Harbor Healthcare System, Manhattan Campus, New York, NY 10010, USA.
| |
Collapse
|
7
|
Mori Y, Fujisawa H, Kamimura M, Kogure A, Tanaka H, Mori N, Masahashi N, Aizawa T. Acceleration of Fracture Healing in Mouse Tibiae Using Intramedullary Nails Composed of β-Type TiNbSn Alloy with Low Young's Modulus. TOHOKU J EXP MED 2021; 255:135-142. [PMID: 34657901 DOI: 10.1620/tjem.255.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The optimal Young's modulus of material of orthopedic devices for fracture treatment is still unknown. The purpose of present study was to evaluate the impacts of intramedullary nails composed of a titanium alloy with low Young's modulus, on accelerating fracture healing compared with stainless steel with high Young's modulus. A β-type TiNbSn alloy with a low Young's modulus close to that of human cortical bone was developed for clinical application. TiNbSn alloy with a Young's modulus of 45 GPa and stainless steel with a Young's modulus of 205 GPa were compared, with respect to the impacts on fracture healing. Fracture and fixation using intramedullary nail were performed on the right tibiae of C57BL/6 mice. The assessment of bone healing was performed via micro-computed tomography, histomorphometry, and quantitative reverse transcription polymerase chain reaction. In micro-computed tomography, larger bone volumes were observed in the fracture callus treated with TiNbSn alloy in comparison with those treated with stainless steel. Histological assessments confirmed accelerated cartilage absorption and new bone formation in the TiNbSn alloy group compared with the stainless steel group. The expression of Col1a1, Runx2, Dkk1, and Acp5 was higher in the TiNbSn alloy group, while that of Col2a1 and Col10a1 was lower in the late phase. The present study demonstrated that the fixation by intramedullary nails with TiNbSn alloy offered an accelerated fracture healing with promotion of bone formation via increased Runx2 expression. TiNbSn alloy might be a promising material for fracture treatment devices.
Collapse
Affiliation(s)
- Yu Mori
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Hirokazu Fujisawa
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Masayuki Kamimura
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Atsushi Kogure
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Hidetatsu Tanaka
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Naoko Mori
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine
| | | | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| |
Collapse
|
8
|
Matthews BG, Novak S, Sbrana FV, Funnell JL, Cao Y, Buckels EJ, Grcevic D, Kalajzic I. Heterogeneity of murine periosteum progenitors involved in fracture healing. eLife 2021; 10:e58534. [PMID: 33560227 PMCID: PMC7906599 DOI: 10.7554/elife.58534] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
The periosteum is the major source of cells involved in fracture healing. We sought to characterize progenitor cells and their contribution to bone fracture healing. The periosteum is highly enriched with progenitor cells, including Sca1+ cells, fibroblast colony-forming units, and label-retaining cells compared to the endosteum and bone marrow. Using lineage tracing, we demonstrate that alpha smooth muscle actin (αSMA) identifies long-term, slow-cycling, self-renewing osteochondroprogenitors in the adult periosteum that are functionally important for bone formation during fracture healing. In addition, Col2.3CreER-labeled osteoblast cells contribute around 10% of osteoblasts but no chondrocytes in fracture calluses. Most periosteal osteochondroprogenitors following fracture can be targeted by αSMACreER. Previously identified skeletal stem cell populations were common in periosteum but contained high proportions of mature osteoblasts. We have demonstrated that the periosteum is highly enriched with skeletal progenitor cells, and there is heterogeneity in the populations of cells that contribute to mature lineages during periosteal fracture healing.
Collapse
Affiliation(s)
- Brya G Matthews
- Department of Molecular Medicine and Pathology, University of AucklandAucklandNew Zealand
- Department of Reconstructive Sciences, UConn HealthFarmingtonUnited States
| | - Sanja Novak
- Department of Reconstructive Sciences, UConn HealthFarmingtonUnited States
| | - Francesca V Sbrana
- Department of Reconstructive Sciences, UConn HealthFarmingtonUnited States
| | - Jessica L Funnell
- Department of Reconstructive Sciences, UConn HealthFarmingtonUnited States
| | - Ye Cao
- Department of Molecular Medicine and Pathology, University of AucklandAucklandNew Zealand
| | - Emma J Buckels
- Department of Molecular Medicine and Pathology, University of AucklandAucklandNew Zealand
| | - Danka Grcevic
- Department of Physiology and Immunology, University of ZagrebZagrebCroatia
- Croatian Intitute for Brain Research, University of ZagrebZagrebCroatia
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, UConn HealthFarmingtonUnited States
| |
Collapse
|
9
|
Rodríguez-Merchán EC. A Review of Recent Developments in the Molecular Mechanisms of Bone Healing. Int J Mol Sci 2021; 22:767. [PMID: 33466612 PMCID: PMC7828700 DOI: 10.3390/ijms22020767] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Between 5 and 10 percent of fractures do not heal, a condition known as nonunion. In clinical practice, stable fracture fixation associated with autologous iliac crest bone graft placement is the gold standard for treatment. However, some recalcitrant nonunions do not resolve satisfactorily with this technique. For these cases, biological alternatives are sought based on the molecular mechanisms of bone healing, whose most recent findings are reviewed in this article. The pro-osteogenic efficacy of morin (a pale yellow crystalline flavonoid pigment found in old fustic and osage orange trees) has recently been reported, and the combined use of bone morphogenetic protein-9 (BMP9) and leptin might improve fracture healing. Inhibition with methyl-piperidino-pyrazole of estrogen receptor alpha signaling delays bone regeneration. Smoking causes a chondrogenic disorder, aberrant activity of the skeleton's stem and progenitor cells, and an intense initial inflammatory response. Smoking cessation 4 weeks before surgery is therefore highly recommended. The delay in fracture consolidation in diabetic animals is related to BMP6 deficiency (35 kDa). The combination of bioceramics and expanded autologous human mesenchymal stem cells from bone marrow is a new and encouraging alternative for treating recalcitrant nonunions.
Collapse
Affiliation(s)
- Emerito Carlos Rodríguez-Merchán
- Osteoarticular Surgery Research, Hospital La Paz Institute for Health Research-IdiPAZ, La Paz University Hospital-Autonomous University of Madrid, 28046 Madrid, Spain
| |
Collapse
|
10
|
Sun J, Feng H, Xing W, Han Y, Suo J, Yallowitz AR, Qian N, Shi Y, Greenblatt MB, Zou W. Histone demethylase LSD1 is critical for endochondral ossification during bone fracture healing. SCIENCE ADVANCES 2020; 6:6/45/eaaz1410. [PMID: 33148658 PMCID: PMC7673679 DOI: 10.1126/sciadv.aaz1410] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Bone fracture is repaired predominantly through endochondral ossification. However, the regulation of endochondral ossification by key factors during fracture healing remains largely enigmatic. Here, we identify histone modification enzyme LSD1 as a critical factor regulating endochondral ossification during bone regeneration. Loss of LSD1 in Prx1 lineage cells severely impaired bone fracture healing. Mechanistically, LSD1 tightly controls retinoic acid signaling through regulation of Aldh1a2 expression level. The increased retinoic acid signaling in LSD1-deficient mice suppressed SOX9 expression and impeded the cartilaginous callus formation during fracture repair. The discovery that LSD1 can regulate endochondral ossification during fracture healing will benefit the understanding of bone regeneration and have implications for regenerative medicine.
Collapse
Affiliation(s)
- Jun Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Heng Feng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Wenhui Xing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yujiao Han
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jinlong Suo
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Alisha R Yallowitz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Niandong Qian
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Yujiang Shi
- Newborn Medicine Division, Boston Children's Hospital and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| |
Collapse
|
11
|
Esposito A, Wang L, Li T, Miranda M, Spagnoli A. Role of Prx1-expressing skeletal cells and Prx1-expression in fracture repair. Bone 2020; 139:115521. [PMID: 32629173 PMCID: PMC7484205 DOI: 10.1016/j.bone.2020.115521] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/22/2022]
Abstract
The healing capacity of bones after fracture implies the existence of adult regenerative cells. However, information on identification and functional role of fracture-induced progenitors is still lacking. Paired-related homeobox 1 (Prx1) is expressed during skeletogenesis. We hypothesize that fracture recapitulates Prx1's expression, and Prx1 expressing cells are critical to induce repair. To address our hypothesis, we used a combination of in vivo and in vitro approaches, short and long-term cell tracking analyses of progenies and actively expressing cells, cell ablation studies, and rodent animal models for normal and defective fracture healing. We found that fracture elicits a periosteal and endosteal response of perivascular Prx1+ cells that participate in fracture healing and showed that Prx1-expressing cells have a functional role in the repair process. While Prx1-derived cells contribute to the callus, Prx1's expression decreases concurrently with differentiation into cartilaginous and bone cells, similarly to when Prx1+ cells are cultured in differentiating conditions. We determined that bone morphogenic protein 2 (BMP2), through C-X-C motif-ligand-12 (CXCL12) signaling, modulates the downregulation of Prx1. We demonstrated that fracture elicits an early increase in BMP2 expression, followed by a decrease in CXCL12 that in turn down-regulates Prx1, allowing cells to commit to osteochondrogenesis. In vivo and in vitro treatment with CXCR4 antagonist AMD3100 restored Prx1 expression by modulating the BMP2-CXCL12 axis. Our studies represent a shift in the current research that has primarily focused on the identification of markers for postnatal skeletal progenitors, and instead we characterized the function of a specific population (Prx1+ cells) and their expression marker (Prx1) as a crossroad in fracture repair. The identification of fracture-induced perivascular Prx1+ cells and regulation of Prx1's expression by BMP2 and in turn by CXCL12 in the orchestration of fracture repair, highlights a pathway in which to investigate defective mechanisms and therapeutic targets for fracture non-union.
Collapse
Affiliation(s)
- Alessandra Esposito
- Department of Orthopaedic Surgery, Section of Molecular Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Lai Wang
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
| | - Tieshi Li
- Department of Pediatrics, University of Nebraska Medical Center, Children's Hospital & Medical Center, Omaha, NE, USA
| | - Mariana Miranda
- Department of Orthopaedic Surgery, Section of Molecular Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Anna Spagnoli
- Department of Orthopaedic Surgery, Section of Molecular Medicine, Rush University Medical Center, Chicago, IL, USA; Department of Pediatrics, Division of Pediatric Endocrinology, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
12
|
Lipphardt M, Dihazi H, Jeon NL, Dadafarin S, Ratliff BB, Rowe DW, Müller GA, Goligorsky MS. Dickkopf-3 in aberrant endothelial secretome triggers renal fibroblast activation and endothelial-mesenchymal transition. Nephrol Dial Transplant 2019; 34:49-62. [PMID: 29726981 DOI: 10.1093/ndt/gfy100] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/18/2018] [Indexed: 01/22/2023] Open
Abstract
Background Our laboratory has previously demonstrated that Sirt1endo-/- mice show endothelial dysfunction and exaggerated renal fibrosis, whereas mice with silenced endothelial transforming growth factor beta (TGF-β) signaling are resistant to fibrogenic signals. Considering the fact that the only difference between these mutant mice is confined to the vascular endothelium, this indicates that secreted substances contribute to these contrasting responses. Methods We performed an unbiased proteomic analysis of the secretome of renal microvascular endothelial cells (RMVECs) isolated from these two mutants. We cultured renal fibroblasts and RMVECs and used microfluidic devices for coculturing. Results Dickkopf-3 (DKK3), a putative ligand of the Wnt/β-catenin pathway, was present exclusively in the fibrogenic secretome. In cultured fibroblasts, DKK3 potently induced myofibroblast activation. In addition, DKK3 antagonized effects of DKK1, a known inhibitor of the Wnt pathway, in conversion of fibroblasts to myofibroblasts. In RMVECs, DKK3 induced endothelial-mesenchymal transition and impaired their angiogenic competence. The inhibition of endothelial outgrowth, enhanced myofibroblast formation and endothelial-mesenchymal transition were confirmed in coculture. In reporter DKK3-eGFP × Col3.6-GFPcyan mice, DKK3 was marginally expressed under basal conditions. Adriamycin-induced nephropathy resulted in upregulation of DKK3 expression in tubular and, to a lesser degree, endothelial compartments. Sulindac sulfide was found to exhibit superior Wnt pathway-suppressive action and decreased DKK3 signals and the extent of renal fibrosis. Conclusions In conclusion, this unbiased proteomic screen of the profibrogenic endothelial secretome revealed DKK3 acting as an agonist of the Wnt pathway, enhancing formation of myofibroblasts and endothelial-mesenchymal transition and impairing angiogenesis. A potent inhibitor of the Wnt pathway, sulindac sulfide, suppressed nephropathy-induced DKK3 expression and renal fibrosis.
Collapse
Affiliation(s)
- Mark Lipphardt
- Departments of Medicine, Pharmacology and Physiology, Renal Research Institute, New York Medical College at Touro University, Valhalla, NY, USA.,Department of Nephrology and Rheumatology, Göttingen University Medical School, Göttingen, Germany
| | - Hassan Dihazi
- Department of Nephrology and Rheumatology, Göttingen University Medical School, Göttingen, Germany
| | - Noo Li Jeon
- Division of WCU Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Institute of Advanced Machinery and Design, Seoul National University, Seoul, Korea
| | - Sina Dadafarin
- Departments of Medicine, Pharmacology and Physiology, Renal Research Institute, New York Medical College at Touro University, Valhalla, NY, USA
| | - Brian B Ratliff
- Departments of Medicine, Pharmacology and Physiology, Renal Research Institute, New York Medical College at Touro University, Valhalla, NY, USA
| | - David W Rowe
- Department of Reconstructive Sciences, Biomaterials and Skeletal Development, Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Gerhard A Müller
- Department of Nephrology and Rheumatology, Göttingen University Medical School, Göttingen, Germany
| | - Michael S Goligorsky
- Departments of Medicine, Pharmacology and Physiology, Renal Research Institute, New York Medical College at Touro University, Valhalla, NY, USA
| |
Collapse
|
13
|
Bone secreted factors induce cellular quiescence in prostate cancer cells. Sci Rep 2019; 9:18635. [PMID: 31819067 PMCID: PMC6901558 DOI: 10.1038/s41598-019-54566-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022] Open
Abstract
Disseminated tumor cells (DTCs) undergo a dormant state in the distant metastatic site(s) before becoming overt metastatic diseases. In prostate cancer (PCa), bone metastasis can occur years after prostatectomy, suggesting that bone may provide dormancy-inducing factors. To search for these factors, we prepared conditioned media (CM) from calvariae. Using live-cell imaging, we found that Calvarial-CM treatment increased cellular quiescence in C4-2B4 PCa cells. Mass spectrometry analysis of Calvarial-CM identified 132 secreted factors. Western blot and ELISA analyses confirmed the presence of several factors, including DKK3, BMP1, neogenin and vasorin in the Calvarial-CM. qRT-PCR analysis of total calvariae versus isolated osteoblasts showed that DKK3, BMP1, vasorin and neogenin are mainly expressed by osteoblasts, while MIA, LECT1, NGAL and PEDF are expressed by other calvarial cells. Recombinant human DKK3, BMP1, vasorin, neogenin, MIA and NGAL treatment increased cellular quiescence in both C4-2b and C4-2B4 PCa cells. Mechanistically, DKK3, vasorin and neogenin, but not BMP1, increased dormancy through activating the p38MAPK signaling pathway. Consistently, DKK3, vasorin and neogenin failed to induce dormancy in cells expressing dominant-negative p38αMAPK while BMP1 remained active, suggesting that BMP1 uses an alternative dormancy signaling pathway. Thus, bone secretes multiple dormancy-inducing factors that employ distinct signaling pathways to induce DTC dormancy in bone.
Collapse
|
14
|
Fujisawa H, Mori Y, Kogure A, Tanaka H, Kamimura M, Masahashi N, Hanada S, Itoi E. Effects of intramedullary nails composed of a new β-type Ti-Nb-Sn alloy with low Young's modulus on fracture healing in mouse tibiae. J Biomed Mater Res B Appl Biomater 2018; 106:2841-2848. [PMID: 29360240 DOI: 10.1002/jbm.b.34064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 09/27/2017] [Accepted: 12/02/2017] [Indexed: 11/05/2022]
Abstract
The influence of Young's moduli of materials on the fracture healing process remains unclear. This study aimed to assess the effects of intramedullary nails composed of materials with low Young's moduli on fracture repair. We previously developed a β-type Ti-Nb-Sn alloy with low Young's modulus close to that of human cortical bone. Here, we prepared two Ti-Nb-Sn alloys with Young's moduli of 45 and 78 GPa by heat treatment, and compared their effects on fracture healing. Fracture and nailing were performed in the right tibiae of C57BL/6 mice. The bone healing process was evaluated by microcomputed tomography (micro-CT), histomorphometry, and RT-PCR. We found larger bone volumes of fracture callus in the mice treated with the 45-GPa Ti-Nb-Sn alloy as compared with the 78-GPa Ti-Nb-Sn alloy in micro-CT analyses. This was confirmed with histology at day 14, with accelerated new bone formation and cartilage absorption in the 45-GPa Ti-Nb-Sn group compared with the 78-GPa Ti-Nb-Sn group. Acp5 expression was lower in the 45-GPa Ti-Nb-Sn group than in the 78-GPa Ti-Nb-Sn group at day 10. These findings indicate that intramedullary fixation with nails with a lower Young's modulus offer a greater capacity for fracture repair. Our 45-GPa Ti-Nb-Sn alloy is a promising material for fracture treatment implants. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2841-2848, 2018.
Collapse
Affiliation(s)
- Hirokazu Fujisawa
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yu Mori
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Atsushi Kogure
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hidetatsu Tanaka
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masayuki Kamimura
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Naoya Masahashi
- Institute for Material Research, Tohoku University, Sendai, Miyagi, Japan
| | - Shuji Hanada
- Institute for Material Research, Tohoku University, Sendai, Miyagi, Japan
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
15
|
Roeder E, Matthews BG, Kalajzic I. Visual reporters for study of the osteoblast lineage. Bone 2016; 92:189-195. [PMID: 27616604 PMCID: PMC5056847 DOI: 10.1016/j.bone.2016.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 12/24/2022]
Abstract
Advancing our understanding of osteoblast biology and differentiation is critical to elucidate the pathological mechanisms responsible for skeletal diseases such as osteoporosis. Histology and histomorphometry, the classical methods to study osteoblast biology, identify osteoblasts based on their location and morphology and ability to mineralize matrix, but do not clearly define their stage of differentiation. Introduction of visual transgenes into the cells of osteoblast lineage has revolutionized the field and resulted in a paradigm shift that allowed for specific identification and isolation of subpopulations within the osteoblast lineage. Knowledge acquired from the studies based on GFP transgenes has allowed for more precise interpretation of studies analyzing targeted overexpression or deletion of genes in the osteoblast lineage. Here, we provide a condensed overview of the currently available promoter-fluorescent reporter transgenic mice that have been generated and evaluated to varying extents. We cover different stages of the lineage as transgenes have been utilized to identify osteoprogenitors, pre-osteoblasts, osteoblasts, or osteocytes. We show that each of these promoters present with advantages and disadvantages. The studies based on the use of these reporter mice have improved our understanding of bone biology. They constitute attractive models to target osteoblasts and help to understand their cell biology.
Collapse
Affiliation(s)
- Emilie Roeder
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Brya G Matthews
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Pathophysiology, University of Osijek, Osijek, Croatia.
| |
Collapse
|