1
|
Fujiki T, Shiratsuchi H, Mikami Y, Toriumi T, Yonehara Y, Tsuda H. Decalcification of calcified tissues induced by inorganic polyphosphate in chondrogenic ATDC5 cells in the presence of insulin. J Oral Sci 2025; 67:65-70. [PMID: 40058814 DOI: 10.2334/josnusd.24-0429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
PURPOSE Inorganic polyphosphate (PolyP), a polymer of orthophosphate, strongly promotes mineralized tissue formation. This study explored the conditions necessary for PolyP to induce calcified deposits in cartilage and assessed the role of insulin in modulating PolyP-induced tissue calcification. METHODS Murine chondrogenic ATDC5 cells were cultured under growth, mineralization, or PolyP-induced calcification conditions, with or without insulin. Calcified nodules were stained with Alizarin Red S, and conditioned media were analyzed for pH and lactate concentration using a pH meter and a lactate assay kit-WST. RESULTS PolyP treatment of ATDC5 cells led to calcified deposits by day 5, both with and without insulin. However, in the presence of insulin, these deposits were nearly fully decalcified by day 14. Conditioned media with insulin had a lower pH and a higher lactate concentration compared to those without insulin, with lactate levels sufficient to demineralize the PolyP-induced calcified deposits. CONCLUSION These data suggest that treatment of ATDC5 chondrogenic cells with PolyP accelerates the formation of mineralized tissue. However, PolyP-induced calcified nodules undergo demineralization owing to lactate production by cells in the presence of insulin.
Collapse
Affiliation(s)
- Tatsuaki Fujiki
- Division of Oral Structural and Functional Biology, Nihon University Graduate School of Dentistry
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry
| | - Hiroshi Shiratsuchi
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry
| | - Yoshikazu Mikami
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University
| | - Taku Toriumi
- Department of Anatomy, The Nippon Dental University School of Life Dentistry at Niigata
| | - Yoshiyuki Yonehara
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry
| | - Hiromasa Tsuda
- Department of Biochemistry, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| |
Collapse
|
2
|
Rai A, Jakob U. Polyphosphate: a cellular Swiss army knife. Curr Opin Biotechnol 2025; 93:103303. [PMID: 40222262 DOI: 10.1016/j.copbio.2025.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 04/15/2025]
Abstract
Inorganic polyphosphate (polyP) is a ubiquitous biopolymer whose functional repertoire has rapidly expanded over the past few years. How polyP controls these seemingly unrelated functions, which range from stress resistance, motility, and DNA damage control in bacteria to blood clotting, cancer and neurodegeneration in mammals, remains largely unknown. Here, we review what is known about its synthesis and degradation pathways in mammalian cells, provide an overview over the cell compartment-specific roles of polyP, and focus on recent studies, which showed that many of polyP's activities appear to be mediated by its ability to either solubilize, scaffold, or phase separate proteins. Future studies will show how polyP achieves these vastly different effects on proteins and hence controls its many functions.
Collapse
Affiliation(s)
- Akash Rai
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Yang F, Shi Z, Hu Y, Pang Q, Du T, Song B, Zhong J, Hu X, Zhu W, Chen J, Shi L, Chen X, Pang Q, Zhu Y. Nanohybrid Hydrogel with Dual Functions: Controlled Low-Temperature Photothermal Antibacterial Activity and Promoted Regeneration for Treating MRSA-Infected Bone Defects. Adv Healthc Mater 2025; 14:e2500092. [PMID: 40045672 PMCID: PMC12023822 DOI: 10.1002/adhm.202500092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/20/2025] [Indexed: 04/26/2025]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA)-related bone defects pose significant clinical challenges due to treatment failures. Here, an injectable nanohybrid hydrogel (FND-ZHD) is developed that combines controlled low-temperature photothermal antibacterial therapy with enhanced bone regeneration. The hydrogel uses Pluronic F-127 as the matrix, incorporating polydopamine-coated nano-hydroxyapatite and zinc oxide nanoparticles encapsulated with polydopamine and hyaluronic acid, forming a sophisticated nanostructured composite. Under near-infrared (NIR) irradiation, the FND-ZHD hydrogel exhibits efficient photothermal properties, enabling precise low-temperature photothermal therapy to eliminate MRSA infections. The photothermal process generates reactive oxygen species (ROS), contributing to potent antibacterial activity, while the hydrogel design allows self-elimination of excess ROS to minimize cytotoxicity. Simultaneously, the hydrogel enhances bone regeneration by upregulating heat shock protein 70 (HSP70), promoting osteogenic differentiation and accelerating bone repair. In vitro and in vivo experiments demonstrate that the FND-ZHD hydrogel not only possesses strong antibacterial efficacy against MRSA but also significantly improves bone healing in infected bone defect models. This dual-function strategy leverages the synergistic effects of nanomaterials at the nano- and microscale, achieving simultaneous antibacterial action and bone regeneration. The work highlights the potential of nanotechnology-based multifunctional biomaterials in addressing complex medical problems, paving the way for advanced therapies in orthopedic and regenerative medicine.
Collapse
Affiliation(s)
- Fang Yang
- Health Science CenterNingbo UniversityNingbo315211P. R. China
| | - Zewen Shi
- Department of OrthopedicsNingbo No. 2 HospitalNingbo315000P. R. China
- Department of OrthopedicsWuhan Union HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| | - Yiwei Hu
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Qian Pang
- Health Science CenterNingbo UniversityNingbo315211P. R. China
| | - Tianyu Du
- Health Science CenterNingbo UniversityNingbo315211P. R. China
| | - Baiyang Song
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboZhejiang315300P. R. China
- Department of UrologyNingbo Clinical Research Center for Urological DiseaseThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010P. R. China
| | - Jiaqi Zhong
- Health Science CenterNingbo UniversityNingbo315211P. R. China
| | - Xiaodong Hu
- Department of OrthopedicAffiliated Hospital of Qingdao UniversityQingdaoShandong266000P. R. China
| | - Weilai Zhu
- Peking University First HospitalBeijing100000P.R. China
| | - Junhong Chen
- Department of Hepatobiliary and Pancreatic SurgeryGeneral Surgery CenterThe First Hospital of Jilin UniversityChangchun130000P. R. China
| | - Lin Shi
- Department of OrthopedicsNingbo No. 2 HospitalNingbo315000P. R. China
| | - Xianjun Chen
- Department of OrthopedicsNingbo No. 2 HospitalNingbo315000P. R. China
| | - Qingjiang Pang
- Department of OrthopedicsNingbo No. 2 HospitalNingbo315000P. R. China
| | - Yabin Zhu
- Health Science CenterNingbo UniversityNingbo315211P. R. China
| |
Collapse
|
4
|
Kataoka T, Liu Z, Yamada I, Galindo TGP, Tagaya M. Surface functionalization of hydroxyapatite nanoparticles for biomedical applications. J Mater Chem B 2024; 12:6805-6826. [PMID: 38919049 DOI: 10.1039/d4tb00551a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
This review completely covers the various aspects of hydroxyapatite (HAp) nanoparticles and their role in different biological situations, and provides the surface and interface contents on (i) hydroxyapatite nanoparticles and their hybridization with organic molecules, (ii) surface designing of hydroxyapatite nanoparticles to provide their biocompatibility and photofunction, and (iii) coating technology of hydroxyapatite nanoparticles. In particular, we summarized how the HAp nanoparticles interact with the different ions and molecules and highlighted the potential for hybridization between HAp nanoparticles and organic molecules, which is driven by the interactions of the HAp nanoparticle surface ions with several functional groups of biological molecules. In addition, we highlighted the studies focusing on the interfacial interactions between the HAp nanoparticles and proteins for exploring the enhanced biocompatibility. Such studies focus on how these interactions affect the hydration layers and protein adsorption. However, the hydration layer state involves diverse molecular interactions that can alter the shape of the adsorbed proteins, thereby affecting cell adhesion and spreading on the surfaces. We also summarized the relationship between the surface properties of the HAp nanoparticles and the hydration layer. Furthermore, we spotlighted the cytocompatible photoluminescent probes that can be developed by designing HAp/organic nanohybrid structures. We then emphasized the importance of photofunctionalization in theranostics, which involves the integration of diagnostics and therapy based on the surface design of the HAp nanoparticles. Furthermore, the coating techniques using HAp nanoparticles and HAp nanoparticle/polymer composites were outlined for fusing base biomaterials with biological tissues. The advantages of HAp/biocompatible polymer composite coatings include the ability to effectively cover porous or irregularly shaped surfaces while controlling the thickness of the coating layer, and the addition of HAp nanoparticles to the polymer matrix improves the mechanical properties, increases the roughness, and forms the morphologies that mimic bone nanostructures. Therefore, the fundamental design of hydroxyapatite nanoparticles and their surfaces was suggested from various aspects for biomedical applications.
Collapse
Affiliation(s)
- Takuya Kataoka
- Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Zizhen Liu
- Department of Materials Science and Bioengineering, Graduate School of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
- Research Fellow of the Japan Society for the Promotion of Science (DC), 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Iori Yamada
- Department of Materials Science and Bioengineering, Graduate School of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| | - Tania Guadalupe Peñaflor Galindo
- Department of General Education, National Institute of Technology, Nagaoka College, 888 Nishikatakai, Nagaoka, Niigata 940-8532, Japan
| | - Motohiro Tagaya
- Department of Materials Science and Bioengineering, Graduate School of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| |
Collapse
|
5
|
Hu X, He Y, Tong Y, Sun N, Ma G, Liu H, Kou N. Fabrication and characterization of a multi-functional GBR membrane of gelatin-chitosan for osteogenesis and angiogenesis. Int J Biol Macromol 2024; 266:130978. [PMID: 38508565 DOI: 10.1016/j.ijbiomac.2024.130978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 03/01/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Guided bone regeneration (GBR) membranes are widely used to treat bone defects. In this study, sequential electrospinning and electrospraying techniques were used to prepare a dual-layer GBR membrane composed of gelatin (Gel) and chitosan (CS) containing simvastatin (Sim)-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres (Sim@PLGA/Gel-CS). As a GBR membrane, Sim@PLGA/Gel-CS could act as a barrier to prevent soft tissue from occupying regions of bone tissue. Furthermore, compared with traditional GBR membranes, Sim@PLGA/Gel-CS played an active role on stimulating osteogenesis and angiogenesis. Determination of the physical, chemical, and biological properties of Sim@PLGA/Gel-CS membranes revealed uniform sizes of the nanofibers and microspheres and appropriate morphologies. Fourier-transform infrared spectroscopy was used to characterize the interactions between Sim@PLGA/Gel-CS molecules and the increase in the number of amide groups in crosslinked membranes. The thermal stability and tensile strength of the membranes increased after N-(3-dimethylaminopropyl)-N9- ethylcarbodiimide/N-hydroxysuccinimide crosslinking. The increased fiber density of the barrier layer decreased fibroblast migration compared with that in the osteogenic layer. Osteogenic function was indicated by the increased alkaline phosphatase activity, calcium deposition, and neovascularization. In conclusion, the multifunctional effects of Sim@PLGA/Gel-CS on the barrier and bone microenvironment were achieved via its dual-layer structure and simvastatin coating. Sim@PLGA/Gel-CS has potential applications in bone tissue regeneration.
Collapse
Affiliation(s)
- Xiaofei Hu
- School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian, China
| | - Yuzhu He
- School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian, China
| | - Yunmeng Tong
- School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian, China
| | - Na Sun
- School of Materials Science and Engineering, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, China
| | - Guowu Ma
- School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian, China.
| | - Huiying Liu
- School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian, China.
| | - Ni Kou
- School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian, China.
| |
Collapse
|
6
|
The osteogenesis and the biologic mechanism of thermo-responsive injectable hydrogel containing carboxymethyl chitosan/sodium alginate nanoparticles towards promoting osteal wound healing. Int J Biol Macromol 2022; 224:533-543. [DOI: 10.1016/j.ijbiomac.2022.10.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/01/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
7
|
Khoshnood N, Shahrezayee MH, Shahrezayee M, Shams A, Zamanian A. Biological study of polyethyleneimine functionalized polycaprolactone
3D
‐printed scaffolds for bone tissue engineering. J Appl Polym Sci 2022. [DOI: 10.1002/app.52628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Negin Khoshnood
- Biomaterials Research Group Nanotechnology and Advanced Materials Department Materials and Energy Research Center (MERC) Tehran Iran
| | | | - Mostafa Shahrezayee
- Department of Orthopedic Surgery, School of Medicine AJA University of Medical Science Tehran Iran
| | - Alireza Shams
- Department of Anatomy, School of Medicine Alborz University of Medical Sciences Karaj Iran
| | - Ali Zamanian
- Biomaterials Research Group Nanotechnology and Advanced Materials Department Materials and Energy Research Center (MERC) Tehran Iran
| |
Collapse
|
8
|
Xu Z, Wang N, Ma Y, Dai H, Han B. Preparation and study of 3D printed dipyridamole/β-tricalcium phosphate/ polyvinyl alcohol composite scaffolds in bone tissue engineering. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
The Marine Polysaccharide Ulvan Confers Potent Osteoinductive Capacity to PCL-Based Scaffolds for Bone Tissue Engineering Applications. Int J Mol Sci 2021; 22:ijms22063086. [PMID: 33802984 PMCID: PMC8002638 DOI: 10.3390/ijms22063086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Hybrid composites of synthetic and natural polymers represent materials of choice for bone tissue engineering. Ulvan, a biologically active marine sulfated polysaccharide, is attracting great interest in the development of novel biomedical scaffolds due to recent reports on its osteoinductive properties. Herein, a series of hybrid polycaprolactone scaffolds containing ulvan either alone or in blends with κ-carrageenan and chondroitin sulfate was prepared and characterized. The impact of the preparation methodology and the polysaccharide composition on their morphology, as well as on their mechanical, thermal, water uptake and porosity properties was determined, while their osteoinductive potential was investigated through the evaluation of cell adhesion, viability, and osteogenic differentiation of seeded human adipose-derived mesenchymal stem cells. The results verified the osteoinductive ability of ulvan, showing that its incorporation into the polycaprolactone matrix efficiently promoted cell attachment and viability, thus confirming its potential in the development of biomedical scaffolds for bone tissue regeneration applications.
Collapse
|
10
|
Wu Z, Meng Z, Wu Q, Zeng D, Guo Z, Yao J, Bian Y, Gu Y, Cheng S, Peng L, Zhao Y. Biomimetic and osteogenic 3D silk fibroin composite scaffolds with nano MgO and mineralized hydroxyapatite for bone regeneration. J Tissue Eng 2020; 11:2041731420967791. [PMID: 33294153 PMCID: PMC7705190 DOI: 10.1177/2041731420967791] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/01/2020] [Indexed: 01/15/2023] Open
Abstract
Artificial bioactive materials have received increasing attention worldwide in clinical orthopedics to repair bone defects that are caused by trauma, infections or tumors, especially dedicated to the multifunctional composite effect of materials. In this study, a weakly alkaline, biomimetic and osteogenic, three-dimensional composite scaffold (3DS) with hydroxyapatite (HAp) and nano magnesium oxide (MgO) embedded in fiber (F) of silkworm cocoon and silk fibroin (SF) is evaluated comprehensively for its bone repair potential in vivo and in vitro experiments, particularly focusing on the combined effect between HAp and MgO. Magnesium ions (Mg2+) has long been proven to promote bone tissue regeneration, and HAp is provided with osteoconductive properties. Interestingly, the weak alkaline microenvironment from MgO may also be crucial to promote Sprague-Dawley (SD) rat bone mesenchymal stem cells (BMSCs) proliferation, osteogenic differentiation and alkaline phosphatase (ALP) activities. This SF/F/HAp/nano MgO (SFFHM) 3DS with superior biocompatibility and biodegradability has better mechanical properties, BMSCs proliferation ability, osteogenic activity and differentiation potential compared with the scaffolds adding HAp or MgO alone or neither. Similarly, corresponding meaningful results are also demonstrated in a model of distal lateral femoral defect in SD rat. Therefore, we provide a promising 3D composite scaffold for promoting bone regeneration applications in bone tissue engineering.
Collapse
Affiliation(s)
- Ziquan Wu
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Zhulong Meng
- Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, Zhejiang, China
| | - Qianjin Wu
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Delu Zeng
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Zhengdong Guo
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jiangling Yao
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yangyang Bian
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yuntao Gu
- The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Shaowen Cheng
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Lei Peng
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.,Key Laboratory of Emergency and Trauma of Hainan Medical University, Ministry of Education, Haikou, Hainan, China
| | - Yingzheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
11
|
Photocrosslinkable nanocomposite ink for printing strong, biodegradable and bioactive bone graft. Biomaterials 2020; 263:120378. [PMID: 32932140 DOI: 10.1016/j.biomaterials.2020.120378] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/25/2020] [Accepted: 09/07/2020] [Indexed: 01/29/2023]
Abstract
3D printing is known as a cost-effective technique that shows huge potential in fabrication of graft substitutes for bone tissue regeneration. However, the tradeoff between 3D printability, mechanical strength and bioactivity of the printed materials (i.e., inks) remains a challenge. In this work, we present a novel photocrosslinkable nanocomposite ink composed of tri-block poly (lactide-co-propylene glycol-co-lactide) dimethacrylate (PmLnDMA, m and n respectively represent the unit length of propylene glycol and lactide) and hydroxyethyl methacrylate (HEMA)-functionalized hydroxyapatite nanoparticles (nHAMA). The reactive HEMA-conjugated nHAMA, is designed to covalently crosslink with the surrounding polymer matrix to further increase the interfacial bonding between them. We find that the nHAMA can rapidly interact with PmLnDMA upon light exposure within 140 s and form an inorganic-organic co-crosslinked nanocomposite network, further enhancing the nanofiller-matrix interfacial compatibility. Notably, our nanocomposites possess significantly improved mechanical performances compared to the polymer, with compressive modulus increasing by nearly 10 times (from ⁓40 to ⁓400 MPa). Moreover, thanks to the low exothermic heat generation (<37 °C) during photocrosslinking, our nanocomposite ink enables facile encapsulation and long-term release of heat-labile biomolecules like bone morphogenic protein-2 (BMP-2). Furthermore, it demonstrates a readily tunable rheological property, wettability, degradation, and printability as a 3D bone scaffold. Together with its superior osteogenic ability both in vitro and in vivo, we envision that our nanocomposite ink holds great promise in 3D printing of bone grafts.
Collapse
|
12
|
Imtiyaz Z, Lin YT, Cheong UH, Jassey A, Liu HK, Lee MH. Compounds isolated from Euonymus spraguei Hayata induce ossification through multiple pathways. Saudi J Biol Sci 2020; 27:2227-2237. [PMID: 32884403 PMCID: PMC7451737 DOI: 10.1016/j.sjbs.2020.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 11/23/2022] Open
Abstract
The process of bone metabolism includes catabolism of old or mature bone and anabolism of new bone, carried out by osteoclasts and osteoblasts respectively. Any imbalance in this process results in loss of bone mass or osteoporosis. Drugs available to combat osteoporosis have certain adverse effects and are unable to improve bone formation, hence identifying new agents to fulfil these therapeutic gaps is required. To expand the scope of potential agents that enhance bone formation, we identified Euonymus spraguei Hayata as a plant material that possesses robust osteogenic potential using human osteoblast cells. We isolated three compounds, syringaresinol (1), syringin (2), and (-)-epicatechin (3), from E. spraguei. Results demonstrated that syringin (2), and (-)-epicatechin (3), increased alkaline phosphatase activity significantly up to 131.01% and 130.67%, respectively; they also elevated mineral deposition with respective values of up to 139.39% and 138.33%. In addition, 2 and 3 modulated autophagy and the bone morphogenetic protein (BMP)-2 signaling pathway. Our findings demonstrated that 2 and 3 induced osteogenesis by targeting multiple pathways and therefore can be considered as potent multi-targeted drugs for bone formation against osteoporosis.
Collapse
Affiliation(s)
- Zuha Imtiyaz
- Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Yi-Tzu Lin
- Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Ut-Hang Cheong
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Alagie Jassey
- College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Hui-Kang Liu
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan
| | - Mei-Hsien Lee
- Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Center for Reproductive Medicine and Sciences, Taipei Medical University Hospital, Taipei 110, Taiwan
| |
Collapse
|
13
|
Temporal TGF-β Supergene Family Signalling Cues Modulating Tissue Morphogenesis: Chondrogenesis within a Muscle Tissue Model? Int J Mol Sci 2020; 21:ijms21144863. [PMID: 32660137 PMCID: PMC7402331 DOI: 10.3390/ijms21144863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022] Open
Abstract
Temporal translational signalling cues modulate all forms of tissue morphogenesis. However, if the rules to obtain specific tissues rely upon specific ligands to be active or inactive, does this mean we can engineer any tissue from another? The present study focused on the temporal effect of “multiple” morphogen interactions on muscle tissue to figure out if chondrogenesis could be induced, opening up the way for new tissue models or therapies. Gene expression and histomorphometrical analysis of muscle tissue exposed to rat bone morphogenic protein 2 (rBMP-2), rat transforming growth factor beta 3 (rTGF-β3), and/or rBMP-7, including different combinations applied briefly for 48 h or continuously for 30 days, revealed that a continuous rBMP-2 stimulation seems to be critical to initiate a chondrogenesis response that was limited to the first seven days of culture, but only in the absence of rBMP-7 and/or rTGF-β3. After day 7, unknown modulatory effects retard rBMP-2s’ effect where only through the paired-up addition of rBMP-7 and/or rTGF-β3 a chondrogenesis-like reaction seemed to be maintained. This new tissue model, whilst still very crude in its design, is a world-first attempt to better understand how multiple morphogens affect tissue morphogenesis with time, with our goal being to one day predict the chronological order of what signals have to be applied, when, for how long, and with which other signals to induce and maintain a desired tissue morphogenesis.
Collapse
|
14
|
Chang Y, Hsiao YM, Hu CC, Chang CH, Li CY, Ueng SWN, Chen MF. Synovial Fluid Interleukin-16 Contributes to Osteoclast Activation and Bone Loss through the JNK/NFATc1 Signaling Cascade in Patients with Periprosthetic Joint Infection. Int J Mol Sci 2020; 21:ijms21082904. [PMID: 32326301 PMCID: PMC7215706 DOI: 10.3390/ijms21082904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022] Open
Abstract
Because of lipopolysaccharide (LPS)-mediated effects on osteoclast differentiation and bone loss, periprosthetic joint infection (PJI) caused by Gram-negative bacteria increases the risk of aseptic loosening after reimplantation. Synovial fluid interleukin-16 (IL-16) expression was higher in patients with PJI than in patients without joint infection. Thus, we explored the effects of IL-16 on bone. We investigated whether IL-16 modulates osteoclast or osteoblast differentiation in vitro. An LPS-induced bone loss mice model was used to explore the possible advantages of IL-16 inhibition for the prevention of bone loss. IL-16 directly activated p38 and c-Jun N-terminal kinase (JNK)/mitogen-activated protein kinase (MAPK) signaling and increased osteoclast activation markers, including tartrate-resistant acid phosphatase (TRAP), cathepsin K, and nuclear factor of activated T cells 1 (NFATc1). IL-16 directly caused monocytes to differentiate into TRAP-positive osteoclast-like cells through NFATc1 activation dependent on JNK/MAPK signaling. Moreover, IL-16 did not alter alkaline phosphatase activity or calcium deposition during osteoblastic differentiation. Finally, IL-16 inhibition prevented LPS-induced trabecular bone loss and osteoclast activation in vivo. IL-16 directly increased osteoclast activation through the JNK/NFATc1 pathway. IL-16 inhibition could represent a new strategy for treating infection-associated bone loss.
Collapse
Affiliation(s)
- Yuhan Chang
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (Y.C.); (C.-C.H.); (C.-H.C.); (C.-Y.L.); (S.W.N.U.)
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Yi-min Hsiao
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (Y.C.); (C.-C.H.); (C.-H.C.); (C.-Y.L.); (S.W.N.U.)
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chih-Chien Hu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (Y.C.); (C.-C.H.); (C.-H.C.); (C.-Y.L.); (S.W.N.U.)
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chih-Hsiang Chang
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (Y.C.); (C.-C.H.); (C.-H.C.); (C.-Y.L.); (S.W.N.U.)
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Cai-Yan Li
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (Y.C.); (C.-C.H.); (C.-H.C.); (C.-Y.L.); (S.W.N.U.)
| | - Steve W. N. Ueng
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (Y.C.); (C.-C.H.); (C.-H.C.); (C.-Y.L.); (S.W.N.U.)
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Mei-Feng Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (Y.C.); (C.-C.H.); (C.-H.C.); (C.-Y.L.); (S.W.N.U.)
- Correspondence:
| |
Collapse
|
15
|
Kronemberger GS, Matsui RAM, Miranda GDASDCE, Granjeiro JM, Baptista LS. Cartilage and bone tissue engineering using adipose stromal/stem cells spheroids as building blocks. World J Stem Cells 2020; 12:110-122. [PMID: 32184936 PMCID: PMC7062040 DOI: 10.4252/wjsc.v12.i2.110] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/19/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Scaffold-free techniques in the developmental tissue engineering area are designed to mimic in vivo embryonic processes with the aim of biofabricating, in vitro, tissues with more authentic properties. Cell clusters called spheroids are the basis for scaffold-free tissue engineering. In this review, we explore the use of spheroids from adult mesenchymal stem/stromal cells as a model in the developmental engineering area in order to mimic the developmental stages of cartilage and bone tissues. Spheroids from adult mesenchymal stromal/stem cells lineages recapitulate crucial events in bone and cartilage formation during embryogenesis, and are capable of spontaneously fusing to other spheroids, making them ideal building blocks for bone and cartilage tissue engineering. Here, we discuss data from ours and other labs on the use of adipose stromal/stem cell spheroids in chondrogenesis and osteogenesis in vitro. Overall, recent studies support the notion that spheroids are ideal "building blocks" for tissue engineering by “bottom-up” approaches, which are based on tissue assembly by advanced techniques such as three-dimensional bioprinting. Further studies on the cellular and molecular mechanisms that orchestrate spheroid fusion are now crucial to support continued development of bottom-up tissue engineering approaches such as three-dimensional bioprinting.
Collapse
Affiliation(s)
- Gabriela S Kronemberger
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Post-graduate Program in Translational Biomedicine (Biotrans), Unigranrio, Campus I, Duque de Caxias, RJ 25250-020, Brazil
| | - Renata Akemi Morais Matsui
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Post-graduate Program in Biotechnology, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
| | - Guilherme de Almeida Santos de Castro e Miranda
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Federal University of Rio de Janeiro (UFRJ), Campus Duque de Caxias, Duque de Caxias, RJ 25250-020, Brazil
| | - José Mauro Granjeiro
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Post-graduate Program in Biotechnology, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Laboratory of Clinical Research in Odontology, Fluminense Federal University (UFF), Niterói 25255-030 Brazil
| | - Leandra Santos Baptista
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Post-graduate Program in Translational Biomedicine (Biotrans), Unigranrio, Campus I, Duque de Caxias, RJ 25250-020, Brazil
- Post-graduate Program in Biotechnology, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Multidisciplinary Center for Biological Research (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Campus Duque de Caxias, Duque de Caxias, RJ 25245-390, Brazil
| |
Collapse
|
16
|
Zhang XY, Chen YP, Han J, Mo J, Dong PF, Zhuo YH, Feng Y. Biocompatiable silk fibroin/carboxymethyl chitosan/strontium substituted hydroxyapatite/cellulose nanocrystal composite scaffolds for bone tissue engineering. Int J Biol Macromol 2019; 136:1247-1257. [DOI: 10.1016/j.ijbiomac.2019.06.172] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/09/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022]
|
17
|
Progress and Applications of Polyphosphate in Bone and Cartilage Regeneration. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5141204. [PMID: 31346519 PMCID: PMC6620837 DOI: 10.1155/2019/5141204] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/29/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
Patients with bone and cartilage defects due to infection, tumors, and trauma are quite common. Repairing bone and cartilage defects is thus a major problem for clinicians. Autologous and artificial bone transplantations are associated with many challenges, such as limited materials and immune rejection. Bone and cartilage regeneration has become a popular research topic. Inorganic polyphosphate (polyP) is a widely occurring biopolymer with high-energy phosphoanhydride bonds that exists in organisms from bacteria to mammals. Much data indicate that polyP acts as a regulator of gene expression in bone and cartilage tissues and exerts morphogenetic effects on cells involved in bone and cartilage formation. Exposure of these cells to polyP leads to the increase of cytokines that promote the differentiation of mesenchymal stem cells into osteoblasts, accelerates the osteoblast mineralization process, and inhibits the differentiation of osteoclast precursors to functionally active osteoclasts. PolyP-based materials have been widely reported in in vivo and in vitro studies. This paper reviews the current cellular mechanisms and material applications of polyP in bone and cartilage regeneration.
Collapse
|
18
|
Trilisenko L, Zvonarev A, Valiakhmetov A, Penin AA, Eliseeva IA, Ostroumov V, Kulakovskiy IV, Kulakovskaya T. The Reduced Level of Inorganic Polyphosphate Mobilizes Antioxidant and Manganese-Resistance Systems in Saccharomyces cerevisiae. Cells 2019; 8:cells8050461. [PMID: 31096715 PMCID: PMC6562782 DOI: 10.3390/cells8050461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/23/2022] Open
Abstract
Inorganic polyphosphate (polyP) is crucial for adaptive reactions and stress response in microorganisms. A convenient model to study the role of polyP in yeast is the Saccharomyces cerevisiae strain CRN/PPN1 that overexpresses polyphosphatase Ppn1 with stably decreased polyphosphate level. In this study, we combined the whole-transcriptome sequencing, fluorescence microscopy, and polyP quantification to characterize the CRN/PPN1 response to manganese and oxidative stresses. CRN/PPN1 exhibits enhanced resistance to manganese and peroxide due to its pre-adaptive state observed in normal conditions. The pre-adaptive state is characterized by up-regulated genes involved in response to an external stimulus, plasma membrane organization, and oxidation/reduction. The transcriptome-wide data allowed the identification of particular genes crucial for overcoming the manganese excess. The key gene responsible for manganese resistance is PHO84 encoding a low-affinity manganese transporter: Strong PHO84 down-regulation in CRN/PPN1 increases manganese resistance by reduced manganese uptake. On the contrary, PHM7, the top up-regulated gene in CRN/PPN1, is also strongly up-regulated in the manganese-adapted parent strain. Phm7 is an unannotated protein, but manganese adaptation is significantly impaired in Δphm7, thus suggesting its essential function in manganese or phosphate transport.
Collapse
Affiliation(s)
- Ludmila Trilisenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Center for Biological Research of the Russian Academy of Sciences, pr. Nauki 5, Pushchino 142290, Russia.
| | - Anton Zvonarev
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Center for Biological Research of the Russian Academy of Sciences, pr. Nauki 5, Pushchino 142290, Russia.
| | - Airat Valiakhmetov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Center for Biological Research of the Russian Academy of Sciences, pr. Nauki 5, Pushchino 142290, Russia.
| | - Alexey A Penin
- Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny per. 19 bld .1, Moscow 127051, Russia.
| | - Irina A Eliseeva
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, Pushchino 142290, Russia.
| | - Vladimir Ostroumov
- Institute of Physicochemical and Biological Problems of Soil Science, FRC Pushchino Center for Biological Research of the Russian Academy of Sciences, pr. Nauki 2, Pushchino 142290, Russia.
| | - Ivan V Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina 3, Moscow GSP-1 119991, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, Moscow GSP-1 119991, Russia.
- Institute of Mathematical Problems of Biology RAS-the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Vitkevicha 1, Pushchino 142290, Russia.
| | - Tatiana Kulakovskaya
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Center for Biological Research of the Russian Academy of Sciences, pr. Nauki 5, Pushchino 142290, Russia.
| |
Collapse
|
19
|
Yassin MA, Fuoco T, Mohamed-Ahmed S, Mustafa K, Finne-Wistrand A. 3D and Porous RGDC-Functionalized Polyester-Based Scaffolds as a Niche to Induce Osteogenic Differentiation of Human Bone Marrow Stem Cells. Macromol Biosci 2019; 19:e1900049. [PMID: 31050389 DOI: 10.1002/mabi.201900049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/18/2019] [Indexed: 01/05/2023]
Abstract
Polyester-based scaffolds covalently functionalized with arginine-glycine-aspartic acid-cysteine (RGDC) peptide sequences support the proliferation and osteogenic differentiation of stem cells. The aim is to create an optimized 3D niche to sustain human bone marrow stem cell (hBMSC) viability and osteogenic commitment, without reliance on differentiation media. Scaffolds consisting of poly(lactide-co-trimethylene carbonate), poly(LA-co-TMC), and functionalized poly(lactide) copolymers with pendant thiol groups are prepared by salt-leaching technique. The availability of functional groups on scaffold surfaces allows for an easy and straightforward method to covalently attach RGDC peptide motifs without affecting the polymerization degree. The strategy enables the chemical binding of bioactive motifs on the surfaces of 3D scaffolds and avoids conventional methods that require harsh conditions. Gene and protein levels and mineral deposition indicate the osteogenic commitment of hBMSC cultured on the RGDC functionalized surfaces. The osteogenic commitment of hBMSC is enhanced on functionalized surfaces compared with nonfunctionalized surfaces and without supplementing media with osteogenic factors. Poly(LA-co-TMC) scaffolds have potential as scaffolds for osteoblast culture and bone grafts. Furthermore, these results contribute to the development of biomimetic materials and allow a deeper comprehension of the importance of RGD peptides on stem cell transition toward osteoblastic lineage.
Collapse
Affiliation(s)
- Mohammed A Yassin
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen, 56-58, SE, 100-44, Stockholm, Sweden.,Department of Clinical Dentistry, Årstadveien 19, 5009 Bergen, Bergen, Norway
| | - Tiziana Fuoco
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen, 56-58, SE, 100-44, Stockholm, Sweden
| | - Samih Mohamed-Ahmed
- Department of Clinical Dentistry, Årstadveien 19, 5009 Bergen, Bergen, Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry, Årstadveien 19, 5009 Bergen, Bergen, Norway
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen, 56-58, SE, 100-44, Stockholm, Sweden
| |
Collapse
|
20
|
High Glucose Enhances the Odonto/Osteogenic Differentiation of Stem Cells from Apical Papilla via NF-KappaB Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5068258. [PMID: 31080819 PMCID: PMC6476152 DOI: 10.1155/2019/5068258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/25/2019] [Accepted: 03/17/2019] [Indexed: 01/14/2023]
Abstract
Objective The transport and metabolism of glucose are important during mammalian development. High glucose can mediate the biological characteristics of mesenchymal stem cells (MSCs). However, the role of high glucose in the odonto/osteogenic differentiation of stem cells from apical papilla (SCAPs) is unclear. Materials and Methods SCAPs were isolated and identified in vitro. Then, SCAPs were cultured in normal α-MEM and high glucose α-MEM separately. MTT assay was applied to observe the proliferation of SCAPs. ALP activity, alizarin red staining, real-time RT-PCR, and western blot were used to detect the odonto/osteogenic capacity of SCAPs as well as the participation of NF-κB pathway. Results SCAPs in 25mmol/L glucose group expressed the maximum proteins of RUNX2 and ALP as compared with those in 5, 10, and 15 mmol/L groups. MTT assay showed that 25 mmol/L glucose suppressed the proliferation of SCAPs. ALP assay, alizarin red staining, real-time RT-PCR, and western blot showed 25 mmol/L high glucose can obviously enhance the odonto/osteogenic capacity of SCAPs. Moreover, the NF-κB pathway was activated in 25mmol/L glucose-treated SCAPs and the odonto/osteogenic differentiation was inhibited following the inhibition of NF-κB signaling pathway. Conclusions High glucose can enhance the odonto/osteogenic capacity of SCAPs via NF-κB pathway.
Collapse
|
21
|
Mikami Y, Omagari D, Mizutani Y, Hayatsu M, Ushiki T, Tsuda H. Dual effect of polyphosphate on mineralization of rat osteoblast ROS17/2.8 cells in a dose-dependent manner. J Pharmacol Sci 2018; 138:209-213. [DOI: 10.1016/j.jphs.2018.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/05/2018] [Accepted: 10/03/2018] [Indexed: 10/28/2022] Open
|
22
|
Kulakovskaya EV, Zemskova MY, Kulakovskaya TV. Inorganic Polyphosphate and Cancer. BIOCHEMISTRY (MOSCOW) 2018; 83:961-968. [DOI: 10.1134/s0006297918080072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Dhivya S, Keshav Narayan A, Logith Kumar R, Viji Chandran S, Vairamani M, Selvamurugan N. Proliferation and differentiation of mesenchymal stem cells on scaffolds containing chitosan, calcium polyphosphate and pigeonite for bone tissue engineering. Cell Prolif 2018; 51:e12408. [PMID: 29159895 PMCID: PMC6528860 DOI: 10.1111/cpr.12408] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/18/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Treatment of critical-sized bone defects with cells and biomaterials offers an efficient alternative to traditional bone grafts. Chitosan (CS) is a natural biopolymer that acts as a scaffold in bone tissue engineering (BTE). Polyphosphate (PolyP), recently identified as an inorganic polymer, acts as a potential bone morphogenetic material, whereas pigeonite (Pg) is a novel iron-containing ceramic. In this study, we prepared and characterized scaffolds containing CS, calcium polyphosphate (CaPP) and Pg particles for bone formation in vitro and in vivo. MATERIALS AND METHODS Chitosan/CaPP scaffolds and CS/CaPP scaffolds containing varied concentrations of Pg particles (0.25%, 0.5%, 0.75% and 1%) were prepared and characterized by SEM, XRD, EDAX, FT-IR, degradation, protein adsorption, mechanical strength and biomineralization studies. The cytocompatibility of these scaffolds with mouse mesenchymal stem cells (mMSCs, C3H10T1/2) was determined by MTT assay and fluorescence staining. Cell proliferation on scaffolds was assessed using MUSE™ (Merck-Millipore, Germany) cell analyser. The effect of scaffolds on osteoblast differentiation at the cellular level was evaluated by Alizarin red (AR) and alkaline phosphatase (ALP) staining. At the molecular level, the expression of osteoblast differentiation marker genes such as Runt-related transcription factor-2 (Runx2), ALP, type I collagen-1 (Col-I) and osteocalcin (OC) was determined by real-time reverse transcriptase (RT-PCR) analysis. Bone regeneration was assessed by X-ray radiographs, SEM and EDAX analyses, and histological staining such as haematoxylin and eosin staining and Masson's trichrome staining (MTS) in a rat critical-sized tibial defect model system. RESULTS The inclusion of iron-containing Pg particles at 0.25% concentration in CS/CaPP scaffolds showed enhanced bioactivity by protein adsorption and biomineralization, compared with that shown by CS/CaPP scaffolds alone. Increased proliferation of mMSCs was observed with CS/CaPP/Pg scaffolds compared with control and CS/CaPP scaffolds. Increase in cell proliferation was accompanied by G0/G1 to G2/M phase transition with increased levels of cyclin(s) A, B and C. Pg particles in CS/CaPP scaffolds enhanced osteoblast differentiation at the cellular and molecular levels, as evidenced by increased calcium deposits, ALP activity and expression of osteoblast marker genes. In vivo implantation of scaffolds in rat critical-sized tibial defects displayed accelerated bone formation after 8 weeks. CONCLUSION The current findings indicate that CS/CaPP scaffolds containing iron-containing Pg particles serve as an appropriate template to support proliferation and differentiation of MSCs to osteoblasts in vitro and bone formation in vivo and thus support their candidature for BTE applications.
Collapse
Affiliation(s)
- S. Dhivya
- Department of BiotechnologySchool of BioengineeringSRM UniversityKattankulathurTamil NaduIndia
| | - A. Keshav Narayan
- Department of BiotechnologySchool of BioengineeringSRM UniversityKattankulathurTamil NaduIndia
| | - R. Logith Kumar
- Department of BiotechnologySchool of BioengineeringSRM UniversityKattankulathurTamil NaduIndia
| | - S. Viji Chandran
- Department of BiotechnologySchool of BioengineeringSRM UniversityKattankulathurTamil NaduIndia
| | - M. Vairamani
- Department of BiotechnologySchool of BioengineeringSRM UniversityKattankulathurTamil NaduIndia
| | - N. Selvamurugan
- Department of BiotechnologySchool of BioengineeringSRM UniversityKattankulathurTamil NaduIndia
| |
Collapse
|
24
|
Phosphate regulates chondrogenesis in a biphasic and maturation-dependent manner. Differentiation 2017; 95:54-62. [PMID: 28511052 DOI: 10.1016/j.diff.2017.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 04/18/2017] [Accepted: 04/27/2017] [Indexed: 01/05/2023]
Abstract
Inorganic phosphate (Pi) has been recognized as an important signaling molecule that modulates chondrocyte maturation and cartilage mineralization. However, conclusive experimental evidence for its involvement in early chondrogenesis is still lacking. Here, using high-density monolayer (2D) and pellet (3D) culture models of chondrogenic ATDC5 cells, we demonstrate that the cell response to Pi does not correlate with the Pi concentration in the culture medium but is better predicted by the availability of Pi on a per cell basis (Pi abundance). Both culture models were treated with ITS+, 10mM β-glycerophosphate (βGP), or ITS+/10mM βGP, which resulted in three levels of Pi abundance in cultures: basal (Pi/DNA <10ng/µg), moderate (Pi/DNA=25.3 - 32.3ng/µg), and high abundance (Pi/DNA >60ng/µg). In chondrogenic medium alone, the abundance levels were at the basal level in 2D culture and moderate in 3D cultures. The addition of 10mM βGP resulted in moderate abundance in 2D and high abundance in 3D cultures. Moderate Pi abundance enhanced early chondrogenesis and production of aggrecan and type II collagen whereas high Pi abundance inhibited chondrogenic differentiation and induced rapid mineralization. Inhibition of sodium phosphate transporters reduced phosphate-induced expression of chondrogenic markers. When 3D ITS+/βGP cultures were treated with levamisole to reduce ALP activity, Pi abundance was decreased to moderate levels, which resulted in significant upregulation of chondrogenic markers, similar to the response in 2D cultures. Delay of phosphate delivery until after early chondrogenesis occurs (7 days) no longer enhanced chondrogenesis, but instead accelerated hypertrophy and mineralization. Together, our data highlights the dependence of chondroprogenitor cell response to Pi on its availability to individual cells and the chondrogenic maturation stage of these cells and suggest that appropriate temporal delivery of phosphate to ATDC5 cells in 3D cultures represents a rapid model for mechanistic studies into the effects of exogenous cues on chondrogenic differentiation, chondrocyte maturation, and matrix mineralization.
Collapse
|
25
|
Niu X, Fan R, Tian F, Guo X, Li P, Feng Q, Fan Y. Calcium concentration dependent collagen mineralization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:137-143. [DOI: 10.1016/j.msec.2016.12.079] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 11/29/2016] [Accepted: 12/16/2016] [Indexed: 11/24/2022]
|
26
|
Marupanthorn K, Tantrawatpan C, Kheolamai P, Tantikanlayaporn D, Manochantr S. Bone morphogenetic protein-2 enhances the osteogenic differentiation capacity of mesenchymal stromal cells derived from human bone marrow and umbilical cord. Int J Mol Med 2017; 39:654-662. [PMID: 28204808 PMCID: PMC5360390 DOI: 10.3892/ijmm.2017.2872] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 01/24/2017] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent cells that can give rise to different cell types of the mesodermal lineages. They are powerful sources for cell therapy in regenerative medicine as they can be isolated from various tissues, and can be expanded and induced to differentiate into multiple lineages. Recently, the umbilical cord has been suggested as an alternative source of MSCs. Although MSCs derived from the umbilical cord can be induced to differentiate into osteoblasts with a phenotypic similarity to that of bone marrow-derived MSCs, the differentiation ability is not consistent. In addition, MSCs from the umbilical cord require a longer period of time to differentiate into osteoblasts. Previous studies have demonstrated the benefits of bone morphogenetic protein-2 (BMP-2) in bone tissue regeneration. In addition, several studies have supported the use of BMP-2 in periodontal regeneration, sinus lift bone-grafting and non-unions in oral surgery. Although the use of BMP-2 for bone tissue regeneration has been extensively investigated, the BMP-2-induced osteogenic differentiation of MSCs derived from the umbilical cord has not yet been fully examined. Therefore, in this study, we aimed to examine the effects of BMP-2 on the osteogenic differentiation of MSCs derived from umbilical cord compared to that of MSCs derived from bone marrow. The degree of osteogenic differentiation following BMP-2 treatment was determined by assessing alkaline phosphatase (ALP) activity, and the expression profiles of osteogenic differentiation marker genes, osterix (Osx), Runt-related transcription factor 2 (Runx2) and osteocalcin (Ocn). The results revealed that BMP-2 enhanced the osteogenic differentiation capacity of MSCs derived from both bone marrow and umbilical cord as demonstrated by increased ALP activity and the upregulation of osteogenic differentiation marker genes. The enhancement of the osteogenic differentiation capacity of MSCs by BMP-2 suggests that these MSCs may be used as alternative sources for bone engineering or cell therapy in regenerative medicine.
Collapse
Affiliation(s)
- Kulisara Marupanthorn
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Chairat Tantrawatpan
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Pakpoom Kheolamai
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Duangrat Tantikanlayaporn
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Sirikul Manochantr
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| |
Collapse
|
27
|
Müller WEG, Neufurth M, Ackermann M, Tolba E, Wang S, Feng Q, Schröder HC, Wang X. Fabrication of a new physiological macroporous hybrid biomaterial/bioscaffold material based on polyphosphate and collagen by freeze-extraction. J Mater Chem B 2017; 5:3823-3835. [DOI: 10.1039/c7tb00306d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A macroporous hybrid biomaterial/bioscaffold material, eliciting morphogenetic activity, was fabricated with polyphosphate, chondroitin sulfate and collagen by the freeze-extraction technology.
Collapse
Affiliation(s)
- Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- D-55128 Mainz
- Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- D-55128 Mainz
- Germany
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy
- University Medical Center of the Johannes Gutenberg University
- D-55099 Mainz
- Germany
| | - Emad Tolba
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- D-55128 Mainz
- Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- D-55128 Mainz
- Germany
| | - Qingling Feng
- Key Laboratory of Advanced Materials of Ministry of Education of China
- School of Materials Science and Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- D-55128 Mainz
- Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- D-55128 Mainz
- Germany
| |
Collapse
|
28
|
Gupta P, Adhikary M, M JC, Kumar M, Bhardwaj N, Mandal BB. Biomimetic, Osteoconductive Non-mulberry Silk Fiber Reinforced Tricomposite Scaffolds for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30797-30810. [PMID: 27783501 DOI: 10.1021/acsami.6b11366] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Composite biomaterials as artificial bone graft materials are pushing the present frontiers of bioengineering. In this study, a biomimetic, osteoconductive tricomposite scaffold made of hydroxyapatite (HA) embedded in non-mulberry Antheraea assama (A. assama) silk fibroin fibers and its fibroin solution is explored for its osteogenic potential. Scaffolds were physico-chemically characterized for morphology, porosity, secondary structure conformation, water retention ability, biodegradability, and mechanical property. The results revealed a ∼5-fold increase in scaffold compressive modulus on addition of HA and silk fibers to liquid silk as compared to pure silk scaffolds while maintaining high scaffold porosity (∼90%) with slower degradation rates. X-ray diffraction (XRD) results confirmed deposition of HA crystals on composite scaffolds. Furthermore, the crystallite size of HA within scaffolds was strongly regulated by the intrinsic physical cues of silk fibroin. Fourier transform infrared (FTIR) spectroscopy studies indicated strong interactions between HA and silk fibroin. The fabricated tricomposite scaffolds supported enhanced cellular viability and function (ALP activity) for both MG63 osteosarcoma and human bone marrow stem cells (hBMSCs) as compared to pure silk scaffolds without fiber or HA addition. In addition, higher expression of osteogenic gene markers such as collagen I (Col-I), osteocalcin (OCN), osteopontin (OPN), and bone sialoprotein (BSP) further substantiated the applicability of HA composite silk scaffolds for bone related applications. Immunostaining studies confirmed localization of Col-I and BSP and were in agreement with real-time gene expression results. These findings demonstrate the osteogenic potential of developed biodegradable tricomposite scaffolds with the added advantage of the affordability of its components as bone graft substitute materials.
Collapse
Affiliation(s)
- Prerak Gupta
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati , Guwahati-781039, Assam, India
| | - Mimi Adhikary
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati , Guwahati-781039, Assam, India
| | - Joseph Christakiran M
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati , Guwahati-781039, Assam, India
| | - Manishekhar Kumar
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati , Guwahati-781039, Assam, India
| | - Nandana Bhardwaj
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST) , Guwahati-781035, Assam, India
| | - Biman B Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati , Guwahati-781039, Assam, India
| |
Collapse
|
29
|
杜 国, 丁 道, 冯 媛, 李 玲, 雷 腾, 陈 博, 邓 真, 詹 红. [Effect of HBP-A on meniscal injury and pathological hypertrophy and calcification of the meniscus]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2016; 37:431-437. [PMID: 28446392 PMCID: PMC6744102 DOI: 10.3969/j.issn.1673-4254.2017.04.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the effect of HBP-A on meniscal injuries and the expressions of genes associated with pathological hypertrophy and calcification of the meniscusinduced by abnormal loading. METHODS Bovine meniscus explants were subjected to 25% strain at 0.3 Hz for 3 h and treated with 0.6 mg/mL of HBP-A. The cell viability in the meniscus explants after 72 hin culture was determined using live/dead staining and the expression levels of genes associated with pathological hypertrophy and calcification of the meniscus (ANKH, ENPP1, ALP, MMP13, and IL-1) were measured using real-time PCR and Western blotting. The conditioned medium was collected for testing sulfated glycosaminoglycan (GAG) release. RESULTS The number of dead cells, loss of proteoglycan content, and the expressions of ANKH, ENPP1, ALP and MMP13, and IL-1 at both the mRNA and protein levels were all significantly lower in the meniscus explants treated with 0.6 mg/mL HBP-A than in the explants with only 25% abnormal pressure stimulation (n=3, P<0.05). CONCLUSION HBP-A can effectively alleviate meniscal injuries induced by abnormal loading and suppress the expressions of genes related with pathological hypertrophy and calcification of the meniscus, and can serve as a potential drug for treatment of knee osteoarthritis.
Collapse
Affiliation(s)
- 国庆 杜
- 上海中医药大学附属曙光医院 石氏伤科医学中心,上海 201203Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of TCM, Shanghai 201203, China
- 上海市中医药研究院骨伤科研究所,上海 201203Institute of Traumatology and Orthopedics, Shanghai Academy of TCM, Shanghai 201203, China
| | - 道芳 丁
- 上海中医药大学附属曙光医院 石氏伤科医学中心,上海 201203Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of TCM, Shanghai 201203, China
- 上海市中医药研究院骨伤科研究所,上海 201203Institute of Traumatology and Orthopedics, Shanghai Academy of TCM, Shanghai 201203, China
| | - 媛媛 冯
- 上海中医药大学附属曙光医院 肿瘤科,上海 201203Department of Medical Oncology, Shuguang Hospital Affiliated to Shanghai University of TCM, Shanghai 201203, China
| | - 玲慧 李
- 上海中医药大学附属曙光医院 中国中医科学院望京医院,北京 100102Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing100102, China
| | - 腾飞 雷
- 上海中医药大学附属曙光医院 石氏伤科医学中心,上海 201203Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of TCM, Shanghai 201203, China
- 上海市中医药研究院骨伤科研究所,上海 201203Institute of Traumatology and Orthopedics, Shanghai Academy of TCM, Shanghai 201203, China
| | - 博 陈
- 上海中医药大学附属曙光医院 石氏伤科医学中心,上海 201203Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of TCM, Shanghai 201203, China
- 上海市中医药研究院骨伤科研究所,上海 201203Institute of Traumatology and Orthopedics, Shanghai Academy of TCM, Shanghai 201203, China
| | - 真 邓
- 上海中医药大学附属曙光医院 石氏伤科医学中心,上海 201203Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of TCM, Shanghai 201203, China
- 上海市中医药研究院骨伤科研究所,上海 201203Institute of Traumatology and Orthopedics, Shanghai Academy of TCM, Shanghai 201203, China
| | - 红生 詹
- 上海中医药大学附属曙光医院 石氏伤科医学中心,上海 201203Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of TCM, Shanghai 201203, China
- 上海市中医药研究院骨伤科研究所,上海 201203Institute of Traumatology and Orthopedics, Shanghai Academy of TCM, Shanghai 201203, China
| |
Collapse
|