1
|
Weng K, He Y, Weng X, Yuan Y. Exercise alleviates osteoporosis by regulating the secretion of the Senescent Associated Secretory Phenotype. Bone 2025; 196:117485. [PMID: 40216288 DOI: 10.1016/j.bone.2025.117485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/18/2025]
Abstract
As the elderly population grows, the number of patients with metabolic bone diseases such as osteoporosis has increased sharply, posing a significant threat to public health and social economics. Although pharmacological therapies for osteoporosis demonstrate therapeutic benefits, their prolonged use is associated with varying degrees of adverse effects. As a non-pharmacological intervention, exercise is widely recognized for its cost-effectiveness, safety, and lack of toxic side effects, making it a recommended treatment for osteoporosis prevention and management. Previous studies have demonstrated that exercise can improve metabolic bone diseases by modulating the Senescent Associated Secretory Phenotype (SASP). However, the mechanisms through which exercise influences SASP remain unclear. Therefore, this review aims to summarize the effects of exercise on SASP and elucidate the specific mechanisms by which exercise regulates SASP to alleviate osteoporosis, providing a theoretical basis for osteoporosis through exercise and developing targeted therapies.
Collapse
Affiliation(s)
- Kaihong Weng
- Graduate School, Guangzhou Sport University, 510500 Guangzhou, China
| | - Yuting He
- Graduate School, Guangzhou Sport University, 510500 Guangzhou, China
| | - Xiquan Weng
- School of Exercise and Health, Guangzhou Sport University, 510500 Guangzhou, China; Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, 510500 Guangzhou, China.
| | - Yu Yuan
- School of Exercise and Health, Guangzhou Sport University, 510500 Guangzhou, China; Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, 510500 Guangzhou, China.
| |
Collapse
|
2
|
Tay Donovan YK, Bilezikian JP. Interactions between PTH and adiposity: appetizing possibilities. J Bone Miner Res 2024; 39:536-543. [PMID: 38637302 DOI: 10.1093/jbmr/zjae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/17/2024] [Accepted: 03/29/2024] [Indexed: 04/20/2024]
Abstract
Although parathyroid hormone (PTH) is best known for its role as a regulator of skeletal remodelling and calcium homeostasis, more recent evidence supports a role for it in energy metabolism and other non-classical targets. In this report, we summarize evidence for an effect of PTH on adipocytes. This review is based upon all peer-reviewed papers, published in the English language with PubMed as the primary search engine. Recent preclinical studies have documented an effect of PTH to stimulate lipolysis in both adipocytes and liver cells and to cause browning of adipocytes. PTH also reduces bone marrow adiposity and hepatic steatosis. Although clinical studies are limited, disease models of PTH excess and PTH deficiency lend support to these preclinical findings. This review supports the concept of PTH as a polyfunctional hormone that influences energy metabolism as well as bone metabolism.
Collapse
Affiliation(s)
- Yu Kwang Tay Donovan
- Department of Endocrinology, Sengkang General Hospital, SingHealth, 544886, Singapore
| | - John P Bilezikian
- Vagelos College of Physicians and Surgeons, Columbia University, 180 Fort Washington Ave Ste 904, New York, NY, 10032, United States
| |
Collapse
|
3
|
Heitman K, Alexander MS, Faul C. Skeletal Muscle Injury in Chronic Kidney Disease-From Histologic Changes to Molecular Mechanisms and to Novel Therapies. Int J Mol Sci 2024; 25:5117. [PMID: 38791164 PMCID: PMC11121428 DOI: 10.3390/ijms25105117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with significant reductions in lean body mass and in the mass of various tissues, including skeletal muscle, which causes fatigue and contributes to high mortality rates. In CKD, the cellular protein turnover is imbalanced, with protein degradation outweighing protein synthesis, leading to a loss of protein and cell mass, which impairs tissue function. As CKD itself, skeletal muscle wasting, or sarcopenia, can have various origins and causes, and both CKD and sarcopenia share common risk factors, such as diabetes, obesity, and age. While these pathologies together with reduced physical performance and malnutrition contribute to muscle loss, they cannot explain all features of CKD-associated sarcopenia. Metabolic acidosis, systemic inflammation, insulin resistance and the accumulation of uremic toxins have been identified as additional factors that occur in CKD and that can contribute to sarcopenia. Here, we discuss the elevation of systemic phosphate levels, also called hyperphosphatemia, and the imbalance in the endocrine regulators of phosphate metabolism as another CKD-associated pathology that can directly and indirectly harm skeletal muscle tissue. To identify causes, affected cell types, and the mechanisms of sarcopenia and thereby novel targets for therapeutic interventions, it is important to first characterize the precise pathologic changes on molecular, cellular, and histologic levels, and to do so in CKD patients as well as in animal models of CKD, which we describe here in detail. We also discuss the currently known pathomechanisms and therapeutic approaches of CKD-associated sarcopenia, as well as the effects of hyperphosphatemia and the novel drug targets it could provide to protect skeletal muscle in CKD.
Collapse
Affiliation(s)
- Kylie Heitman
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Matthew S. Alexander
- Division of Neurology, Department of Pediatrics, The University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christian Faul
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
4
|
Bimonte VM, Catanzaro G, Spinello Z, Massari MC, Curreli M, Terrana G, Defeudis G, Halupczok-Żyła J, Mantovani G, Ferretti E, Migliaccio S. Hypocalcemia in combination with hyperphosphatemia impairs muscle cell differentiation in vitro. J Endocrinol Invest 2024; 47:947-957. [PMID: 37819413 DOI: 10.1007/s40618-023-02212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Hypoparathyroidism is a rare endocrine disorder characterized by low or absent secretion of parathyroid hormone (PTH), which leads to decreased calcium and increased phosphorus levels in the serum. The diagnosis of hypoparathyroidism is based on the identification of the aforementioned biochemical abnormalities, which may be accompanied by clinical manifestations. Symptoms of hypoparathyroidism, primarily attributed to hypocalcemia, include muscle cramps or spasms, facial, leg, and foot pain, seizures, and tingling in the lips or fingers. The treatment of hypoparathyroidism depends on the severity of symptoms and the underlying pathology. Over the long term, calcium supplements, active vitamin D analogs, and thiazide diuretics may be needed. In fact, in patient cohorts in which optimal disease control still remains elusive, replacement therapy with recombinant parathyroid hormone analogs may be contemplated. Despite the predominantly neuromuscular symptoms of hypoparathyroidism, further effects of parathyroid hormone deficiency at the muscle cell level remain poorly understood. Thus, the aim of our study was to evaluate the effects of hypocalcemia in combination with hyperphosphatemia on muscle cells differentiation in vitro. METHODS C2C12 cells, an in vitro model of muscle cells, were differentiated for 2 or 6 days in the presence of hypocalcemia (CaCl2 0.9 mmol/l) and moderate (PO4 1.4 mmol/l) or severe (PO4 2.9 mmol/l) hyperphosphatemia, or combinations of both conditions. Cell differentiation and expression of genes linked to muscle differentiation were evaluated. RESULTS The combination of hypocalcemia with hyperphosphatemia induced a significant reduction (50%) in differentiation marker levels, such as MyoD (protein 1 for myoblast determination) and myogenin on the 1st day of differentiation, and MHC (myosin heavy chains) after 6 days of differentiation compared to control. Furthermore, this condition induced a statistically significant reduction of insulin-like growth factor-1 (IGF-1) mRNA expression and inhibition of IGF signaling and decrease in ERK phosphorylation compared to control cells. CONCLUSIONS Our results showed that a condition of hypocalcemia with hyperphosphatemia induced an alteration of muscle cell differentiation in vitro. In particular, we observed the reduction of myogenic differentiation markers, IGF-1 signaling pathway, and ERK phosphorylation in differentiated skeletal myoblasts. These data suggest that this altered extracellular condition might contribute to the mechanisms causing persistence of symptoms in patients affected by hypoparathyroidism.
Collapse
Affiliation(s)
- V M Bimonte
- Department of Movement, Human and Health Sciences, University of Foro Italico, Largo Lauro De Bosis 6, 00195, Rome, Italy
| | - G Catanzaro
- Department of Experimental Medicine, University "Sapienza" of Rome, 00161, Rome, Italy
| | - Z Spinello
- Department of Experimental Medicine, University "Sapienza" of Rome, 00161, Rome, Italy
| | - M C Massari
- Department of Experimental Medicine, University "Sapienza" of Rome, 00161, Rome, Italy
| | - M Curreli
- Department of Movement, Human and Health Sciences, University of Foro Italico, Largo Lauro De Bosis 6, 00195, Rome, Italy
| | - G Terrana
- Department of Experimental Medicine, University "Sapienza" of Rome, 00161, Rome, Italy
| | - G Defeudis
- Department of Movement, Human and Health Sciences, University of Foro Italico, Largo Lauro De Bosis 6, 00195, Rome, Italy
| | - J Halupczok-Żyła
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, 50004, Wrocław, Poland
| | - G Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - E Ferretti
- Department of Experimental Medicine, University "Sapienza" of Rome, 00161, Rome, Italy
| | - S Migliaccio
- Department of Movement, Human and Health Sciences, University of Foro Italico, Largo Lauro De Bosis 6, 00195, Rome, Italy.
| |
Collapse
|
5
|
Igarashi S, Kasukawa Y, Nozaka K, Tsuchie H, Abe K, Saito H, Shoji R, Kasama F, Harata S, Okamoto K, Oya K, Miyakoshi N. Teriparatide and etelcalcetide improve bone, fibrosis, and fat parameters in chronic kidney disease model rats. Osteoporos Sarcopenia 2023; 9:121-130. [PMID: 38374820 PMCID: PMC10874735 DOI: 10.1016/j.afos.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 02/21/2024] Open
Abstract
Objectives Chronic kidney disease (CKD) complicated by secondary hyperparathyroidism (SHPT) is associated with an increased risk of fragility fractures. Etelcalcetide (EC) is a treatment for SHPT that reduces serum parathyroid hormone (PTH) levels. However, the effects of combined treatment with osteoporosis drugs such as teriparatide (TPTD) remain unclear. This study investigates the combined effects of EC and TPTD on bone in CKD model rats. Methods The CKD model was established in 8-week-old male Wistar rats by feeding them a 0.75% adenine diet for 4 weeks. At 20 weeks of age, the rats were divided into 4 groups (N = 9-10 in each group): CKD group (vehicle administration), TPTD group (30 μg/kg, 3 times/week), EC group (0.6 mg/kg, daily), and Comb group (TPTD and EC combined). EC was injected for 12 weeks starting at 20 weeks of age, and TPTD was injected for 8 weeks starting at 24 weeks of age. After treatment, the followings were evaluated: bone mineral density, bone strength, biochemical tests, bone and fat histomorphometry, and micro-computed tomography. Results In CKD model rats, the combination of EC and TPTD was more effective in increasing cortical bone thickness and bone strength and inhibiting porosity. In addition, the combined treatment decreased bone marrow adiposity and fibrosis, and it increased bone mass and improved bone microstructure in trabecular bone. Conclusions With the observed benefits such as improved bone mass, bone strength, structural properties, and bone marrow adiposity, combination therapy may be a potential way to improve bone fragility in CKD.
Collapse
Affiliation(s)
- Shun Igarashi
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| | - Yuji Kasukawa
- Department of Rehabilitation Medicine, Akita University Hospital, 1-1-1, Hondo, Akita, 010-8543, Japan
| | - Koji Nozaka
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| | - Hiroyuki Tsuchie
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| | - Kazunobu Abe
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| | - Hikaru Saito
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| | - Ryo Shoji
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| | - Fumihito Kasama
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| | - Shuntaro Harata
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| | - Kento Okamoto
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| | - Keita Oya
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| | - Naohisa Miyakoshi
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| |
Collapse
|
6
|
Gao H, Zhao Y, Zhao L, Wang Z, Yan K, Gao B, Zhang L. The Role of Oxidative Stress in Multiple Exercise-Regulated Bone Homeostasis. Aging Dis 2023; 14:1555-1582. [PMID: 37196112 PMCID: PMC10529750 DOI: 10.14336/ad.2023.0223] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/23/2023] [Indexed: 05/19/2023] Open
Abstract
Bone is a tissue that is active throughout the lifespan, and its physiological activities, such as growth, development, absorption, and formation, are always ongoing. All types of stimulation that occur in sports play an important role in regulating the physiological activities of bone. Here, we track the latest research progress locally and abroad, summarize the recent, relevant research results, and systematically summarize the effects of different types of exercise on bone mass, bone strength and bone metabolism. We found that different types of exercise have different effects on bone health due to their unique technical characteristics. Oxidative stress is an important mechanism mediating the exercise regulation of bone homeostasis. Excessive high-intensity exercise does not benefit bone health but induces a high level of oxidative stress in the body, which has a negative impact on bone tissue. Regular moderate exercise can improve the body's antioxidant defense ability, inhibit an excessive oxidative stress response, promote the positive balance of bone metabolism, delay age-related bone loss and deterioration of bone microstructures and have a prevention and treatment effect on osteoporosis caused by many factors. Based on the above findings, we provide evidence for the role of exercise in the prevention and treatment of bone diseases. This study provides a systematic basis for clinicians and professionals to reasonably formulate exercise prescriptions and provides exercise guidance for patients and the general public. This study also provides a reference for follow-up research.
Collapse
Affiliation(s)
- Haoyang Gao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yilong Zhao
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linlin Zhao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Zhikun Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Kai Yan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Bo Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
7
|
Hughes JM, Guerriere KI, Popp KL, Castellani CM, Pasiakos SM. Exercise for optimizing bone health after hormone-induced increases in bone stiffness. Front Endocrinol (Lausanne) 2023; 14:1219454. [PMID: 37790607 PMCID: PMC10544579 DOI: 10.3389/fendo.2023.1219454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/17/2023] [Indexed: 10/05/2023] Open
Abstract
Hormones and mechanical loading co-regulate bone throughout the lifespan. In this review, we posit that times of increased hormonal influence on bone provide opportunities for exercise to optimize bone strength and prevent fragility. Examples include endogenous secretion of growth hormones and sex steroids that modulate adolescent growth and exogenous administration of osteoanabolic drugs like teriparatide, which increase bone stiffness, or its resistance to external forces. We review evidence that after bone stiffness is increased due to hormonal stimuli, mechanoadaptive processes follow. Specifically, exercise provides the mechanical stimulus necessary to offset adaptive bone resorption or promote adaptive bone formation. The collective effects of both decreased bone resorption and increased bone formation optimize bone strength during youth and preserve it later in life. These theoretical constructs provide physiologic foundations for promoting exercise throughout life.
Collapse
Affiliation(s)
- Julie M. Hughes
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Katelyn I. Guerriere
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Kristin L. Popp
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, United States
| | - Colleen M. Castellani
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, United States
| | - Stefan M. Pasiakos
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| |
Collapse
|
8
|
Diacinti D, Diacinti D, Iannacone A, Pepe J, Colangelo L, Nieddu L, Kripa E, Orlandi M, De Martino V, Minisola S, Cipriani C. Bone Marrow Adipose Tissue Is Increased in Postmenopausal Women With Postsurgical Hypoparathyroidism. J Clin Endocrinol Metab 2023; 108:e807-e815. [PMID: 36856793 DOI: 10.1210/clinem/dgad116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/07/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
CONTEXT Suppression of bone turnover, greater trabecular volume, and normal-high normal all-site bone mineral density (BMD) are hallmarks of postsurgical hypoparathyroidism (HypoPT). Impairment in the trabecular microarchitecture with possible higher risk of vertebral fractures (VF) in women with postmenopausal HypoPT has also been described. Currently, no data on bone marrow adipose tissue (BMAT) are available in HypoPT. OBJECTIVE To assess BMAT by magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy (1H-MRS) in postmenopausal women with chronic postsurgical HypoPT. METHODS This cross-sectional pilot study, conducted at an ambulatory referral center, included 29 postmenopausal women (mean age 66 ± 8.4 years) with postsurgical HypoPT and 31 healthy postmenopausal women (mean age 63 ± 8.5). Lumbar spine MRI was performed and BMAT was measured by applying PRESS sequences on the L3 body. Lumbar spine, femoral neck, and total hip BMD were measured by dual x-ray absorptiometry (DXA); site-matched spine trabecular bone score (TBS) was calculated by TBS iNsight (Medimaps, Switzerland); VF assessment was performed with lateral thoracic and lumbar spine DXA. RESULTS Fat content (FC) and saturation level (SL%) were higher (P <.0001 and P <.001), while water content (W) was lower in HypoPT compared to controls (P <.0001). FC significantly correlated with years since menopause and body weight (P <.05) in HypoPT, while TBS negatively correlated with FC and SL% (P <.05) and positively with residual lipids (RL) and W (P <.05). CONCLUSION We demonstrate for the first time that BMAT is increased in postmenopausal women with postsurgical hypoparathyroidism and negatively associated with trabecular microarchitecture.
Collapse
Affiliation(s)
- Davide Diacinti
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Department of Diagnostic and Molecular Imaging, Radiology and Radiotherapy, University Hospital Policlinico Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Daniele Diacinti
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Antonio Iannacone
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Jessica Pepe
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Luciano Colangelo
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Luciano Nieddu
- Faculty of Economics, UNINT University, Via Cristoforo Colombo 200, 00147 Rome, Italy
| | - Endi Kripa
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Martina Orlandi
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Viviana De Martino
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Salvatore Minisola
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Cristiana Cipriani
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
9
|
Banitalebi E, Banitalebi E, Ghahfarokhi MM, Rahimi M, Laher I, Davison K. Resistance Band Exercise: An Effective Strategy to Reverse Cardiometabolic Disorders in Women With Osteosarcopenic Obesity. J Aging Phys Act 2023; 31:633-641. [PMID: 36706764 DOI: 10.1123/japa.2022-0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/28/2022] [Accepted: 11/07/2022] [Indexed: 01/29/2023]
Abstract
We designed to evaluate the effects of resistance elastic band exercises (REBEs) on cardiometabolic/obesity-related biomarkers in older females with osteosarcopenic obesity. Sixty-three patients (aged 65-80 years) with osteosarcopenic obesity and a body mass index exceeding 30 kg/m2 were enrolled in the study. The participants were randomly assigned to either an experimental group (REBE, n = 32) or a usual care group (n = 31). The experimental group completed a 12-week REBE program, three times a week and 60 min per session. There were decreases in lipid accumulation product (p = .033), visceral adipose index (p = .001), triglyceride-glucose-body mass index (p = .034), and atherogenic index of plasma (p = .028) in the experimental group compared with the usual care group. Our findings highlight the importance of an REBE program in improving combined cardiometabolic/obesity-related indices in older women with osteosarcopenic obesity. The incorporation of an REBE program may benefit individuals who are unable to tolerate or participate in more strenuous exercise programs.
Collapse
Affiliation(s)
| | - Elahe Banitalebi
- Department of Sport Sciences, Shahrekord University, Shahrekord,Iran
| | | | - Mostafa Rahimi
- Department of Sport Sciences, Shahrekord University, Shahrekord,Iran
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, Vancouver, BC,Canada
| | - Kade Davison
- Department of Allied Health & Human Performance, Alliance for Research in Exercise, Nutrition and Activity, University of South Australia: Allied Health and Human Performance, Adelaide, SA,Australia
| |
Collapse
|
10
|
Chen Y, Sun S, Zhou X, He M, Li Y, Liu C, Ta D. Low-intensity pulsed ultrasound and parathyroid hormone improve muscle atrophy in estrogen deficiency mice. ULTRASONICS 2023; 132:106984. [PMID: 36944299 DOI: 10.1016/j.ultras.2023.106984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Accepted: 03/09/2023] [Indexed: 05/29/2023]
Abstract
Due to aging and long-term estrogen deficiency, postmenopausal women suffer muscle atrophy (MA), which is characterized by decreased muscle mass and muscle quality. Low-intensity pulsed ultrasound (LIPUS) is an acoustic wave inducing biological effects mainly by the mechanical stimulation and used as a non-invasive physical therapy for muscle repair. Parathyroid hormone (PTH) is an 84-amino-acid polypeptide, and its bioactive fragment [PTH (1-34)] has potential application in the treatment of MA. We speculate that the combination of physical therapy (i.e., the LIPUS) and regulatory hormone (i.e., the PTH) would be more effective in the treatment of MA. The objective of this study was to evaluate the individual and combined effects of LIPUS and PTH therapy on MA in estrogen deficiency mice. Seventy 8-week-old female C57BL/6J mice were used in this study and the MA model was induced by an intraperitoneal injection of 4-vinylcyclohexene diepoxide (VCD) for 20 consecutive days. The VCD-induced MA mice were randomly divided into MA, LIPUS, PTH and LIPUS + PTH (Combined) groups (n = 10/group). In the LIPUS group, the mice were treated by LIPUS in bilateral quadriceps muscles for 20 min, five times a week for 6 weeks. In the PTH group, the mice received subcutaneous injection of PTH (1-34) (80 ug/kg/d) five times a week, for 6 weeks. In the Combined group, the PTH was administrated 30 min before each LIPUS session. Hematoxylin-eosin (H&E) staining, serum biochemical analysis and quantitative real-time polymerase chain reaction (qRT-PCR) were applied to evaluate the therapeutic effects of related treatments. The results showed that the MA mice had a disordered estrus cycle, significantly decreased muscle mass and myofibers cross-sectional area (CSA). After treatments, LIPUS, PTH and Combined groups had a significantly increased CSA, compared with the MA mice without treatment. In addition, Combined group had a significantly increased mRNA expression of Pax7, MyoD and MyoG, compared with LIPUS and PTH monotherapy groups. Our findings indicated that the combination of LIPUS and PTH treatment improves muscle regeneration ability, which might have potential for treating MA in postmenopausal women.
Collapse
Affiliation(s)
- Yuefu Chen
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Shuxin Sun
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Xinyan Zhou
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Min He
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Ying Li
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China.
| | - Chengcheng Liu
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 201203, China.
| | - Dean Ta
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 201203, China
| |
Collapse
|
11
|
Bonanni R, Gino Grillo S, Cariati I, Tranquillo L, Iundusi R, Gasbarra E, Tancredi V, Tarantino U. Osteosarcopenia and Pain: Do We Have a Way Out? Biomedicines 2023; 11:biomedicines11051285. [PMID: 37238956 DOI: 10.3390/biomedicines11051285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Osteosarcopenia (OSP) is a geriatric syndrome characterized by the coexistence of osteoporosis and sarcopenia and associated with an increased risk of fragility fractures, disability, and mortality. For patients with this syndrome, musculoskeletal pain represents the most significant challenge since, in addition to limiting the individual's functionality and promoting disability, it has a huge psychological burden involving anxiety, depression, and social withdrawal. Unfortunately, the molecular mechanisms involved in the development and persistence of pain in OSP have not yet been fully elucidated, although immune cells are known to play a key role in these processes. Indeed, they release several molecules that promote persistent inflammation and nociceptive stimulation, resulting in the gating of ion channels responsible for the generation and propagation of the noxious stimulus. The adoption of countermeasures to counteract the OSP progression and reduce the algic component appears to be necessary, providing patients with a better quality of life and greater adherence to treatment. In addition, the development of multimodal therapies, based on an interdisciplinary approach, appears to be crucial, combining the use of anti-osteoporotic drugs with an educational programme, regular physical activity, and proper nutrition to eliminate risk factors. Based on this evidence, we conducted a narrative review using the PubMed and Google Scholar search engines to summarize the current knowledge on the molecular mechanisms involved in the pain development in OSP and the potential countermeasures to be taken. The lack of studies addressing this topic highlights the need to conduct new research into the resolution of an ever-expanding social problem.
Collapse
Affiliation(s)
- Roberto Bonanni
- Department of Clinical Sciences and Translational Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Sonia Gino Grillo
- Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Viale Oxford 81, 00133 Rome, Italy
| | - Ida Cariati
- Department of Clinical Sciences and Translational Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Lucia Tranquillo
- Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Viale Oxford 81, 00133 Rome, Italy
| | - Riccardo Iundusi
- Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Viale Oxford 81, 00133 Rome, Italy
| | - Elena Gasbarra
- Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Viale Oxford 81, 00133 Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Viale Oxford 81, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
12
|
Romagnoli C, Zonefrati R, Lucattelli E, Innocenti M, Civinini R, Iantomasi T, Brandi ML. In Vitro Effects of PTH (1-84) on Human Skeletal Muscle-Derived Satellite Cells. Biomedicines 2023; 11:biomedicines11041017. [PMID: 37189637 DOI: 10.3390/biomedicines11041017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Parathyroid hormone (PTH) is a hormone secreted by the parathyroid glands. Despite its well-known characterized anabolic and catabolic actions on the skeleton, the in vitro effects of PTH on skeletal muscle cells are limited and generally performed on animal models. The aim of this study was to evaluate the effects of a short impulse of PTH (1-84) on the proliferation and the differentiation of skeletal muscle satellite cells isolated from human biopsies. The cells were exposed for 30 min to different concentrations of PTH (1-84), from 10−6 mol/L to 10−12 mol/L. ELISA was used to assay cAMP and the myosin heavy-chain (MHC) protein. The proliferation was assayed by BrdU and the differentiation by RealTime-qPCR. A statistical analysis was performed by ANOVA followed by Bonferroni’s test. No significant variations in cAMP and the proliferation were detected in the isolated cells treated with PTH. On the other hand, 10−7 mol/L PTH on differentiated myotubes has shown significant increases in cAMP (p ≤ 0.05), in the expression of myogenic differentiation genes (p ≤ 0.001), and in the MHC protein (p ≤ 0.01) vs. untreated controls. This work demonstrates for the first time the in vitro effects of PTH (1-84) on human skeletal muscle cells and it opens new fields of investigation in muscle pathophysiology.
Collapse
|
13
|
Cao B, Zuo Y, Xu Y, Wu F, Du H, Hou Y, Tian Y. Correlation between fat infiltration of paraspinal muscle and L4 degenerative lumbar spondylolisthesis in asymptomatic adults. Asian J Surg 2023; 46:834-840. [PMID: 36096928 DOI: 10.1016/j.asjsur.2022.08.097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/22/2022] [Accepted: 08/25/2022] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE To explore the relationship between different indicators of the degree of fat infiltration and L4 Degenerative lumbar spondylolisthesis (DLS). METHODS 128 patients received annual health check-up underwent lumbar lateral Digital Radiography (DR) and abdominal Computed tomography (CT) imaging were enrolled. The DLS group included 60 patients diagnosed with DLS, and the control group included 68 patients without DLS. The data collected included vertebral density of L4-L5, fat infiltration ratio (FIR) of paravertebral muscle (PM) and psoas major muscle (PMM), skeletal muscle density of PM and PMM, low attenuation muscle ratio (LTR) of PM and PMM, paraspinal muscle density (PMD), psoas major muscle density (PMMD), low attenuation muscle density (LMD) of PM and PMM, facet joint angle (FJA), facet joint degeneration (FJD), etc. RESULTS: PM FIR and PM LTR were weakly positively correlated with the degree of L4 DLS, and there was a weak negative correlation between PMD and the degree of L4 DLS in asymptomatic adults (P < 0.05). Logistic regression analysis showed that PM FIR was an independent related factor of L4 DLS (Q3 vs. Q1, OR = 3.746, 95% CI: 1.076-13.048, p = 0.038). ROC curve analysis showed that the PM FIR has a high predictive value for L4 DLS in asymptomatic adults. CONCLUSION The indicator of PM FIR was an independent related factor of L4 DLS in asymptomatic adults. It has a high predictive value for L4 DLS and can be applied as a potential target for clinical treatment of L4 DLS in asymptomatic adults.
Collapse
Affiliation(s)
- Bin Cao
- Department of Orthopedics, Shijiazhuang People's Hospital, Shijiazhuang, China.
| | - Yuqiang Zuo
- Department of Physical Examination, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yufang Xu
- Department of Clinical Pharmacy, People's Hospital of Hebei Province, Shijiazhuang, China
| | - Fuming Wu
- Department of Orthopedics, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Hanyang Du
- Department of Radiology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Yong Hou
- Department of Orthopedics, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Yuliang Tian
- Department of Orthopedics, Shijiazhuang People's Hospital, Shijiazhuang, China
| |
Collapse
|
14
|
Gu R, Liu H, Hu M, Zhu Y, Liu X, Wang F, Wu L, Song D, Liu Y. D-Mannose prevents bone loss under weightlessness. J Transl Med 2023; 21:8. [PMID: 36617569 PMCID: PMC9827691 DOI: 10.1186/s12967-022-03870-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/29/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Astronauts undergo significant microgravity-induced bone loss during space missions, which has become one of the three major medical problems hindering human's long-term space flight. A risk-free and antiresorptive drug is urgently needed to prevent bone loss during space missions. D-mannose is a natural C-2 epimer of D-glucose and is abundant in cranberries. This study aimed to investigate the protective effects and potential mechanisms of D-mannose against bone loss under weightlessness. METHODS The hind legs of tail-suspended (TS) rats were used to mimic weightlessness on Earth. Rats were administered D-mannose intragastrically. The osteoclastogenic and osteogenic capacity of D-mannose in vitro and in vivo was analyzed by micro-computed tomography, biomechanical assessment, bone histology, serum markers of bone metabolism, cell proliferation assay, quantitative polymerase chain reaction, and western blotting. RNA-seq transcriptomic analysis was performed to detect the underlying mechanisms of D-mannose in bone protection. RESULTS The TS rats showed lower bone mineral density (BMD) and poorer bone morphological indices. D-mannose could improve BMD in TS rats. D-mannose inhibited osteoclast proliferation and fusion in vitro, without apparent effects on osteoblasts. RNA-seq transcriptomic analysis showed that D-mannose administration significantly inhibited the cell fusion molecule dendritic cell-specific transmembrane protein (DC-STAMP) and two indispensable transcription factors for osteoclast fusion (c-Fos and nuclear factor of activated T cells 1 [NFATc1]). Finally, TS rats tended to experience dysuria-related urinary tract infections (UTIs), which were suppressed by treatment with D-mannose. CONCLUSION D-mannose protected against bone loss and UTIs in rats under weightlessness. The bone protective effects of D-mannose were mediated by inhibiting osteoclast cell fusion. Our findings provide a potential strategy to protect against bone loss and UTIs during space missions.
Collapse
Affiliation(s)
- Ranli Gu
- grid.11135.370000 0001 2256 9319Department of Prosthodontics, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081 China
| | - Hao Liu
- grid.11135.370000 0001 2256 9319The Central Laboratory, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081 China
| | - Menglong Hu
- grid.11135.370000 0001 2256 9319Department of Prosthodontics, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081 China
| | - Yuan Zhu
- grid.11135.370000 0001 2256 9319Department of Prosthodontics, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081 China
| | - Xuenan Liu
- grid.11135.370000 0001 2256 9319Department of Prosthodontics, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081 China
| | - Feilong Wang
- grid.11135.370000 0001 2256 9319Department of Prosthodontics, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081 China
| | - Likun Wu
- grid.11135.370000 0001 2256 9319Department of Prosthodontics, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081 China
| | - Danyang Song
- grid.11135.370000 0001 2256 9319Department of Prosthodontics, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081 China
| | - Yunsong Liu
- grid.11135.370000 0001 2256 9319Department of Prosthodontics, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081 China
| |
Collapse
|
15
|
Wu Q, Zhong P, Ning P, Tan L, Huang X, Peng T, Yin L, Luo F, Qu M, Zhou J. Treadmill training mitigates bone deterioration via inhibiting NLRP3/Caspase1/IL-1β signaling in aged rats. BMC Musculoskelet Disord 2022; 23:1089. [PMID: 36514079 PMCID: PMC9746211 DOI: 10.1186/s12891-022-06055-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Although aerobic physical exercise may improve osteoporosis during ageing, the underlying mechanism of the favorable effects remains unclear. The aim of this study was to examine the localized and generalized proinflammatory indicators and the adaptive skeletal responses to treadmill training in aged rats to explore the potential mechanisms by which treadmill training impacts bone deterioration in a natural aged rat model. MATERIALS AND METHODS A total of 24 Sprague Dawley (SD) rats were included in this study. Sixteen of all these animals were twenty-four months natural aged male SD rats, which were distributed into two groups (n = 8/group): AC group with sham treadmill training, and AT group with 8 weeks treadmill training. The remaining 8 were six months male SD rats matched subline and supplier, which were used as the adult control group with sham treadmill training (YC group, n = 8). The serum, bone marrow, fresh femur, tibia, and lumbar spine were harvested for molecular biological analysis, bone mineral density (BMD) testing, and micro-CT analysis after 8 weeks of treadmill training. RESULTS After 8 weeks of intervention, the results showed that treadmill training increased BMD and inhibited deterioration of bone microarchitecture of hind limb bones. Further analysis showed that treadmill training increased serum P1CP concentration and decreased serum CTX-1level. Interestingly, treadmill training down-regulated the protein expressions of proinflammatory indicators, including NLRP3, proCaspase1, cleaved Caspase1, IL-1β, and GSDMD-N, and the mRNA levels of NLRP3, Caspase1, and IL-1β of the bone marrow. In addition, treadmill training also inhibited serum TNF-α and IL-1β concentration. However, 8 weeks of treadmill training did not increase BMD and bone microarchitecture in the lumbar spine. CONCLUSION Treadmill training mitigates the ageing-induced bone loss and reverses the deterioration of bone microarchitecture in hind limbs probably through inhibiting NLRP3/Caspase1/IL-1β signaling to attenuate low-grade inflammation and improve the inflammatory bone microenvironment.
Collapse
Affiliation(s)
- Qi Wu
- grid.412017.10000 0001 0266 8918 Department of Rehabilitation, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang, Hunan Province 421001 Hengyang, People’s Republic of China ,grid.412017.10000 0001 0266 8918Rehabilitation Laboratory, Hengyang Medical School, The First Affiliated Hospital, University of South China, 421001 Hengyang, Hunan China ,grid.89957.3a0000 0000 9255 8984Nanjing Medical University, 211166 Nanjing, Jiangsu China
| | - Peirui Zhong
- grid.412017.10000 0001 0266 8918 Department of Rehabilitation, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang, Hunan Province 421001 Hengyang, People’s Republic of China ,grid.412017.10000 0001 0266 8918Rehabilitation Laboratory, Hengyang Medical School, The First Affiliated Hospital, University of South China, 421001 Hengyang, Hunan China
| | - Pengyun Ning
- grid.412017.10000 0001 0266 8918 Department of Rehabilitation, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang, Hunan Province 421001 Hengyang, People’s Republic of China ,grid.412017.10000 0001 0266 8918Rehabilitation Laboratory, Hengyang Medical School, The First Affiliated Hospital, University of South China, 421001 Hengyang, Hunan China
| | - Lu Tan
- grid.412017.10000 0001 0266 8918 Department of Rehabilitation, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang, Hunan Province 421001 Hengyang, People’s Republic of China ,grid.412017.10000 0001 0266 8918Rehabilitation Laboratory, Hengyang Medical School, The First Affiliated Hospital, University of South China, 421001 Hengyang, Hunan China
| | - Xiarong Huang
- grid.412017.10000 0001 0266 8918 Department of Rehabilitation, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang, Hunan Province 421001 Hengyang, People’s Republic of China ,grid.412017.10000 0001 0266 8918Rehabilitation Laboratory, Hengyang Medical School, The First Affiliated Hospital, University of South China, 421001 Hengyang, Hunan China
| | - Ting Peng
- grid.412017.10000 0001 0266 8918 Department of Rehabilitation, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang, Hunan Province 421001 Hengyang, People’s Republic of China ,grid.412017.10000 0001 0266 8918Rehabilitation Laboratory, Hengyang Medical School, The First Affiliated Hospital, University of South China, 421001 Hengyang, Hunan China
| | - Linwei Yin
- grid.412017.10000 0001 0266 8918 Department of Rehabilitation, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang, Hunan Province 421001 Hengyang, People’s Republic of China ,grid.412017.10000 0001 0266 8918Rehabilitation Laboratory, Hengyang Medical School, The First Affiliated Hospital, University of South China, 421001 Hengyang, Hunan China
| | - Fu Luo
- grid.412017.10000 0001 0266 8918 Department of Rehabilitation, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang, Hunan Province 421001 Hengyang, People’s Republic of China ,grid.412017.10000 0001 0266 8918Rehabilitation Laboratory, Hengyang Medical School, The First Affiliated Hospital, University of South China, 421001 Hengyang, Hunan China
| | - Mengjian Qu
- grid.412017.10000 0001 0266 8918 Department of Rehabilitation, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang, Hunan Province 421001 Hengyang, People’s Republic of China ,grid.412017.10000 0001 0266 8918Rehabilitation Laboratory, Hengyang Medical School, The First Affiliated Hospital, University of South China, 421001 Hengyang, Hunan China
| | - Jun Zhou
- grid.412017.10000 0001 0266 8918 Department of Rehabilitation, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang, Hunan Province 421001 Hengyang, People’s Republic of China ,grid.412017.10000 0001 0266 8918Rehabilitation Laboratory, Hengyang Medical School, The First Affiliated Hospital, University of South China, 421001 Hengyang, Hunan China ,grid.13291.380000 0001 0807 1581Department of Rehabilitation, West China Hospital, Sichuan University, 610000 Chengdu, China
| |
Collapse
|
16
|
Vauclard A, Bellio M, Valet C, Borret M, Payrastre B, Severin S. Obesity: Effects on bone marrow homeostasis and platelet activation. Thromb Res 2022. [DOI: 10.1016/j.thromres.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Miyazaki M, Ishihara T, Abe T, Kanezaki S, Hirakawa M, Iwasaki T, Tsumura H. Analysis of treatment effect with teriparatide on device-related vertebral osteopenia after lumbar spinal interbody fusion using Hounsfield unit values: A retrospective cohort study. Medicine (Baltimore) 2022; 101:e29677. [PMID: 35839038 PMCID: PMC11132414 DOI: 10.1097/md.0000000000029677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 05/11/2022] [Indexed: 11/25/2022] Open
Abstract
The aim of the present study was to investigate the effect of teriparatide on device-related vertebral osteopenia after single lumbar spinal interbody fusion and compare osteopenia in fused and nonfused spinal segments using Hounsfield unit (HU) values. The present study was a retrospective cohort study. We reviewed 68 consecutive patients (28 men and 40 women) who underwent single-segment (L4-5) transforaminal lumbar interbody fusion with cage and pedicle screw fixation. The patients were divided into 2 groups according to whether they were treated with teriparatide (teriparatide and nonmedication groups). The primary outcome measure was HU values measured on computed tomography images from each L1 to S1 vertebral body12-month postoperatively. Secondary outcome measures were femoral neck bone mineral density (BMD), T-score, osseous union, and clinical outcomes using the Japanese Orthopedic Association scoring system 12-month postoperatively. There were significant decreases in HU values of lumbar vertebral bodies at all levels and BMD and T-score values obtained using dual-energy X-ray absorptiometry of the femur between preoperative and postoperative 12-month computed tomography in the nonmedication group (P < .05). On the other hand, there were no significant differences between properative and postoperative 12-month HU values of each lumbar vertebral body and BMD values of the femur in the teriparatide group. Osseous fusion scores in the teriparatide group were significantly better than those in the nonmedication group. There were no significant differences in postoperative Japanese Orthopedic Association scores between the 2 groups. Administration of teriparatide during the perioperative period may prevent bone loss associated with spinal fusion surgery.
Collapse
Affiliation(s)
- Masashi Miyazaki
- Department of Orthopedic Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Toshinobu Ishihara
- Department of Orthopedic Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Tetsutaro Abe
- Department of Orthopedic Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Shozo Kanezaki
- Department of Orthopedic Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Masashi Hirakawa
- Department of Orthopedic Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Tatsuya Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Hiroshi Tsumura
- Department of Orthopedic Surgery, Faculty of Medicine, Oita University, Oita, Japan
| |
Collapse
|
18
|
Abe K, Miyakoshi N, Kasukawa Y, Nozaka K, Tsuchie H, Sato C, Saito H, Shoji R, Shimada Y. Effects of teriparatide and low-intensity aerobic exercise on osteopenia in type 2 diabetes mellitus rats. J Bone Miner Metab 2022; 40:229-239. [PMID: 35089442 DOI: 10.1007/s00774-021-01289-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION In patients with type 2 diabetes mellitus (T2DM), bone fragility increases fracture risk. Teriparatide (TPTD) improves bone strength, and exercise therapy suppresses blood glucose levels in T2DM. In this study, the combined effects of TPTD and exercise therapy on trabecular and cortical bone were examined in advanced T2DM model rats. MATERIALS AND METHODS Thirty-week-old Otsuka Long-Evans Tokushima Fatty rats were divided into four groups (n = 9-10 in each group at two time points): Cont group (vehicle-treated control), TPTD group (TPTD 30 μg/kg injected subcutaneously, 3 times/week), Exe group (treadmill exercise, 10 m/min, 60 min/day, 5 times/week), and Comb group (TPTD-treated and treadmill exercise combined). Five and 10 weeks after treatment, bone mineral density (BMD), bone strength, and bone micro-architecture were measured. RESULTS TPTD and combined treatment significantly increased BMDs of the lumbar spine and femur compared to the Cont group (p < 0.05 to p < 0.01). In the three-point bending test of the femur, only combined treatment increased the maximum load at 5 weeks compared with the Cont and Exe groups (p < 0.01). In the compression test of the distal femoral metaphysis, both TPTD and combined treatment increased the trabecular bone strength compared with the Cont and Exe groups (p < 0.05 to p < 0.01). Although TPTD and combined treatment improved the micro-architecture of trabecular bone (p < 0.05 to p < 0.01), only combined treatment improved the micro-structures of cortical bone from 5 weeks of treatment (p < 0.05 to p < 0.01). CONCLUSION The combination of TPTD and treadmill exercise increased BMD and trabecular and cortical bone strength of the femur with improved micro-architecture in T2DM model rats.
Collapse
Affiliation(s)
- Kazunobu Abe
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| | - Naohisa Miyakoshi
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan.
| | - Yuji Kasukawa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| | - Koji Nozaka
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| | - Hiroyuki Tsuchie
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| | - Chiaki Sato
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| | - Hikaru Saito
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| | - Ryo Shoji
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| | - Yoichi Shimada
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| |
Collapse
|
19
|
Daily JW, Park S. Sarcopenia Is a Cause and Consequence of Metabolic Dysregulation in Aging Humans: Effects of Gut Dysbiosis, Glucose Dysregulation, Diet and Lifestyle. Cells 2022; 11:cells11030338. [PMID: 35159148 PMCID: PMC8834403 DOI: 10.3390/cells11030338] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Skeletal muscle mass plays a critical role in a healthy lifespan by helping to regulate glucose homeostasis. As seen in sarcopenia, decreased skeletal muscle mass impairs glucose homeostasis, but it may also be caused by glucose dysregulation. Gut microbiota modulates lipopolysaccharide (LPS) production, short-chain fatty acids (SCFA), and various metabolites that affect the host metabolism, including skeletal muscle tissues, and may have a role in the sarcopenia etiology. Here, we aimed to review the relationship between skeletal muscle mass, glucose homeostasis, and gut microbiota, and the effect of consuming probiotics and prebiotics on the development and pathological consequences of sarcopenia in the aging human population. This review includes discussions about the effects of glucose metabolism and gut microbiota on skeletal muscle mass and sarcopenia and the interaction of dietary intake, physical activity, and gut microbiome to influence sarcopenia through modulating the gut–muscle axis. Emerging evidence suggests that the microbiome can regulate both skeletal muscle mass and function, in part through modulating the metabolisms of short-chain fatty acids and branch-chain amino acids that might act directly on muscle in humans or indirectly through the brain and liver. Dietary factors such as fats, proteins, and indigestible carbohydrates and lifestyle interventions such as exercise, smoking, and alcohol intake can both help and hinder the putative gut–muscle axis. The evidence presented in this review suggests that loss of muscle mass and function are not an inevitable consequence of the aging process, and that dietary and lifestyle interventions may prevent or delay sarcopenia.
Collapse
Affiliation(s)
- James W. Daily
- Department of R & D, Daily Manufacturing Inc., Rockwell, 28138 NC, USA;
| | - Sunmin Park
- Department of Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 31499, Korea
- Correspondence: ; Tel.: +82-41-540-5345; Fax: +82-41-548-0670
| |
Collapse
|
20
|
Saito H, Miyakoshi N, Kasukawa Y, Nozaka K, Tsuchie H, Sato C, Abe K, Shoji R, Shimada Y. Analysis of bone in adenine-induced chronic kidney disease model rats. Osteoporos Sarcopenia 2022; 7:121-126. [PMID: 35005247 PMCID: PMC8714473 DOI: 10.1016/j.afos.2021.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/13/2021] [Accepted: 11/03/2021] [Indexed: 10/25/2022] Open
Abstract
Objectives The purpose of this study is to investigate the stage of chronic kidney disease (CKD) in adenine-induced CKD model rats by serum analyses, and to examine bone mineral density (BMD), bone strength, and microstructure of trabecular and cortical bone in these rats. Methods Eight-week-old, male Wistar rats (n = 42) were divided into 2 groups: those fed a 0.75% adenine diet for 4 weeks until 12 weeks of age to generate CKD model rats (CKD group); and sham rats. The CKD and sham groups were sacrificed at 12, 16, and 20 weeks of age (n = 7 in each group and at 12, 16, and 20 weeks), and various parameters were evaluated, including body weight, renal wet weight, muscle wet weight, renal histology, biochemical tests, BMD, biomechanical testing, and micro-computed tomography (CT). The parameters were compared between the 2 groups at the various time points. Results In the CKD model rats, at 20 weeks of age, serum creatinine, phosphorus, and intact-PTH levels were elevated, and serum calcium levels were normal, indicating that the CKD was stage IV and associated with secondary hyperparathyroidism. Decreased BMDs of the whole body and the femur were observed as bone changes, and micro-CT analysis showed deterioration of bone microstructure of the cortical bone that resulted in decreased bone strength in the cortical and trabecular bone. Conclusions These CKD model rats showed stage IV CKD and appear appropriate for evaluating the effects of several treatments for CKD-related osteoporosis and mineral bone disorder.
Collapse
Affiliation(s)
- Hikaru Saito
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| | - Naohisa Miyakoshi
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| | - Yuji Kasukawa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| | - Koji Nozaka
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| | - Hiroyuki Tsuchie
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| | - Chiaki Sato
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| | - Kazunobu Abe
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| | - Ryo Shoji
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| | - Yoichi Shimada
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| |
Collapse
|
21
|
Romagnoli C, Brandi ML. Muscle Physiopathology in Parathyroid Hormone Disorders. Front Med (Lausanne) 2021; 8:764346. [PMID: 34746197 PMCID: PMC8569254 DOI: 10.3389/fmed.2021.764346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022] Open
Abstract
Parathyroid hormone disorders are a group of diseases in which secretion of parathormone (PTH) is impaired. The disorders that result are characterized by signs and symptoms associated with the persistent presence of high blood calcium levels (hypercalcemia) related to hyperparathyroidism (PHPT), or reduced blood calcium levels (hypocalcemia) associated with hypoparathyroidism (HypoPT). In addition to the resulting alteration in bone microarchitecture and mass for both pathologies, patients also report problems with skeletal muscle due to a decrease in muscular strength, muscular dysfunction, and myopathies, which can be responsible for an increased risk of instability and fracture. Although the effect of PTH on bone is well established, and numerous studies suggest that PTH has an effect on skeletal muscle, knowledge about cellular e molecular mechanisms of action on skeletal muscle is very limited. Skeletal muscle is a tissue well known for its structural and mechanical actions and is endowed with an extraordinary ability to adapt to physiological changes. Research in skeletal muscle has increased over the last decade, its importance as an endocrine tissue also emerging, becoming itself a target of numerous substances and hormones. Parathyroid hormone disorders represent a starting point to understand whether PTH may have an effect on skeletal muscle. This review analyzes the basic research data reported to date on PTH and skeletal muscle, highlighting the importance of increasing our knowledge in this field of research.
Collapse
Affiliation(s)
- Cecilia Romagnoli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Maria Luisa Brandi
- F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Florence, Italy
| |
Collapse
|
22
|
Fujimaki T, Ando T, Hata T, Takayama Y, Ohba T, Ichikawa J, Takiyama Y, Tatsuno R, Koyama K, Haro H. Exogenous parathyroid hormone attenuates ovariectomy-induced skeletal muscle weakness in vivo. Bone 2021; 151:116029. [PMID: 34111645 DOI: 10.1016/j.bone.2021.116029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Osteoporosis commonly affects the elderly and is associated with significant morbidity and mortality. Loss of bone mineral density induces muscle atrophy and increases fracture risk. However, muscle lipid content and droplet size are increased by aging and mobility impairments, inversely correlated with muscle function, and a cause of reduced motor function. Teriparatide, the synthetic form of human parathyroid hormone (PTH) 1-34, has been widely used to treat osteoporosis. Although PTH positively affects muscle differentiation in vitro, the precise function and mechanisms of muscle mass and power preservation are still poorly understood, especially in vivo. In this study, we investigated the effect of PTH on skeletal muscle atrophy and dysfunction using an ovariectomized murine model. Eight-week-old female C57BL/6J mice were ovariectomized or sham-operated. Within each surgical group, the mice were divided into PTH injection or control subgroups. Motor function was evaluated based on grip strength, treadmill running, and lactic acid concentration. PTH receptor was expressed in skeletal muscle cells and myoblasts. PTH inhibited ovariectomy-induced bone loss but not uterine atrophy or increased body weight; PTH not only abolished ovariectomy-induced reduction in grip strength and maximum running speed, but also significantly reduced the ovariectomy-induced increase in lactic acid concentration (compared with that observed in the vehicle control). PTH also abrogated the ovariectomy-induced reduction in the oxidative capacity of muscle fibers, their cross-sectional area, and intramyocellular lipid content, and induced cell proliferation, cell migration, and muscle differentiation, while reducing lipid secretion by C2C12 myoblasts via the Wnt/β-catenin pathway. PTH significantly ameliorated muscle weakness and attenuated exercise-induced lactate levels in ovariectomized mice. Our in vitro study demonstrated that PTH/Wnt signaling regulated the proliferation, migration, and differentiation of myoblasts and also reduced lipid secretion in myoblasts. Thus, PTH could regulate several aspects of muscle function and physiology, and may represent a novel therapeutic strategy for patients with osteoporosis.
Collapse
Affiliation(s)
- Taro Fujimaki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Takashi Ando
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Takanori Hata
- Department of Neurology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yoshihiro Takayama
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Tetsuro Ohba
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Jiro Ichikawa
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yoshihisa Takiyama
- Department of Neurology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Rikito Tatsuno
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Katsuhiro Koyama
- Graduate School Department of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Hirotaka Haro
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
23
|
Huang CF, Shiao MS, Mao TY. Retrospective Study of the Effects of Zoledronic Acid on Muscle Mass in Osteoporosis Patients. Drug Des Devel Ther 2021; 15:3711-3715. [PMID: 34475752 PMCID: PMC8407782 DOI: 10.2147/dddt.s328858] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/13/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Several osteoporosis drugs can continuously improve bone mass, but the impact on muscle mass is still unknown. This study aims to investigate how zoledronic acid monotherapy affected muscle mass in osteoporosis patients. Patients and Methods Patients from an osteoporosis database were divided into two groups in this retrospective cohort, case–control study: zoledronic acid-treated patients (n = 113) and a control group without osteoporosis treatment (n = 118). At four years, appendicular skeletal muscle mass (ASM) and appendicular skeletal muscle mass index (ASMI) were calculated using dual-energy X-ray absorptiometry. The differences in muscle mass between the groups were compared. Results At baseline, there was no difference in sex, ASM, ASMI, and bone mineral density between the zoledronic acid treatment group and the control group. The treatment group’s skeletal muscle mass increased by 841 g in ASM and 0.35 kg/m2 in ASMI after three years, while decreased in the control group. Conclusion This study for the first time demonstrated that that zoledronic acid is beneficial not only to the bone but also to muscle.
Collapse
Affiliation(s)
- Chun-Feng Huang
- Department of Family Medicine, National Yang Ming Chiao Tung University Hospital, Yilan, Taiwan, Republic of China.,Department of Leisure Services Management, Chaoyang University of Technology, Taichung, Taiwan, Republic of China
| | - Ming-Shi Shiao
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Tso-Yen Mao
- Department of Leisure Services Management, Chaoyang University of Technology, Taichung, Taiwan, Republic of China
| |
Collapse
|
24
|
Postmenopausal osteoporosis coexisting with other metabolic diseases: Treatment considerations. Maturitas 2021; 147:19-25. [PMID: 33832643 DOI: 10.1016/j.maturitas.2021.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 12/13/2022]
Abstract
In postmenopausal women, osteoporosis may coexist with other metabolic diseases, including, but not limited to, obesity, diabetes, nonalcoholic fatty liver disease (NAFLD), dyslipidemia and cardiovascular disease (CVD). This association may lie beyond simple coincidence owing to high prevalence of all these diseases, especially in the aging population, as common pathogenetic mechanisms between them and osteoporosis may exist. In this context, anti-osteoporotic medications may affect the pathogenesis of some of these metabolic diseases; this is an important consideration when selecting the most appropriate medication for osteoporotic patients with coexistent metabolic diseases. Conversely, some current or emerging medications for metabolic diseases adversely affect bone metabolism and, if possible, should be avoided in women with postmenopausal osteoporosis. The main aim of this review is to summarize the evidence on anti-osteoporotic treatment in postmenopausal women with concomitant metabolic diseases, i.e. obesity, diabetes, NAFLD, dyslipidemia and CVD. The secondary aim is to present data on the effect of current or emerging medication for metabolic diseases on bone metabolism of postmenopausal women. Deeper understanding of the underlying links between osteoporosis and metabolic diseases may have clinical implications. However, mechanistic studies are needed to elucidate the potential pathophysiological links, as well as clinical trials in women with postmenopausal osteoporosis coexisting with specific metabolic diseases; these may guide clinical practice in the future for the selection of the best anti-osteoporotic medication for each patient with specific metabolic diseases.
Collapse
|