1
|
Lin R, Xie B, Xie L, Ge J, Li S. Integrated proteomics and metabolomics analysis of lumbar in a rat model of osteoporosis treated with Gushukang capsules. BMC Complement Med Ther 2022; 22:333. [PMID: 36522793 PMCID: PMC9756464 DOI: 10.1186/s12906-022-03807-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Gushukang (GSK) capsules are a Chinese patented medicine that is widely used in clinics for the treatment of osteoporosis (OP). Animal experiments have revealed that the bone mineral density of osteoporotic rats increase after treatment with GSK capsules. However, the specific mechanism and target of GSK in the treatment of osteoporosis are unclear. Further studies are needed. METHODS Metabolomics (GC/MS) and proteomics (TMT-LC-MC/MC) with bioinformatics (KEGG pathway enrichment), correlation analysis (Pearson correlation matrix), and joint pathway analysis (MetaboAnalyst) were employed to determine the underlying mechanisms of GSK. The differential expression proteins were verified by WB experiment. RESULTS The regulation of proteins, i.e., Cant1, Gstz1, Aldh3b1, Bid, and Slc1a3, in the common metabolic pathway of differential proteins and metabolites between GSK/OP and OP/SHAM was corrected in the GSK group. The regulation of 12 metabolites (tyramine, thymidine, deoxycytidine, cytosine, L-Aspartate, etc.) were differential in the common enrichment metabolic pathway between GSK /OP and OP/SHAM. Differential proteins and metabolites jointly regulate 11 metabolic pathways, such as purine metabolism, pyrimidine metabolism, histidine metabolism, beta-alanine metabolism, and so on. CONCLUSION GSK may protect bone metabolism in osteoporotic rats by affecting nucleotide metabolism, amino acid metabolism, and the immune system.
Collapse
Affiliation(s)
- Ruohui Lin
- Basic Research Institute, Fujian Academy of Chinese Medical Sciences, Fuzhou, 350003 Fujian China ,Fujian Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Osteoporosis, Fuzhou, 350003 Fujian China
| | - Bingying Xie
- Basic Research Institute, Fujian Academy of Chinese Medical Sciences, Fuzhou, 350003 Fujian China ,Fujian Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Osteoporosis, Fuzhou, 350003 Fujian China
| | - Lihua Xie
- Basic Research Institute, Fujian Academy of Chinese Medical Sciences, Fuzhou, 350003 Fujian China ,Fujian Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Osteoporosis, Fuzhou, 350003 Fujian China
| | - Jirong Ge
- Basic Research Institute, Fujian Academy of Chinese Medical Sciences, Fuzhou, 350003 Fujian China ,Fujian Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Osteoporosis, Fuzhou, 350003 Fujian China
| | - Shengqiang Li
- Basic Research Institute, Fujian Academy of Chinese Medical Sciences, Fuzhou, 350003 Fujian China ,Fujian Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Osteoporosis, Fuzhou, 350003 Fujian China
| |
Collapse
|
2
|
Li XL, Wang L, He MC, Li WX, Zhang JL, Fu YF, Zhang Y. A clinical herbal prescription Gu-Shu-Kang capsule exerted beneficial effects on the musculoskeletal system of dexamethasone-treated mice by acting on tissue IGF-1 signalling pathway. PHARMACEUTICAL BIOLOGY 2022; 60:2098-2109. [PMID: 36269032 PMCID: PMC9590446 DOI: 10.1080/13880209.2022.2132029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/11/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Gu-Shu-Kang (GSK) is a clinical traditional Chinese medicine prescription for the treatment of primary osteoporosis. OBJECTIVE This study investigates the protection of GSK against dexamethasone (Dex)-induced disturbance of musculoskeletal system in male mice and to identify the underlying mechanism. MATERIALS AND METHODS Male C57BL/6 mice in Dex-treated groups were orally administered (i.g.) with vehicle, low dose (0.38 g/kg), middle dose (0.76 g/kg), or high dose (1.52 g/kg) of GSK for 8 weeks. A control group was designed without any treatment. The quadriceps femoris, tibialis anterior and gastrocnemius were harvested. Molecular expression was determined by RT-PCR and immunoblotting. RESULTS Treatment with GSK enhanced weight-loaded swimming time (from 411.7 ± 58.4 s in Dex group to 771.4 ± 87.3 s in GSK-M) and grip strength (from 357.8 ± 23.9 g in Dex group to 880.3 ± 47.6 g in GSK-M). GSK produced a rise in cross-sectional area of myofibers and promoted a switching of glycolytic-to-oxidative myofiber. The administration with GSK affected expression of muscle regulatory factors shown by the down-regulation in MuRF-1 and atrogin-1 and the up-regulation in myogenic differentiation factor (MyoD) and myosin heavy chain (MHC). GSK stimulated tissue IGF-1 signalling pathway (IGF-1R/PI3K/Akt), not only in skeletal muscle but also in bone associated with the amelioration of trabecular bone mineral density and the improvement of osteogenesis. CONCLUSIONS These findings revealed the potential mechanisms involved in the beneficial effects of Gu-Shu-Kang on musculoskeletal system in mice with challenging to dexamethasone, and this prescription may have applications in management for muscle atrophy and osteoporosis triggered by glucocorticoid.
Collapse
Affiliation(s)
- Xiao-Li Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Liang Wang
- Department of Geriatric, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Ming-Chao He
- Spine Disease Research Institute, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Xiong Li
- Spine Disease Research Institute, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Trauma, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jia-Li Zhang
- Spine Disease Research Institute, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Fang Fu
- Spine Disease Research Institute, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Zhang
- Spine Disease Research Institute, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Ministry of Education, Key Laboratory of Theory and Therapy of Muscles and Bones, Shanghai, China
| |
Collapse
|
3
|
Hao J, Bei J, Li Z, Han M, Ma B, Ma P, Zhou X. Qing`e Pill Inhibits Osteoblast Ferroptosis via ATM Serine/Threonine Kinase (ATM) and the PI3K/AKT Pathway in Primary Osteoporosis. Front Pharmacol 2022; 13:902102. [PMID: 35865965 PMCID: PMC9294279 DOI: 10.3389/fphar.2022.902102] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
Osteoporosis (OP) is an aging-related disease that is the main etiology of fragility fracture. Qing’e Pill (QEP) is a mixture of traditional Chinese medicine (TCM) consisting of Eucommia ulmoides Oliv., Psoralea corylifolia L., Juglans regia L., and Allium sativum L. QEP has an anti-osteoporosis function, but the underlying mechanism remains unclear. In this study, online databases were employed to determine the chemical compounds of QEP and potential target genes in osteoporosis. Potential pathways associated with genes were defined by Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) databases. A compound–target–disease network was constructed. Hub genes screened through Cytoscape were intersected with the FerrDB database. The potential key genes were validated in HFOB 1.19 cells, and rat models were ovariectomized through Western blot, RT-qPCR, ELISA, HE staining, immunohistochemistry, and immunofluorescence analyses. The intersection targets of QEP and osteoporosis contained 121 proteins, whereas the target–pathway network included 156 pathways. We filtered five genes that stood out in the network analysis for experimental verification. The experiments validated that QEP exerted therapeutic effects on osteoporosis by inhibiting ferroptosis and promoting cell survival via the PI3K/AKT pathway and ATM. In conclusion, combining the application of network analysis and experimental verification may provide an efficient method to validate the molecular mechanism of QEP on osteoporosis.
Collapse
Affiliation(s)
- Jian Hao
- Orthopedics Department, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- *Correspondence: Jian Hao, ; Xianhu Zhou,
| | - Jiaxin Bei
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenhan Li
- School of Clinical, Wannan Medical College, Wuhu, China
| | - Mingyuan Han
- Orthopedics Department, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Boyuan Ma
- Orthopedics Department, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Pengyi Ma
- Department of Orthopaedic, Graduate School, Tianjin Medical University, Tianjin, China
| | - Xianhu Zhou
- Orthopedics Department, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- *Correspondence: Jian Hao, ; Xianhu Zhou,
| |
Collapse
|
4
|
Jing W, Feng L, Peng K, Zhang W, Wang B. Formononetin attenuates osteoclast differentiation and calcium loss by mediating transcription factor AP-1 in type I diabetic mice. J Biochem Mol Toxicol 2022; 36:e23042. [PMID: 35315182 DOI: 10.1002/jbt.23042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/29/2022] [Accepted: 03/02/2022] [Indexed: 12/30/2022]
Abstract
Formononetin (FMN) has been reported as a prospective antiosteoporotic medication. However, the antiosteoporotic properties of FMN are still unclear in a mouse model with diabetes-induced osteoporosis. An osteoporotic or osteopenic mouse model with type I diabetes mellitus (T1DM) was established using streptozotocin (40 mg/kg) injection for 5 consecutive days. After 12 weeks with FMN intragastric administration (0.5, 5, 20 mg/kg), the antiosteoporotic activity of FMN was evaluated in T1DM mice. FMN supplementation effectively improves Ca excretion and trabecular bone degeneration and impedes osteoclast differentiation and function to attenuate hyperglycemia-induced bone deterioration. In addition, FMN inhibited activating protein 1 (AP-1) and osteoclast-specific gene expression, Nfatc1, Ctsk, and TRAP. The administration of FMN has a beneficial effect to attenuate hyperglycemia-induced bone deteriorations, including osteoclastogenesis, trabecular bone, and Ca loss. Our study provided a prospective medication for the treatment of T1DM-related osteopenia or osteoporosis with FMN.
Collapse
Affiliation(s)
- Wensen Jing
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Lei Feng
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Kan Peng
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Weisong Zhang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Bo Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
5
|
Li XL, Xu F, Lin FH, Ai LZ, Zhao YJ, Bi XL, Sui L, Zhang Y. A Naringin- and Icariin-Contained Herbal Formula, Gushukang, Ameliorated Aged Osteoporosis of Aged Mice with High Calcium Intake. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 48:1671-1691. [PMID: 33249854 DOI: 10.1142/s0192415x20500834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Traditional herbal formula Gushukang (GSK) was clinically applied to treat primary osteoporosis and showed osteoprotective effect in ovariectomized rodent animals and regulatory action on calcium transporters. This study aimed to determine if GSK could ameliorate aged osteoporosis by modulating serum level of calciotropic hormones and improving calcium balance. 18-month-old male mice were orally administered with either GSK (0.38[Formula: see text]g/kg body weight) or calcitriol (1[Formula: see text][Formula: see text]g/kg body weight) combined with high calcium diet (HCD, 1.2% Ca) for 60 days. The aged mice fed with normal calcium diet (NCD, 0.6% Ca) were a negative control. Trabecular bone and cortical bone properties as well as calcium balance were determined. Treatment with GSK significantly increased 25(OH)D and 1,25-(OH)2D levels in serum, moreover, it markedly attenuated trabecular bone micro-architectural deteriorations and elevated trabecular bone mass as well as strengthened cortical bone mechanical properties shown by the increase in maximal bending load and elastic modulus. Calcium balance, including urinary Ca excretion, fecal Ca level and net calcium retention, was remarkably improved by GSK, which up-regulated TRPV6 expression in duodenum and TRPV5 expression in kidney and down-regulated claudin-14 expression in duodenum and kidney. Additionally, 1-OHase and 24-OHase expression was significantly decreased (vs. NCD group) and increased (vs. HCD group), respectively, in kidney of GSK- and calcitriol-treated mice. Taken together, this study demonstrated the ameliorative effects of Gushukang on aged osteoporosis by effectively stimulating vitamin D production and improving calcium balance of aged mice with high dietary calcium supplement.
Collapse
Affiliation(s)
- Xiao-Li Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Fei Xu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Fu-Hui Lin
- Department of Orthopaedic, Shenzhen Pingle Orthopaedic Hospital, Shenzhen 518000, P. R. China
| | - Lian-Zhong Ai
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Yong-Jian Zhao
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional, Chinese Medicine, Shanghai 200032, P. R. China
| | - Xiao-Lei Bi
- Liaoning Konruns Pharmaceutical Co., Ltd, Dandong 118301, P. R. China
| | - Li Sui
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Yan Zhang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional, Chinese Medicine, Shanghai 200032, P. R. China
| |
Collapse
|
6
|
Yang F, Dong X, Ma F, Xu F, Liu J, Lu J, Li C, Bu R, Xue P. The Interventional Effects of Tubson-2 Decoction on Ovariectomized Rats as Determined by a Combination of Network Pharmacology and Metabolomics. Front Pharmacol 2020; 11:581991. [PMID: 33178024 PMCID: PMC7593846 DOI: 10.3389/fphar.2020.581991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Post-menopausal osteoporosis (PMOP) is associated with estrogen deficiency and worldwide, is becoming increasingly more prevalent in aging women. Various anti-PMOP drugs have been developed to reduce the burden of PMOP; generally, these drugs are efficacious, but with some adverse side effects. Tubson-2 decoction (TBD), a popular traditional Mongolian medicine, has been used to treat PMOP for centuries. However, the precise mechanisms underlying the action of TBD on PMOP have yet to be fully elucidated. Herein, we combined network pharmacology with untargeted metabolomics to identify the key targets and metabolic pathways associated with the interventional effects of TBD on ovariectomized (OVX) rats. Furthermore, we investigated the bone histomorphometry of eight different groups of rats to evaluate the therapeutic effect of TBD. First, we established a TBD-target/PMOP network via network pharmacology; this network identified three key protein targets-vitamin D receptor (VDR), cytochrome P450 19A1 (CYP19A1), and 11β-hydroxysteroid dehydrogenase type 1 (HSD11B1). Morphological analysis showed that severe impairment of the bone micro-architecture in OVX rats could be improved by TBD administration. The TBD-treated rats had a significantly lower bone surface-to-tissue volume (BS/TV) and a significantly smaller trabecular separation (Tb·Sp.) (P<0.05) than the OVX rats; in contrast, bone volume fraction (BVF), trabecular thickness (Tb·Th.), trabecular number (Tb·N.), and bone mineral density (BMD) were significantly higher in the TBD-treated rats (P<0.05). Multivariate and univariate analysis showed that OVX resulted in significant alterations in the concentrations of 105 metabolites and 11 metabolic pathways (P<0.05); in addition, 26 potential biomarkers were identified to investigate the progression of PMOP. Network pharmacology showed that major alterations in vitamin B6 metabolism were associated with the VDR target. Next, we validated the three crucial targets (VDR [P<0.01], HSD11B1 [P<0.01], and CYP19A1 [P<0.05]) by enzyme-linked immunosorbent assays (ELISAs) and demonstrated that the levels of these targets were elevated in the OVX group but reduced in the TBD-treatment group. Collectively, our results suggest that the interventional effects of TBD on OVX rats are likely to be associated with the down regulation of VDR. Our findings enhance our molecular understanding of the interventional effects of TBD on PMOP and will allow us to develop further TBD studies.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Xin Dong
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Feixiang Ma
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Feng Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jie Liu
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Jingkun Lu
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Chunyan Li
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Ren Bu
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Peifeng Xue
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
7
|
Li W, Zhou X, Jiang T, He H, Wen T. Positive Effect of Gushukang on Type-H Vessel and Bone Formation. Front Cell Dev Biol 2020; 8:265. [PMID: 32671056 PMCID: PMC7326058 DOI: 10.3389/fcell.2020.00265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022] Open
Abstract
Gushukang (GSK) is a traditional herbal compound used in Chinese medicine for the treatment of osteoporosis. Numerous studies have been conducted to elucidate the effects of GSK, but the mechanisms underlying these effects remain unclear. In the present study, we cultured osteoblasts and osteoclasts with low and high doses of GSK, and also administered 3-month-old mice with 4 and 8 g/kg/day of GSK solution. Gushukang was found to promote osteoblast differentiation and inhibit osteoclast differentiation in vitro. In vivo, mice in the GSK treatment groups showed an increase in bone mass, as measured by micro-computed tomography (Micro-CT). Tartrate resistant acid phosphatase (TRAP) staining and osteocalcin (OCN) staining experiments revealed decreased bone resorption and increased bone formation in the GSK treatment groups. In addition, we found a novel effect of GSK—it could induce type-H vessel formation in mice. The underlying mechanisms of these actions were further explored at the molecular level to investigate whether these effects were due to an overexpression of the hypoxia inducible factor-1 (HIF-1α). Our findings indicate the utility of GSK as a therapeutic for the prevention of osteoporosis.
Collapse
Affiliation(s)
- Wantao Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoqing Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Tiejian Jiang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Hongbo He
- Department of Orthopedic, Xiangya Hospital of Central South University, Changsha, China
| | - Ting Wen
- Department of Orthopedic, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
8
|
Wang G, Huo L, Chen G, He H. Effects of Gushukang for postmenopausal osteoporosis: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e20908. [PMID: 32629684 PMCID: PMC7337472 DOI: 10.1097/md.0000000000020908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Postmenopausal osteoporosis (PMO) is one of the most common systemic bone diseases with a high risk of fracture. Traditional herbal formula Gushukang (GSK) has been used to treat PMO. However, there is no systematic review related to GSK for PMO. The object of this work is to evaluate the efficacy and safety of GSK in the management of PMO. METHODS We will search the PubMed, Embase, MEDLINE, Cochrane Library Central Register of Controlled Trials, China national knowledge infrastructure database (CNKI), Wan fang database, Chongqing VIP information, and SinoMed from their inception to May 2020. All randomized controlled trials (RCTs) of GSK for the treatment of PMO will be included. The improvement of vertebral fracture and bone mineral density (BMD) will be accepted as the primary outcomes. The meta-analyses will be performed by using the RevMan 5.3. RESULTS This study will provide a high-quality comprehensive evaluation of the efficacy and safety of GSK for treating patients with PMO. CONCLUSION The conclusion of our systematic review will provide evidence to judge whether GSK is an effective intervention for patients with PMO. TRIAL REGISTRATION NUMBER 10.17605/OSF.IO/MKN3F.
Collapse
Affiliation(s)
| | | | - Guocai Chen
- The Fifth Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | | |
Collapse
|
9
|
Wong MS, Poon CCW, Zhou LP, Xiao HH. Natural Products as Potential Bone Therapies. Handb Exp Pharmacol 2019; 262:499-518. [PMID: 31792676 DOI: 10.1007/164_2019_322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Demands for natural products, in the form of botanicals, dietary supplements, and herbal medicine, for management of chronic diseases are increasing globally. Natural products might be an alternative for the management of bone health to meet the demands of a growing aging population. Different types of natural products, including Chinese herbal medicine decoctions, herbs, and isolated phytochemicals, have been demonstrated to exert bone protective effects. The most common types of bone protective bioactives are flavonoids, stilbene, triterpenoids, coumestans, lignans, and phenolic acid. The actions of natural products can be mediated by acting systemically on the hormonal axis or locally via their direct or indirect effects on osteogenesis, osteoclastogenesis, as well as adipogenesis. Furthermore, with the use of metabolomic and microbiome approaches to understand the actions of natural products, novel mechanisms that involve gut-brain-bone axis are also revealed. These studies provide evidence to support the use of natural products as bone therapeutics as well as identify new biological targets for novel drug development.
Collapse
Affiliation(s)
- Man-Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China. .,State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, People's Republic of China.
| | - Christina Chui-Wa Poon
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Li-Ping Zhou
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Hui-Hui Xiao
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, People's Republic of China
| |
Collapse
|