1
|
Theoretical Study on Redox Potential Control of Iron-Sulfur Cluster by Hydrogen Bonds: A Possibility of Redox Potential Programming. Molecules 2021; 26:molecules26206129. [PMID: 34684710 PMCID: PMC8538827 DOI: 10.3390/molecules26206129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
The effect of hydrogen bonds around the active site of Anabaena [2Fe-2S] ferredoxin (Fd) on a vertical ionization potential of the reduced state (IP(red)) is examined based on the density functional theory (DFT) calculations. The results indicate that a single hydrogen bond increases the relative stability of the reduced state, and shifts IP(red) to a reductive side by 0.31–0.33 eV, regardless of the attached sulfur atoms. In addition, the IP(red) value can be changed by the number of hydrogen bonds around the active site. The results also suggest that the redox potential of [2Fe-2S] Fd is controlled by the number of hydrogen bonds because IP(red) is considered to be a major factor in the redox potential. Furthermore, there is a possibility that the redox potentials of artificial iron-sulfur clusters can be finely controlled by the number of the hydrogen bonds attached to the sulfur atoms of the cluster.
Collapse
|
2
|
ERA I, KITAGAWA Y, TADA H, FUJII T, IKENAGA K, NAKANO M. Theoretical Study on the Effects of Environment around the Active Site on Ionization Potential in [2Fe-2S] Ferredoxin. JOURNAL OF COMPUTER CHEMISTRY-JAPAN 2019. [DOI: 10.2477/jccj.2019-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Iori ERA
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Yasutaka KITAGAWA
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hayato TADA
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Takuya FUJII
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kazuki IKENAGA
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Masayoshi NAKANO
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
3
|
Tsai CL, Tainer JA. Robust Production, Crystallization, Structure Determination, and Analysis of [Fe-S] Proteins: Uncovering Control of Electron Shuttling and Gating in the Respiratory Metabolism of Molybdopterin Guanine Dinucleotide Enzymes. Methods Enzymol 2017; 599:157-196. [PMID: 29746239 DOI: 10.1016/bs.mie.2017.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
[Fe-S] clusters are essential cofactors in all domains of life. They play many biological roles due to their unique abilities for electron transfer and conformational control. Yet, producing and analyzing Fe-S proteins can be difficult and even misleading if not done anaerobically. Due to unique redox properties of [Fe-S] clusters and their oxygen sensitivity, they pose multiple challenges and can lose enzymatic activity or cause their component proteins to be structurally disordered due to [Fe-S] cluster oxidation and loss in air. Here we highlight tested protocols and strategies enabling efficient and stable [Fe-S] protein production, purification, crystallization, X-ray diffraction data collection, and structure determination. From multiple high-resolution anaerobic crystal structures, we furthermore analyze exemplary data defining [Fe-S] clusters, substrate entry, and product exit for the functional oxidation states of type II molybdo-bis(molybdopterin guanine dinucleotide) (Mo-bisMGD) enzymes. Notably, these enzymes perform electron shuttling between quinone pools and specific substrates to catalyze respiratory metabolism. The identified structure-activity relationships for this enzyme class have broad implications germane to perchlorate environments on Earth and Mars extending to an alternative mechanism underlying metabolic origins for the evolution of the oxygen atmosphere. Integrated structural analyses of type II Mo-bisMGD enzymes unveil novel distinctive shared molecular mechanisms for dynamic control of substrate entry and product release gated by hydrophobic residues. Collective findings support a prototypic model for type II Mo-bisMGD enzymes including insights for a fundamental molecular mechanistic understanding of selectivity and regulation by a conformationally gated channel with general implications for [Fe-S] cluster respiratory enzymes.
Collapse
Affiliation(s)
- Chi-Lin Tsai
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States
| | - John A Tainer
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
4
|
Chang CH, Kim K. Density Functional Theory Calculation of Bonding and Charge Parameters for Molecular Dynamics Studies on [FeFe] Hydrogenases. J Chem Theory Comput 2015; 5:1137-45. [PMID: 26609623 DOI: 10.1021/ct800342w] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We have developed and tested molecular mechanics parameters for [FeS] clusters found in known [FeFe] hydrogenases. Bond stretching, angle bending, dihedral and improper torsion parameters for models of the oxidized and reduced catalytic H-cluster, [4Fe4S](+,2+)Cys4, [4Fe4S](+,2+)Cys3His, and [2Fe2S](+,2+)Cys4, were calculated solely from Kohn-Sham density functional theory and Natural Population Analysis. Circumsphere analysis of the cubane clusters in the energy-minimized structure of the full Clostridium pasteurianum hydrogenase I showed the resulting metallocluster structures to be similar to known cubane structures. All clusters were additionally stable in molecular dynamics simulations over the course of 1.0 ns in the fully oxidized and fully reduced enzyme models. Normal modes calculated by quasiharmonic analysis from the dynamics data show unexpected couplings among internal coordinate motions, which may reflect the effects of the protein structure on metallocluster dynamics.
Collapse
Affiliation(s)
- Christopher H Chang
- National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
| | - Kwiseon Kim
- National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
| |
Collapse
|
5
|
Nanda V, Senn S, Pike DH, Rodriguez-Granillo A, Hansen WA, Khare SD, Noy D. Structural principles for computational and de novo design of 4Fe-4S metalloproteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:531-538. [PMID: 26449207 DOI: 10.1016/j.bbabio.2015.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/01/2015] [Indexed: 11/30/2022]
Abstract
Iron-sulfur centers in metalloproteins can access multiple oxidation states over a broad range of potentials, allowing them to participate in a variety of electron transfer reactions and serving as catalysts for high-energy redox processes. The nitrogenase FeMoCO cluster converts di-nitrogen to ammonia in an eight-electron transfer step. The 2(Fe4S4) containing bacterial ferredoxin is an evolutionarily ancient metalloprotein fold and is thought to be a primordial progenitor of extant oxidoreductases. Controlling chemical transformations mediated by iron-sulfur centers such as nitrogen fixation, hydrogen production as well as electron transfer reactions involved in photosynthesis are of tremendous importance for sustainable chemistry and energy production initiatives. As such, there is significant interest in the design of iron-sulfur proteins as minimal models to gain fundamental understanding of complex natural systems and as lead-molecules for industrial and energy applications. Herein, we discuss salient structural characteristics of natural iron-sulfur proteins and how they guide principles for design. Model structures of past designs are analyzed in the context of these principles and potential directions for enhanced designs are presented, and new areas of iron-sulfur protein design are proposed. This article is part of a Special issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, protein networks, edited by Ronald L. Koder and J.L Ross Anderson.
Collapse
Affiliation(s)
- Vikas Nanda
- Department of Biochemistry and Molecular Biology and the Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, 679 Hoes Lane West, Piscataway, NJ, 08854, USA.
| | - Stefan Senn
- Department of Biochemistry and Molecular Biology and the Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, 679 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Douglas H Pike
- Department of Biochemistry and Molecular Biology and the Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, 679 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Agustina Rodriguez-Granillo
- Department of Biochemistry and Molecular Biology and the Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, 679 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Will A Hansen
- Department of Chemistry and the Center for Integrated Proteomics Research, Rutgers University, 174 Frelinghuysen Rd, Piscataway, NJ 08854, USA
| | - Sagar D Khare
- Department of Chemistry and the Center for Integrated Proteomics Research, Rutgers University, 174 Frelinghuysen Rd, Piscataway, NJ 08854, USA
| | - Dror Noy
- Bioenergetics and Protein Design Laboratory, Migal - Galilee Research Institute, South Industrial Zone, Kiryat Shmona 11016, Israel
| |
Collapse
|
6
|
Bergeler M, Stiebritz MT, Reiher M. Structure-Property Relationships of Fe4S4Clusters. Chempluschem 2013; 78:1082-1098. [DOI: 10.1002/cplu.201300186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Indexed: 11/08/2022]
|
7
|
Abstract
The generalized cluster type [M4(μ3-Q)4L n ] x contains the cubane-type [M4Q4] z core unit that can approach, but typically deviates from, perfect Td symmetry. The geometric properties of this structure have been analyzed with reference to Td symmetry by a new protocol. Using coordinates of M and Q atoms, expressions have been derived for interatomic separations, bond angles, and volumes of tetrahedral core units (M4, Q4) and the total [M4Q4] core (as a tetracapped M4 tetrahedron). Values for structural parameters have been calculated from observed average values for a given cluster type. Comparison of calculated and observed values measures the extent of deviation of a given parameter from that required in an exact tetrahedral structure. The procedure has been applied to the structures of over 130 clusters containing [Fe4Q4] (Q = S2-, Se2-, Te2-, [NPR3]-, [NR]2-) units, of which synthetic and biological sulfide-bridged clusters constitute the largest subset. General structural features and trends in structural parameters are identified and summarized. An extensive database of structural properties (distances, angles, volumes) has been compiled in Supporting Information.
Collapse
Affiliation(s)
- Lay Ling Tan
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | | | | |
Collapse
|
8
|
Mitra D, George SJ, Guo Y, Kamali S, Keable S, Peters JW, Pelmenschikov V, Case DA, Cramer SP. Characterization of [4Fe-4S] cluster vibrations and structure in nitrogenase Fe protein at three oxidation levels via combined NRVS, EXAFS, and DFT analyses. J Am Chem Soc 2013; 135:2530-43. [PMID: 23282058 DOI: 10.1021/ja307027n] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Azotobacter vinelandii nitrogenase Fe protein (Av2) provides a rare opportunity to investigate a [4Fe-4S] cluster at three oxidation levels in the same protein environment. Here, we report the structural and vibrational changes of this cluster upon reduction using a combination of NRVS and EXAFS spectroscopies and DFT calculations. Key to this work is the synergy between these three techniques as each generates highly complementary information and their analytical methodologies are interdependent. Importantly, the spectroscopic samples contained no glassing agents. NRVS and DFT reveal a systematic 10-30 cm(-1) decrease in Fe-S stretching frequencies with each added electron. The "oxidized" [4Fe-4S](2+) state spectrum is consistent with and extends previous resonance Raman spectra. For the "reduced" [4Fe-4S](1+) state in Fe protein, and for any "all-ferrous" [4Fe-4S](0) cluster, these NRVS spectra are the first available vibrational data. NRVS simulations also allow estimation of the vibrational disorder for Fe-S and Fe-Fe distances, constraining the EXAFS analysis and allowing structural disorder to be estimated. For oxidized Av2, EXAFS and DFT indicate nearly equal Fe-Fe distances, while addition of one electron decreases the cluster symmetry. However, addition of the second electron to form the all-ferrous state induces significant structural change. EXAFS data recorded to k = 21 Å(-1) indicates a 1:1 ratio of Fe-Fe interactions at 2.56 Å and 2.75 Å, a result consistent with DFT. Broken symmetry (BS) DFT rationalizes the interplay between redox state and the Fe-S and Fe-Fe distances as predominantly spin-dependent behavior inherent to the [4Fe-4S] cluster and perturbed by the Av2 protein environment.
Collapse
Affiliation(s)
- Devrani Mitra
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ruiz E. Theoretical Study of the Exchange Coupling in Large Polynuclear Transition Metal Complexes Using DFT Methods. STRUCTURE AND BONDING 2012. [DOI: 10.1007/b97942] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Mitra D, Pelmenschikov V, Guo Y, Case DA, Wang H, Dong W, Tan ML, Ichiye T, Jenney FE, Adams MWW, Yoda Y, Zhao J, Cramer SP. Dynamics of the [4Fe-4S] cluster in Pyrococcus furiosus D14C ferredoxin via nuclear resonance vibrational and resonance Raman spectroscopies, force field simulations, and density functional theory calculations. Biochemistry 2011; 50:5220-35. [PMID: 21500788 PMCID: PMC3129499 DOI: 10.1021/bi200046p] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have used (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to study oxidized and reduced forms of the [4Fe-4S] cluster in the D14C variant ferredoxin from Pyrococcus furiosus (Pf D14C Fd). To assist the normal-mode assignments, we conducted NRVS with D14C ferredoxin samples with (36)S substituted into the [4Fe-4S] cluster bridging sulfide positions, and a model compound without ligand side chains, (Ph(4)P)(2)[Fe(4)S(4)Cl(4)]. Several distinct regions of NRVS intensity are identified, ranging from "protein" and torsional modes below 100 cm(-1), through bending and breathing modes near 150 cm(-1), to strong bands from Fe-S stretching modes between 250 and ∼400 cm(-1). The oxidized ferredoxin samples were also investigated by resonance Raman (RR) spectroscopy. We found good agreement between NRVS and RR frequencies, but because of different selection rules, the intensities vary dramatically between the two types of spectra. The (57)Fe partial vibrational densities of states for the oxidized samples were interpreted by normal-mode analysis with optimization of Urey-Bradley force fields for local models of the [4Fe-4S] clusters. Full protein model calculations were also conducted using a supplemented CHARMM force field, and these calculations revealed low-frequency modes that may be relevant to electron transfer with Pf Fd partners. Density functional theory (DFT) calculations complemented these empirical analyses, and DFT was used to estimate the reorganization energy associated with the [Fe(4)S(4)](2+/+) redox cycle. Overall, the NRVS technique demonstrates great promise for the observation and quantitative interpretation of the dynamical properties of Fe-S proteins.
Collapse
Affiliation(s)
- Devrani Mitra
- Department of Applied Science, University of California, Davis, CA 95616
| | - Vladimir Pelmenschikov
- Technische Universität Berlin, Institut für Chemie, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Yisong Guo
- Department of Applied Science, University of California, Davis, CA 95616
| | - David A. Case
- Department of Chemistry & Chemical Biology & BioMaPS Institute, Rutgers University, Piscataway, NJ 08854
| | - Hongxin Wang
- Department of Applied Science, University of California, Davis, CA 95616
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Weibing Dong
- Department of Applied Science, University of California, Davis, CA 95616
| | - Ming-Liang Tan
- Department of Chemistry, Georgetown University, Washington, DC 20057
| | - Toshiko Ichiye
- Department of Chemistry, Georgetown University, Washington, DC 20057
| | - Francis E. Jenney
- Georgia Campus, Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | - Yoshitaka Yoda
- JASRI, SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Jiyong Zhao
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439
| | - Stephen P. Cramer
- Department of Applied Science, University of California, Davis, CA 95616
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
11
|
Deng L, Majumdar A, Lo W, Holm RH. Stabilization of 3:1 site-differentiated cubane-type clusters in the [Fe(4)S(4)](1+) core oxidation state by tertiary phosphine ligation: synthesis, core structural diversity, and S = 1/2 ground states. Inorg Chem 2010; 49:11118-26. [PMID: 21038882 PMCID: PMC3057479 DOI: 10.1021/ic101702b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An extensive series of 3:1 site-differentiated cubane-type clusters [Fe(4)S(4)(PPr(i)(3))(3)L] (L = Cl(-), Br(-), I(-), RO(-), RS(-), RSe(-)) has been prepared in 40-80% yield by two methods: ligand substitution of [Fe(4)S(4)(PPr(i)(3))(4)](1+) in tetrahydrofuran (THF)/acetonitrile by reaction with monoanions, and reductive cleavage of ligand substrates (RSSR, RSeSeR, I(2)) by the all-ferrous clusters [Fe(8)S(8)(PPr(i)(3))(6)]/[Fe(16)S(16)(PPr(i)(3))(8)] in THF. These neutral clusters are stable and do not undergo ligand redistribution reactions involving charged species in benzene and THF solutions. X-ray structural studies confirm the cubane stereochemistry but with substantial and variable distortions of the [Fe(4)S(4)](1+) core from idealized cubic core geometry. Based on Fe-S bond lengths, seven clusters were found to have compressed tetragonal distortions (4 short and 8 long bonds), and the remaining seven display other types of distortions with different combinations of long, short, and intermediate bond lengths. These results further emphasize the facile deformabililty of this core oxidation state previously observed in [Fe(4)S(4)(SR)(4)](3-) clusters. The Fe(2.25+) mean oxidation state was demonstrated from (57)Fe isomer shifts, and the appearance of two quadrupole doublets arises from the spin-coupled |9/2,4,1/2> state. The S = 1/2 ground state was further supported by electron paramagnetic resonance spectra and magnetic susceptibility data.
Collapse
Affiliation(s)
- Liang Deng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | | | | | | |
Collapse
|
12
|
Fielding AJ, Usselman RJ, Watmough N, Simkovic M, Frerman FE, Eaton GR, Eaton SS. Electron spin relaxation enhancement measurements of interspin distances in human, porcine, and Rhodobacter electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO). JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2008; 190:222-32. [PMID: 18037314 PMCID: PMC2262937 DOI: 10.1016/j.jmr.2007.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 10/20/2007] [Accepted: 11/02/2007] [Indexed: 05/25/2023]
Abstract
Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S](2+,1+) cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S](+) cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S](+) between 8 and 18K and for semiquinone between 25 and 65K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S](+) were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S](+) and obtain point-dipole interspin distances of 18.6+/-1A for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present.
Collapse
Affiliation(s)
- Alistair J. Fielding
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
| | - Robert J. Usselman
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
| | - Nicholas Watmough
- Center for Metalloprotein Spectroscopy and Biology and School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ
| | - Martin Simkovic
- Department of Pediatrics, University of Colorado School of Medicine, Denver, CO 80262
| | - Frank E. Frerman
- Department of Pediatrics, University of Colorado School of Medicine, Denver, CO 80262
| | - Gareth R. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
| | - Sandra S. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
| |
Collapse
|
13
|
Chartron J, Carroll KS, Shiau C, Gao H, Leary JA, Bertozzi CR, Stout CD. Substrate recognition, protein dynamics, and iron-sulfur cluster in Pseudomonas aeruginosa adenosine 5'-phosphosulfate reductase. J Mol Biol 2006; 364:152-69. [PMID: 17010373 PMCID: PMC1769331 DOI: 10.1016/j.jmb.2006.08.080] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 08/19/2006] [Accepted: 08/28/2006] [Indexed: 11/20/2022]
Abstract
APS reductase catalyzes the first committed step of reductive sulfate assimilation in pathogenic bacteria, including Mycobacterium tuberculosis, and is a promising target for drug development. We report the 2.7 A resolution crystal structure of Pseudomonas aeruginosa APS reductase in the thiosulfonate intermediate form of the catalytic cycle and with substrate bound. The structure, high-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry, and quantitative kinetic analysis, establish that the two chemically discrete steps of the overall reaction take place at distinct sites on the enzyme, mediated via conformational flexibility of the C-terminal 18 residues. The results address the mechanism by which sulfonucleotide reductases protect the covalent but labile enzyme-intermediate before release of sulfite by the protein cofactor thioredoxin. P. aeruginosa APS reductase contains an [4Fe-4S] cluster that is essential for catalysis. The structure reveals an unusual mode of cluster coordination by tandem cysteine residues and suggests how this arrangement might facilitate conformational change and cluster interaction with the substrate. Assimilatory 3'-phosphoadenosine 5'-phosphosulfate (PAPS) reductases are evolutionarily related, homologous enzymes that catalyze the same overall reaction, but do so in the absence of an [Fe-S] cluster. The APS reductase structure reveals adaptive use of a phosphate-binding loop for recognition of the APS O3' hydroxyl group, or the PAPS 3'-phosphate group.
Collapse
Affiliation(s)
- Justin Chartron
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Kate S. Carroll
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Carrie Shiau
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Hong Gao
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Department of Chemistry and Molecular Cell Biology, Genome Center, University of California, Davis, California 95616, USA
| | - Julie A. Leary
- Department of Chemistry and Molecular Cell Biology, Genome Center, University of California, Davis, California 95616, USA
| | - Carolyn R. Bertozzi
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| | - C. David Stout
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- Correspondence should be addressed to C. David Stout () or Kate S. Carroll ()
| |
Collapse
|
14
|
Noodleman L, Han WG. Structure, redox, pK a, spin. A golden tetrad for understanding metalloenzyme energetics and reaction pathways. J Biol Inorg Chem 2006; 11:674-94. [PMID: 16830148 DOI: 10.1007/s00775-006-0136-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 06/14/2006] [Indexed: 10/24/2022]
Abstract
After a review of the current status of density functional theory (DFT) for spin-polarized and spin-coupled systems, we focus on the resting states and intermediates of redox-active metalloenzymes and electron transfer proteins, showing how comparisons of DFT-calculated spectroscopic parameters with experiment and evaluation of related energies and geometries provide important information. The topics we examine include (1) models for the active-site structure of methane monooxygenase intermediate Q and ribonucleotide reductase intermediate X; (2) the coupling of electron transfer to proton transfer in manganese superoxide dismutase, with implications for reaction kinetics; (3) redox, pK(a), and electronic structure issues in the Rieske iron-sulfur protein, including their connection to coupled electron/proton transfer, and an analysis of how partial electron delocalization strongly alters the electron paramagnetic resonance spectrum; (4) the connection between protein-induced structural distortion and the electronic structure of oxidized high-potential 4Fe4S proteins with implications for cluster reactivity; (5) an analysis of cluster assembly and central-atom insertion into the FeMo cofactor center of nitrogenase based on DFT structural and redox potential calculations.
Collapse
Affiliation(s)
- Louis Noodleman
- Department of Molecular Biology, TPC15, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|