1
|
Sharma A, Agrawal M, Singh A, Sundaram S, Jaiswal S. A Mechanistic Insight in Cr (VI) Bioremediation by Bacillus spp. SSAU-2 Under Multi-Heavy Metal Contamination. Curr Microbiol 2025; 82:293. [PMID: 40392331 DOI: 10.1007/s00284-025-04274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 05/04/2025] [Indexed: 05/22/2025]
Abstract
Climate change has significantly contributed to high level of contamination of multi-pollutants in the environment. For instance, it increases the intensity of rainfall, leading to soil erosion and leaching of heavy metals, pesticides and other pollutants into the water bodies. Additionally, climate change intensifies both natural processes and anthropogenic activities resulting in the widespread release and dispersal of heavy metals (HMs) and other pollutants, posing great risk to environment and human health. Cr (VI) is the most hazardous metal contaminant in the ecosystem. In the environment, it often coexists with other heavy metal such as Fe (III), Zn (II), Pb (II), Hg (II), Cd (II) and Cu (II) which interferes with the Cr (VI) removal strategies and significantly influence the efficiency of bioremediating microbes. In this study, the Cr (VI) removal potential of the novel microbe Bacillus sp. SSAU-2 was explored in the presence of multi-heavy metal contaminations in various combinations. The tolerance against HM of the SSAU-2 was analyzed with minimum inhibition concentration (MIC) study and the mechanism was observed by analyzing the various types pf Siderophore production in the presence of HM. Revealed that the SSAU-2 exhibits multi-heavy metal tolerance, with the following MIC order Pb (II) > Fe (III) > Cu (II) > Cr (VI) > Zn (II) > Cd (II) > Hg (II). The presence of Zn (II), Fe (III) and Cu (II) acted as positive inducers, enhancing its growth and Cr (VI) removal efficiency. Although SSAU-2 demonstrates remarkable resistance to most heavy metals, it is highly susceptible to Hg (II) and Cd (II). However, Hg (II) proved to be the most toxic, reducing the Cr (VI) removal efficiency from 83 to 32% even at a concentration of 0.1 ppm concentration. The mechanism underlying its multi-heavy metal tolerance is linked to the production of siderophore, particularly catechol-type siderophore. Thus, this study highlights the potential of SSAU-2 as a robust microbe, capable of sustaining its Cr (VI) removal ability even in the presence of multiple heavy metals. Therefore, this microbe can tackle the adverse climate change phenomenon and environmental pollution altogether.
Collapse
Affiliation(s)
- Abhijeet Sharma
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Manshi Agrawal
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Akanksha Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Shanthy Sundaram
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India.
| | - Saumya Jaiswal
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| |
Collapse
|
2
|
Motz RN, Guo C, Sargun A, Walker GT, Sassone-Corsi M, Raffatellu M, Nolan EM. Conjugation to Native and Nonnative Triscatecholate Siderophores Enhances Delivery and Antibacterial Activity of a β-Lactam to Gram-Negative Bacterial Pathogens. J Am Chem Soc 2024; 146:7708-7722. [PMID: 38457782 PMCID: PMC11037102 DOI: 10.1021/jacs.3c14490] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Developing new antibiotics and delivery strategies is of critical importance for treating infections caused by Gram-negative bacterial pathogens. Hijacking bacterial iron uptake machinery, such as that of the siderophore enterobactin (Ent), represents one promising approach toward these goals. Here, we report a novel Ent-inspired siderophore-antibiotic conjugate (SAC) employing an alternative siderophore moiety as the delivery vector and demonstrate the potency of our SACs harboring the β-lactam antibiotic ampicillin (Amp) against multiple pathogenic Gram-negative bacterial strains. We establish the ability of N,N',N''-(nitrilotris(ethane-2,1-diyl))tris(2,3-dihydroxybenzamide) (TRENCAM, hereafter TC), a synthetic mimic of Ent, to facilitate drug delivery across the outer membrane (OM) of Gram-negative pathogens. Conjugation of Amp to a new monofunctionalized TC scaffold affords TC-Amp, which displays markedly enhanced antibacterial activity against the gastrointestinal pathogen Salmonella enterica serovar Typhimurium (STm) compared with unmodified Amp. Bacterial uptake, antibiotic susceptibility, and microscopy studies with STm show that the TC moiety facilitates TC-Amp uptake by the OM receptors FepA and IroN and that the Amp warhead inhibits penicillin-binding proteins. Moreover, TC-Amp achieves targeted activity, selectively killing STm in the presence of a commensal lactobacillus. Remarkably, we uncover that TC-Amp and its Ent-based predecessor Ent-Amp achieve enhanced antibacterial activity against diverse Gram-negative ESKAPE pathogens that express Ent uptake machinery, including strains that possess intrinsic β-lactam resistance. TC-Amp and Ent-Amp exhibit potency comparable to that of the FDA-approved SAC cefiderocol against Gram-negative pathogens. These results demonstrate the effective application of native and appropriately designed nonnative siderophores as vectors for drug delivery across the OM of multiple Gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Rachel N. Motz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chuchu Guo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Artur Sargun
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gregory T. Walker
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Martina Sassone-Corsi
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, CA 92697, USA
| | - Manuela Raffatellu
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, CA 92697, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines, La Jolla, CA 92093, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Lyng M, Jørgensen JPB, Schostag MD, Jarmusch SA, Aguilar DKC, Lozano-Andrade CN, Kovács ÁT. Competition for iron shapes metabolic antagonism between Bacillus subtilis and Pseudomonas marginalis. THE ISME JOURNAL 2024; 18:wrad001. [PMID: 38365234 PMCID: PMC10811728 DOI: 10.1093/ismejo/wrad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 02/18/2024]
Abstract
Siderophores have long been implicated in sociomicrobiology as determinants of bacterial interrelations. For plant-associated genera, like Bacillus and Pseudomonas, siderophores are well known for their biocontrol functions. Here, we explored the functional role of the Bacillus subtilis siderophore bacillibactin (BB) in an antagonistic interaction with Pseudomonas marginalis. The presence of BB strongly influenced the outcome of the interaction in an iron-dependent manner. The BB producer B. subtilis restricts colony spreading of P. marginalis by repressing the transcription of histidine kinase-encoding gene gacS, thereby abolishing production of secondary metabolites such as pyoverdine and viscosin. By contrast, lack of BB restricted B. subtilis colony growth. To explore the specificity of the antagonism, we cocultured B. subtilis with a collection of fluorescent Pseudomonas spp. and found that the Bacillus-Pseudomonas interaction is conserved, expanding our understanding of the interplay between two of the most well-studied genera of soil bacteria.
Collapse
Affiliation(s)
- Mark Lyng
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Johan P B Jørgensen
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Morten D Schostag
- Bacterial Ecophysiology & Biotechnology, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Scott A Jarmusch
- Natural Product Discovery, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Diana K C Aguilar
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Carlos N Lozano-Andrade
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
- Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| |
Collapse
|
4
|
Kawashima K, Nagakubo T, Nomura N, Toyofuku M. Iron Delivery through Membrane Vesicles in Corynebacterium glutamicum. Microbiol Spectr 2023; 11:e0122223. [PMID: 37154718 PMCID: PMC10269601 DOI: 10.1128/spectrum.01222-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Bacterial cells form and release membrane vesicles (MVs) originating from cellular membranes. In recent years, many biological functions of bacterial MVs have been identified. Here, we show that MVs derived from Corynebacterium glutamicum, a model organism for mycolic acid-containing bacteria, can mediate iron acquisition and other phylogenetically related bacteria. Lipid/protein analysis and iron quantification assay indicate that C. glutamicum MVs formed by outer mycomembrane blebbing can load ferric iron (Fe3+) as its cargo. Iron-loaded C. glutamicum MVs promoted the growth of producer bacteria in iron-limited liquid media. MVs were received by C. glutamicum cells, suggesting a direct transfer of iron to the recipient cells. Cross-feeding of C. glutamicum MVs with phylogenetically close (Mycobacterium smegmatis and Rhodococcus erythropolis) or distant (Bacillus subtilis) bacteria indicated that C. glutamicum MVs could be received by the different species tested, while iron uptake is limited to M. smegmatis and R. erythropolis. In addition, our results indicate that iron loading on MVs in C. glutamicum does not depend on membrane-associated proteins or siderophores, which is different from what has been shown in other mycobacterial species. Our findings illustrate the biological importance of MV-associated extracellular iron for C. glutamicum growth and suggest its ecological impact on selected members of microbial communities. IMPORTANCE Iron is an essential element of life. Many bacteria have developed iron acquisition systems, such as siderophores, for external iron uptake. Corynebacterium glutamicum, a soil bacterium known for its potential for industrial applications, was shown to lack the ability to produce extracellular, low-molecular-weight iron carriers, and it remains elusive how this bacterium acquires iron. Here, we demonstrated that MVs released from C. glutamicum cells could act as extracellular iron carriers that mediate iron uptake. Although MV-associated proteins or siderophores have been shown to play critical roles in MV-mediated iron uptake by other mycobacterial species, the iron delivery through C. glutamicum MVs is not dependent on these factors. Moreover, our results suggest that there is an unidentified mechanism that determines the species specificity of MV-mediated iron acquisition. Our results further demonstrated the important role of MV-associated iron.
Collapse
Affiliation(s)
- Kayuki Kawashima
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Toshiki Nagakubo
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masanori Toyofuku
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
5
|
Xiang H, He Y, Wang X, Wang J, Li T, Zhu S, Zhang Z, Xu X, Wu Z. Identification and characterization of siderophilic biocontrol strain SL-44 combined with whole genome. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62104-62120. [PMID: 36940032 DOI: 10.1007/s11356-023-26272-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/28/2023] [Indexed: 05/10/2023]
Abstract
Using rhizobacteria as biological fertilizer is gradually expanding in agriculture as excellent substitutes for chemical fertilizers. Bacillus subtilis SL-44 is a plant growth-promoting rhizobacteria screened from the severely salinized cotton rhizosphere soil in Xinjiang. Study showed that indole-3-acetic acid, organic acid production, nitrogen fixation, and other beneficial secondary metabolite secretion can be synthesized by stain SL-44. At the same time, fencyclin, lipopeptide, chitinase, and other antifungal substances were also detected from the secretion of Bacillus subtilis SL-44, which can effectively control plant diseases. Siderophore separated from SL-44 was verified by HPLC, and results showed it was likely bacillibactin. This study also verified that SL-44 has high antifungal activity against Rhizoctonia solani through in vitro antifungal experiments. The B. subtilis SL-44 whole genome was sequenced and annotated to further explore the biotechnological potential of SL-44. And a large number of genes involved in the synthesis of anti-oxidative stress, antibiotic, and toxins were found. Genome-wide analysis provides clear evidence to support the great potential of B. subtilis SL-44 strain to produce multiple bioantagonistic natural products and growth-promoting metabolites, which may facilitate further research into effective therapies for harmful diseases.
Collapse
Affiliation(s)
- Huichun Xiang
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Yanhui He
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Xiaobo Wang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Jianwen Wang
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Tao Li
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Shuangxi Zhu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Ziyan Zhang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Xiaolin Xu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Zhansheng Wu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China.
| |
Collapse
|
6
|
Dell’Anno F, Vitale GA, Buonocore C, Vitale L, Palma Esposito F, Coppola D, Della Sala G, Tedesco P, de Pascale D. Novel Insights on Pyoverdine: From Biosynthesis to Biotechnological Application. Int J Mol Sci 2022; 23:ijms231911507. [PMID: 36232800 PMCID: PMC9569983 DOI: 10.3390/ijms231911507] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Pyoverdines (PVDs) are a class of siderophores produced mostly by members of the genus Pseudomonas. Their primary function is to accumulate, mobilize, and transport iron necessary for cell metabolism. Moreover, PVDs also play a crucial role in microbes’ survival by mediating biofilm formation and virulence. In this review, we reorganize the information produced in recent years regarding PVDs biosynthesis and pathogenic mechanisms, since PVDs are extremely valuable compounds. Additionally, we summarize the therapeutic applications deriving from the PVDs’ use and focus on their role as therapeutic target themselves. We assess the current biotechnological applications of different sectors and evaluate the state-of-the-art technology relating to the use of synthetic biology tools for pathway engineering. Finally, we review the most recent methods and techniques capable of identifying such molecules in complex matrices for drug-discovery purposes.
Collapse
|
7
|
Wang Y, Huang W, Li Y, Yu F, Penttinen P. Isolation, characterization, and evaluation of a high-siderophore-yielding bacterium from heavy metal-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3888-3899. [PMID: 34402014 DOI: 10.1007/s11356-021-15996-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal-resistant siderophore-producing bacteria (SPB) with plant growth-promoting traits can assist in phytoremediation of heavy metal-contaminated soil. We isolated siderophore-producing bacteria from Pb and Zn mine soil in Shangyu, Zhejiang, China. The isolate with the highest siderophore production, strain SX9, was identified as Burkholderia sp. Burkholderia sp. SX9 produced catecholate-type siderophore, with the highest production at a pH range of 6.0 to 8.0, a temperature range of 20 to 30 °C and NaCl concentration below 2%. Siderophore production was highest without Fe3+ and became gradually lower with increasing Fe3+ concentration. Minimal inhibitory concentrations (MIC) of Pb2+, Zn2+, Cu2+, and Cd2+ were 4000, 22000, 5000, and 2000 μmol L-1, respectively. The strain had a strong metal solubilization ability: the contents of Cu2+, Zn2+, and Cd2+ in the supernatant were 47.4%, 133.0%, and 35.4% higher, respectively, in strain SX9-inoculated cultures than in the not inoculated controls. The siderophore produced by strain SX9 could combine with Fe3+, Zn2+, and Cd2+ with good effectiveness. The plant growth-promoting traits of the strain included indole acetic acid (IAA) production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, and phosphate solubilization capability. Compared to the uninoculated growth medium and SX9 culture supernatant, the germination rate of Lolium perenne seeds was higher when inoculated with strain SX9 culture. In the experiment of seed germination, adding bacterial culture or supernatant could alleviate the toxicity of heavy metals to L. perenne seed germination. Under Cu2+ and Zn2+ stress, strain SX9 promoted the germination rate. Taken together, Burkholderia sp. SX9 had properties beneficial in the microbial enhancement of phytoremediation of soil contaminated with heavy metals.
Collapse
Affiliation(s)
- Yajun Wang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang, 311300, People's Republic of China
| | - Wei Huang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang, 311300, People's Republic of China
| | - Yaqian Li
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang, 311300, People's Republic of China
| | - Fangbo Yu
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang, 311300, People's Republic of China.
| | - Petri Penttinen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
8
|
Roca-Couso R, Flores-Félix JD, Rivas R. Mechanisms of Action of Microbial Biocontrol Agents against Botrytis cinerea. J Fungi (Basel) 2021; 7:1045. [PMID: 34947027 PMCID: PMC8707566 DOI: 10.3390/jof7121045] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 01/20/2023] Open
Abstract
Botrytis cinerea is a phytopathogenic fungus responsible for economic losses from USD 10 to 100 billion worldwide. It affects more than 1400 plant species, thus becoming one of the main threats to the agriculture systems. The application of fungicides has for years been an efficient way to control this disease. However, fungicides have negative environmental consequences that have changed popular opinion and clarified the need for more sustainable solutions. Biopesticides are products formulated based on microorganisms (bacteria or fungi) with antifungal activity through various mechanisms. This review gathers the most important mechanisms of antifungal activities and the microorganisms that possess them. Among the different modes of action, there are included the production of diffusible molecules, both antimicrobial molecules and siderophores; production of volatile organic compounds; production of hydrolytic enzymes; and other mechanisms, such as the competition and induction of systemic resistance, triggering an interaction at different levels and inhibition based on complex systems for the production of molecules and regulation of crop biology. Such a variety of mechanisms results in a powerful weapon against B. cinerea; some of them have been tested and are already used in the agricultural production with satisfactory results.
Collapse
Affiliation(s)
- Rocío Roca-Couso
- Department of Microbiology and Genetics, Edificio Departamental de Biología, University of Salamanca, 37007 Salamanca, Spain;
- Institute for Agribiotechnology Research (CIALE), 37185 Salamanca, Spain
| | - José David Flores-Félix
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Raúl Rivas
- Department of Microbiology and Genetics, Edificio Departamental de Biología, University of Salamanca, 37007 Salamanca, Spain;
- Institute for Agribiotechnology Research (CIALE), 37185 Salamanca, Spain
- Associated Unit, University of Salamanca-CSIC (IRNASA), 37008 Salamanca, Spain
| |
Collapse
|
9
|
Direct Antibiotic Activity of Bacillibactin Broadens the Biocontrol Range of Bacillus amyloliquefaciens MBI600. mSphere 2021; 6:e0037621. [PMID: 34378986 PMCID: PMC8386435 DOI: 10.1128/msphere.00376-21] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus amyloliquefaciens is considered the most successful biological control agent due to its ability to colonize the plant rhizosphere and phyllosphere where it outgrows plant pathogens by competition, antibiosis, and inducing plant defense. Its antimicrobial function is thought to depend on a diverse spectrum of secondary metabolites, including peptides, cyclic lipopeptides, and polyketides, which have been shown to target mostly fungal pathogens. In this study, we isolated and characterized the catecholate siderophore bacillibactin by B. amyloliquefaciens MBI600 under iron-limiting conditions and we further identified its potential antibiotic activity against plant pathogens. Our data show that bacillibactin production restrained in vitro and in planta growth of the nonsusceptible (to MBI600) pathogen Pseudomonas syringae pv. tomato. Notably, it was also related to increased antifungal activity of MBI600. In addition to bacillibactin biosynthesis, iron starvation led to upregulation of specific genes involved in microbial fitness and competition. IMPORTANCE Siderophores have mostly been studied concerning their contribution to the fitness and virulence of bacterial pathogens. In the present work, we isolated and characterized for the first time the siderophore bacillibactin from a commercial bacterial biocontrol agent. We proved that its presence in the culture broth has significant biocontrol activity against nonsusceptible bacterial and fungal phytopathogens. In addition, we suggest that its activity is due to a new mechanism of action, that of direct antibiosis, rather than by competition through iron scavenging. Furthermore, we showed that bacillibactin biosynthesis is coregulated with the transcription of antimicrobial metabolite synthases and fitness regulatory genes that maximize competition capability. Finally, this work highlights that the efficiency and range of existing bacterial biocontrol agents can be improved and broadened via the rational modification of the growth conditions of biocontrol organisms.
Collapse
|
10
|
Mácha H, Marešová H, Juříková T, Švecová M, Benada O, Škríba A, Baránek M, Novotný Č, Palyzová A. Killing Effect of Bacillus Velezensis FZB42 on a Xanthomonas Campestris pv. Campestris (Xcc) Strain Newly Isolated from Cabbage Brassica Oleracea Convar. Capitata (L.): A Metabolomic Study. Microorganisms 2021; 9:microorganisms9071410. [PMID: 34210064 PMCID: PMC8303752 DOI: 10.3390/microorganisms9071410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
The potential use of Bacillus velezensis FZB42 for biological control of various phytopathogens has been documented over the past few years, but its antagonistic interactions with xanthomonads has not been studied in detail. Novel aspects in this study consist of close observation of the death of Xanthomonas campestris pv. campestris cells in a co-culture with B. velezensis FZB42, and quantification of lipopeptides and a siderophore, bacillibactin, involved in the killing process. A new robust Xcc-SU isolate tolerating high concentrations of ferric ions was used. In a co-culture with the antagonist, the population of Xcc-SU was entirely destroyed within 24–48 h, depending on the number of antagonist cells used for inoculation. No inhibitory effect of Xcc-SU on B. velezensis was observed. Bacillibactin and lipopeptides (surfactin, fengycin, and bacillomycin) were present in the co-culture and the monoculture of B. velezensis. Except for bacillibactin, the maximum contents of lipopeptides were higher in the antagonist monoculture compared with the co-culture. Scanning electron microscopy showed that the death of Xcc-SU bacteria in co-culture was caused by cell lysis, leading to an enhanced occurrence of distorted cells and cell ghosts. Analysis by mass spectrometry showed four significant compounds, bacillibactin, surfactin, fengycin, and bacillomycin D amongst a total of 24 different forms detected in the co-culture supernatant: Different forms of surfactin and fengycin with variations in their side-chain length were also detected. These results demonstrate the ability of B. velezensis FZB42 to act as a potent antagonistic strain against Xcc.
Collapse
Affiliation(s)
- Hynek Mácha
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (H.M.); (H.M.); (T.J.); (M.Š.); (O.B.); (A.Š.); (Č.N.)
- Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Helena Marešová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (H.M.); (H.M.); (T.J.); (M.Š.); (O.B.); (A.Š.); (Č.N.)
| | - Tereza Juříková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (H.M.); (H.M.); (T.J.); (M.Š.); (O.B.); (A.Š.); (Č.N.)
| | - Magdaléna Švecová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (H.M.); (H.M.); (T.J.); (M.Š.); (O.B.); (A.Š.); (Č.N.)
| | - Oldřich Benada
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (H.M.); (H.M.); (T.J.); (M.Š.); (O.B.); (A.Š.); (Č.N.)
| | - Anton Škríba
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (H.M.); (H.M.); (T.J.); (M.Š.); (O.B.); (A.Š.); (Č.N.)
| | - Miroslav Baránek
- Faculty of Horticulture-Mendeleum, Mendel University, Valtická 337, 69144 Lednice, Czech Republic;
| | - Čeněk Novotný
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (H.M.); (H.M.); (T.J.); (M.Š.); (O.B.); (A.Š.); (Č.N.)
| | - Andrea Palyzová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (H.M.); (H.M.); (T.J.); (M.Š.); (O.B.); (A.Š.); (Č.N.)
- Correspondence: ; Tel.: +420-241062617
| |
Collapse
|
11
|
Haas T, Graf M, Nieß A, Busche T, Kalinowski J, Blombach B, Takors R. Identifying the Growth Modulon of Corynebacterium glutamicum. Front Microbiol 2019; 10:974. [PMID: 31134020 PMCID: PMC6517550 DOI: 10.3389/fmicb.2019.00974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/18/2019] [Indexed: 12/16/2022] Open
Abstract
The growth rate (μ) of industrially relevant microbes, such as Corynebacterium glutamicum, is a fundamental property that indicates its production capacity. Therefore, understanding the mechanism underlying the growth rate is imperative for improving productivity and performance through metabolic engineering. Despite recent progress in the understanding of global regulatory interactions, knowledge of mechanisms directing cell growth remains fragmented and incomplete. The current study investigated RNA-Seq data of three growth rate transitions, induced by different pre-culture conditions, in order to identify transcriptomic changes corresponding to increasing growth rates. These transitions took place in minimal medium and ranged from 0.02 to 0.4 h-1 μ. This study enabled the identification of 447 genes as components of the growth modulon. Enrichment of genes within the growth modulon revealed 10 regulons exhibiting a significant effect over growth rate transition. In summary, central metabolism was observed to be regulated by a combination of metabolic and transcriptional activities orchestrating control over glycolysis, pentose phosphate pathway, and the tricarboxylic acid cycle. Additionally, major responses to changes in the growth rate were linked to iron uptake and carbon metabolism. In particular, genes encoding glycolytic enzymes and the glucose uptake system showed a positive correlation with the growth rate.
Collapse
Affiliation(s)
- Thorsten Haas
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Michaela Graf
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Alexander Nieß
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.,Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Bastian Blombach
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany.,Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
12
|
Lindemann D, Westerwalbesloh C, Kohlheyer D, Grünberger A, von Lieres E. Microbial single-cell growth response at defined carbon limiting conditions. RSC Adv 2019; 9:14040-14050. [PMID: 35519298 PMCID: PMC9064036 DOI: 10.1039/c9ra02454a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/16/2019] [Indexed: 12/22/2022] Open
Abstract
Using microfluidic single-cell cultivation technologies and modelling we examined how single-cell growth at defined carbon conditions, ranging from strongly limiting conditions to a carbon surplus, influenced cell-to-cell variability.
Collapse
Affiliation(s)
- Dorina Lindemann
- Institute of Bio- and Geosciences
- IBG-1: Biotechnology
- Forschungszentrum Jülich
- Jülich 52425
- Germany
| | | | - Dietrich Kohlheyer
- Institute of Bio- and Geosciences
- IBG-1: Biotechnology
- Forschungszentrum Jülich
- Jülich 52425
- Germany
| | - Alexander Grünberger
- Institute of Bio- and Geosciences
- IBG-1: Biotechnology
- Forschungszentrum Jülich
- Jülich 52425
- Germany
| | - Eric von Lieres
- Institute of Bio- and Geosciences
- IBG-1: Biotechnology
- Forschungszentrum Jülich
- Jülich 52425
- Germany
| |
Collapse
|
13
|
Reitz ZL, Sandy M, Butler A. Biosynthetic considerations of triscatechol siderophores framed on serine and threonine macrolactone scaffolds. Metallomics 2018; 9:824-839. [PMID: 28594012 DOI: 10.1039/c7mt00111h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bacteria often produce siderophores to facilitate iron uptake. One of the most studied siderophores is enterobactin, the macrolactone trimer of 2,3-dihydroxybenzoyl-l-serine, produced by E. coli and many other enteric bacteria. Other siderophores are variants of enterobactin, with structural modifications including expansion of the tri-serine core to a tetra-serine macrolactone, substitution of l-serine with l-threonine, insertion of amino acids (i.e., Gly, l-Ala, d-Lys, d- and l-Arg, l-Orn), catechol glucosylation, and linearization of the tri-serine macrolactone core. In this review we summarize the current understanding of the biosyntheses of these enterobactin variants, placing them in contrast with the well-established biosynthesis of enterobactin.
Collapse
Affiliation(s)
- Zachary L Reitz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, USA.
| | | | | |
Collapse
|
14
|
Pirated Siderophores Promote Sporulation in Bacillus subtilis. Appl Environ Microbiol 2017; 83:AEM.03293-16. [PMID: 28283524 PMCID: PMC5411514 DOI: 10.1128/aem.03293-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/07/2017] [Indexed: 11/20/2022] Open
Abstract
In microbial communities, bacteria chemically and physically interact with one another. Some of these interactions are mediated by secreted specialized metabolites that act as either intraspecies or interspecies signals to alter gene expression and to change cell physiology. Bacillus subtilis is a well-characterized soil microbe that can differentiate into multiple cell types, including metabolically dormant endospores. We were interested in identifying microbial interactions that affected sporulation in B. subtilis. Using a fluorescent transcriptional reporter, we observed that coculturing B. subtilis with Escherichia coli promoted sporulation gene expression via a secreted metabolite. To identify the active compound, we screened the E. coli Keio Collection and identified the sporulation-accelerating cue as the siderophore enterobactin. B. subtilis has multiple iron acquisition systems that are used to take up the B. subtilis-produced siderophore bacillibactin, as well as to pirate exogenous siderophores such as enterobactin. While B. subtilis uses a single substrate binding protein (FeuA) to take up both bacillibactin and enterobactin, we discovered that it requires two distinct genes to sporulate in response to these siderophores (the esterase gene besA for bacillibactin and a putative esterase gene, ybbA, for enterobactin). In addition, we found that siderophores from a variety of other microbial species also promote sporulation in B. subtilis. Our results thus demonstrate that siderophores can act not only as bacterial iron acquisition systems but also as interspecies cues that alter cellular development and accelerate sporulation in B. subtilis. IMPORTANCE While much is known about the genetic regulation of Bacillus subtilis sporulation, little is understood about how other bacteria influence this process. This work describes an interaction between Escherichia coli and B. subtilis that accelerates sporulation in B. subtilis. The interaction is mediated by the E. coli siderophore enterobactin; we show that other species' siderophores also promote sporulation gene expression in B. subtilis. These results suggest that siderophores not only may supply bacteria with the mineral nutrient iron but also may play a role in bacterial interspecies signaling, providing a cue for sporulation. Siderophores are produced by many bacterial species and thus potentially play important roles in altering bacterial cell physiology in diverse environments.
Collapse
|
15
|
Bao GH, Ho CT, Barasch J. The Ligands of Neutrophil Gelatinase-Associated Lipocalin. RSC Adv 2015; 5:104363-104374. [PMID: 27617081 DOI: 10.1039/c5ra18736b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neutrophil gelatinase associated lipocalin (NGAL), was originally identified in neutrophil granules as a heterodimer complex with gelatinase B (matrix metalloproteinase 9, MMP9), but more recently has been found to be secreted by damaged epithelial cells. Ngal is a member of the lipocalin family and subsequently named as lipocalin 2 on the basis of structural similarity with other members of the lipocalin family and its potential association with hydrophobic retinol and cholesterol oleate more strongly than their hydrophilic counterparts. In 2002, a landmark paper suggested that Ngal is a bacteriostatic agent which blocks iron acquisition by interacting with a number of bacterial siderophores, especially enterobactin. Since then, more siderophore-carrying functions have been reported than the possibility of hydrophobic ligand transport. In this setting, Ngal was renamed Siderocalin. Functions of siderocalin include not only bacteriostatic activity but potentially as a mediator of cell growth and differentiation; some of these functions appear to be referable to the holo siderocalin:siderophore:iron complex and recent work suggests that metabolic products may act as mammalian siderophores bound by Ngal. While still speculative, it may be that the mammalian siderophores can establish the missing link between Ngal and a number of its functions in vivo. This review provides an overview of the discoveries of the different ligands of Ngal and consequently related functions. Hydrophobic ligands, bacterial siderophores as well as their modified structures (synthetic siderophores), and mammalian siderophores are summarized.
Collapse
Affiliation(s)
- Guan-Hu Bao
- State Key Laboratory of Tea Plant Biology and Utilization, Biotechnology Building 214, Anhui Agricultural University, China
| | - Chi-Tang Ho
- State Key Laboratory of Tea Plant Biology and Utilization, Biotechnology Building 214, Anhui Agricultural University, China; Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901-8520, United States
| | - Jonathan Barasch
- College of Physicians and Surgeons of Columbia University, New York, USA
| |
Collapse
|
16
|
Krämer CEM, Singh A, Helfrich S, Grünberger A, Wiechert W, Nöh K, Kohlheyer D. Non-Invasive Microbial Metabolic Activity Sensing at Single Cell Level by Perfusion of Calcein Acetoxymethyl Ester. PLoS One 2015; 10:e0141768. [PMID: 26513257 PMCID: PMC4625966 DOI: 10.1371/journal.pone.0141768] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/13/2015] [Indexed: 12/25/2022] Open
Abstract
Phase contrast microscopy cannot give sufficient information on bacterial metabolic activity, or if a cell is dead, it has the fate to die or it is in a viable but non-growing state. Thus, a reliable sensing of the metabolic activity helps to distinguish different categories of viability. We present a non-invasive instantaneous sensing method using a fluorogenic substrate for online monitoring of esterase activity and calcein efflux changes in growing wild type bacteria. The fluorescent conversion product of calcein acetoxymethyl ester (CAM) and its efflux indicates the metabolic activity of cells grown under different conditions at real-time. The dynamic conversion of CAM and the active efflux of fluorescent calcein were analyzed by combining microfluidic single cell cultivation technology and fluorescence time lapse microscopy. Thus, an instantaneous and non-invasive sensing method for apparent esterase activity was created without the requirement of genetic modification or harmful procedures. The metabolic activity sensing method consisting of esterase activity and calcein secretion was demonstrated in two applications. Firstly, growing colonies of our model organism Corynebacterium glutamicum were confronted with intermittent nutrient starvation by interrupting the supply of iron and carbon, respectively. Secondly, bacteria were exposed for one hour to fatal concentrations of antibiotics. Bacteria could be distinguished in growing and non-growing cells with metabolic activity as well as non-growing and non-fluorescent cells with no detectable esterase activity. Microfluidic single cell cultivation combined with high temporal resolution time-lapse microscopy facilitated monitoring metabolic activity of stressed cells and analyzing their descendants in the subsequent recovery phase. Results clearly show that the combination of CAM with a sampling free microfluidic approach is a powerful tool to gain insights in the metabolic activity of growing and non-growing bacteria.
Collapse
Affiliation(s)
| | - Abhijeet Singh
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Stefan Helfrich
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - Wolfgang Wiechert
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Katharina Nöh
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dietrich Kohlheyer
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- * E-mail:
| |
Collapse
|
17
|
Li K, Chen WH, Bruner SD. Structure and Mechanism of the Siderophore-Interacting Protein from the Fuscachelin Gene Cluster of Thermobifida fusca. Biochemistry 2015; 54:3989-4000. [PMID: 26043104 DOI: 10.1021/acs.biochem.5b00354] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microbial iron acquisition is a complex process and frequently a key and necessary step for survival. Among the several paths for iron assimilation, small molecule siderophore-mediated transport is a commonly employed strategy of many microorganisms. The chemistry and biology of the extraordinary tight and specific binding of siderophores to metal is also exploited in therapeutic treatments for microbial virulence and metal toxicity. The intracellular fate of iron acquired via the siderophore pathway is one of the least understood steps in the complex process at the molecular level. A common route to cellular incorporation is the single-electron reduction of ferric to ferrous iron catalyzed by specific and/or nonspecific reducing agents. The biosynthetic gene clusters for siderophores often contain representatives of one or two families of redox-active enzymes: the flavin-containing "siderophore-interacting protein" and iron-sulfur ferric siderophore reductases. Here we present the structure and characterization of the siderophore-interacting protein, FscN, from the fuscachelin siderophore gene cluster of Thermobifida fusca. The structure shows a flavoreductase fold with a noncovalently bound FAD cofactor along with an unexpected metal bound adjacent to the flavin site. We demonstrated that FscN is redox-active and measured the binding and reduction of ferric fuscachelin. This work provides a structural basis for the activity of a siderophore-interacting protein and further insight into the complex and important process of iron acquisition and utilization.
Collapse
Affiliation(s)
- Kunhua Li
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Wei-Hung Chen
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Steven D Bruner
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
18
|
Liu M, Lin L, Gebremariam T, Luo G, Skory CD, French SW, Chou TF, Edwards JE, Ibrahim AS. Fob1 and Fob2 Proteins Are Virulence Determinants of Rhizopus oryzae via Facilitating Iron Uptake from Ferrioxamine. PLoS Pathog 2015; 11:e1004842. [PMID: 25974051 PMCID: PMC4431732 DOI: 10.1371/journal.ppat.1004842] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 03/31/2015] [Indexed: 12/20/2022] Open
Abstract
Dialysis patients with chronic renal failure receiving deferoxamine for treating iron overload are uniquely predisposed for mucormycosis, which is most often caused by Rhizopus oryzae. Although the deferoxamine siderophore is not secreted by Mucorales, previous studies established that Rhizopus species utilize iron from ferrioxamine (iron-rich form of deferoxamine). Here we determined that the CBS domain proteins of Fob1 and Fob2 act as receptors on the cell surface of R. oryzae during iron uptake from ferrioxamine. Fob1 and Fob2 cell surface expression was induced in the presence of ferrioxamine and bound radiolabeled ferrioxamine. A R. oryzae strain with targeted reduced Fob1/Fob2 expression was impaired for iron uptake, germinating, and growing on medium with ferrioxamine as the sole source of iron. This strain also exhibited reduced virulence in a deferoxamine-treated, but not the diabetic ketoacidotic (DKA), mouse model of mucormycosis. The mechanism by which R. oryzae obtains iron from ferrioxamine involves the reductase/permease uptake system since the growth on ferrioxamine supplemented medium is associated with elevated reductase activity and the use of the ferrous chelator bathophenanthroline disulfonate abrogates iron uptake and growth on medium supplemented with ferrioxamine as a sole source of iron. Finally, R. oryzae mutants with reduced copies of the high affinity iron permease (FTR1) or with decreased FTR1 expression had an impaired iron uptake from ferrioxamine in vitro and reduced virulence in the deferoxamine-treated mouse model of mucormycosis. These two receptors appear to be conserved in Mucorales, and can be the subject of future novel therapy to maintain the use of deferoxamine for treating iron-overload. Deferoxamine is an iron-chelating agent often used to treat patients with acute iron poisoning, such as seen in dialysis patients with chronic renal failure. These patients are uniquely predisposed to a deadly fungal infection, called mucormycosis, because deferoxamine supplies iron that supports growth of fungi causing this infection. Apart from the important basic knowledge in delineating iron uptake mechanisms in cells, understanding how organisms causing mucormycosis obtain iron from ferrioxamine (deferoxamine bound with iron) is likely to develop strategies to treat mucormycosis infections in patients treated with deferoxamine. In this study we identified two cell surface receptors that bind ferrioxamine and facilitate iron uptake in Rhizopus oryzae, the most causative fungus of mucormycosis. These receptors are required for full virulence of R. oryzae in mice treated with deferoxamine. From genetic and biochemical studies it appears that the fungus binds ferrioxamine via these two receptors then liberates iron through a chemical modification step prior to transporting into the fungal cell without the internalization of deferoxamine.
Collapse
Affiliation(s)
- Mingfu Liu
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
| | - Lin Lin
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles (UCLA) Medical Center, Torrance, California, United States of America; David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, United States of America
| | - Teclegiorgis Gebremariam
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
| | - Guanpingsheng Luo
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
| | - Christopher D Skory
- National Center for Agricultural Utilization Research, United States Department of Agriculture (USDA), Peoria, Illinois, United States of America
| | - Samuel W French
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles (UCLA) Medical Center, Torrance, California, United States of America; Department of Pathology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, United States of America
| | - Tsui-Fen Chou
- Division of Medical Genetics, Department of Pediatrics, Harbor-University of California, Los Angeles Medical Center and Los Angeles Biomedical Research Institute, Torrance, California, United States of America
| | - John E Edwards
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles (UCLA) Medical Center, Torrance, California, United States of America; David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, United States of America
| | - Ashraf S Ibrahim
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles (UCLA) Medical Center, Torrance, California, United States of America; David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
19
|
Fukushima T, Allred BE, Raymond KN. Direct evidence of iron uptake by the Gram-positive siderophore-shuttle mechanism without iron reduction. ACS Chem Biol 2014; 9:2092-100. [PMID: 25007174 PMCID: PMC4168784 DOI: 10.1021/cb500319n] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/09/2014] [Indexed: 11/29/2022]
Abstract
Iron is an essential element for all organisms, and microorganisms produce small molecule iron-chelators, siderophores, to efficiently acquire Fe(III). Gram-positive bacteria possess lipoprotein siderophore-binding proteins (SBPs) on the membrane. Some of the SBPs bind both apo-siderophores (iron-free) and Fe-siderophore (iron-chelated) and only import Fe-siderophores. When the SBP initially binds an apo-siderophore, the SBP uses the Gram-positive siderophore-shuttle mechanism (the SBPs exchange Fe(III) from a Fe-siderophore to the apo-siderophore bound to the protein) and/or displacement mechanism (the apo-siderophore bound to the SBP is released and a Fe-siderophore is then bound to the protein) to import the Fe-siderophore. Previously, we reported that the Bacillus cereus SBP, YxeB, exchanges Fe(III) from a ferrioxamine B (FO) to a desferrioxamine B (DFO) bound to YxeB using the siderophore-shuttle mechanism although the iron exchange was indirectly elucidated. Synthetic Cr-DFO (inert metal FO analog) and Ga-DFO (nonreducible FO analog) are bound to YxeB and imported via YxeB and the corresponding permeases and ATPase. YxeB exchanges Fe(III) from FO and Ga(III) from Ga-DFO to DFO bound to the protein, indicating that the metal-exchange occurs without metal reduction. YxeB also binds DFO derivatives including acetylated DFO (apo-siderophore) and acetylated FO (AcFO, Fe-siderophore). The iron from AcFO is transferred to DFO when bound to YxeB, giving direct evidence of iron exchange. Moreover, YxeB also uses the displacement mechanism when ferrichrome (Fch) is added to the DFO:YxeB complex. Uptake by the displacement mechanism is a minor pathway compared to the shuttle mechanism.
Collapse
Affiliation(s)
| | | | - Kenneth N. Raymond
- Department of Chemistry, University of
California, Berkeley, California 94720-1460, United States
| |
Collapse
|
20
|
Bacillus cereus iron uptake protein fishes out an unstable ferric citrate trimer. Proc Natl Acad Sci U S A 2012; 109:16829-34. [PMID: 23027976 DOI: 10.1073/pnas.1210131109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Citrate is a common biomolecule that chelates Fe(III). Many bacteria and plants use ferric citrate to fulfill their nutritional requirement for iron. Only the Escherichia coli ferric citrate outer-membrane transport protein FecA has been characterized; little is known about other ferric citrate-binding proteins. Here we report a unique siderophore-binding protein from the gram-positive pathogenic bacterium Bacillus cereus that binds multinuclear ferric citrate complexes. We have demonstrated that B. cereus ATCC 14579 takes up (55)Fe radiolabeled ferric citrate and that a protein, BC_3466 [renamed FctC (ferric citrate-binding protein C)], binds ferric citrate. The dissociation constant (K(d)) of FctC at pH 7.4 with ferric citrate (molar ratio 1:50) is 2.6 nM. This is the tightest binding observed of any B. cereus siderophore-binding protein. Nano electrospray ionization-mass spectrometry (nano ESI-MS) analysis of FctC and ferric citrate complexes or citrate alone show that FctC binds diferric di-citrate, and triferric tricitrate, but does not bind ferric di-citrate, ferric monocitrate, or citrate alone. Significantly, the protein selectively binds triferric tricitrate even though this species is naturally present at very low equilibrium concentrations.
Collapse
|
21
|
Purification and structural characterization of siderophore (corynebactin) from Corynebacterium diphtheriae. PLoS One 2012; 7:e34591. [PMID: 22514641 PMCID: PMC3326035 DOI: 10.1371/journal.pone.0034591] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/02/2012] [Indexed: 12/31/2022] Open
Abstract
During infection, Corynebacterium diphtheriae must compete with host iron-sequestering mechanisms for iron. C. diphtheriae can acquire iron by a siderophore-dependent iron-uptake pathway, by uptake and degradation of heme, or both. Previous studies showed that production of siderophore (corynebactin) by C. diphtheriae is repressed under high-iron growth conditions by the iron-activated diphtheria toxin repressor (DtxR) and that partially purified corynebactin fails to react in chemical assays for catecholate or hydroxamate compounds. In this study, we purified corynebactin from supernatants of low-iron cultures of the siderophore-overproducing, DtxR-negative mutant strain C. diphtheriae C7(β) ΔdtxR by sequential anion-exchange chromatography on AG1-X2 and Source 15Q resins, followed by reverse-phase high-performance liquid chromatography (RP-HPLC) on Zorbax C8 resin. The Chrome Azurol S (CAS) chemical assay for siderophores was used to detect and measure corynebactin during purification, and the biological activity of purified corynebactin was shown by its ability to promote growth and iron uptake in siderophore-deficient mutant strains of C. diphtheriae under iron-limiting conditions. Mass spectrometry and NMR analysis demonstrated that corynebactin has a novel structure, consisting of a central lysine residue linked through its α- and ε- amino groups by amide bonds to the terminal carboxyl groups of two different citrate residues. Corynebactin from C. diphtheriae is structurally related to staphyloferrin A from Staphylococcus aureus and rhizoferrin from Rhizopus microsporus in which d-ornithine or 1,4-diaminobutane, respectively, replaces the central lysine residue that is present in corynebactin.
Collapse
|
22
|
Gaballa A, MacLellan S, Helmann JD. Transcription activation by the siderophore sensor Btr is mediated by ligand-dependent stimulation of promoter clearance. Nucleic Acids Res 2011; 40:3585-95. [PMID: 22210890 PMCID: PMC3333878 DOI: 10.1093/nar/gkr1280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacterial transcription factors often function as DNA-binding proteins that selectively activate or repress promoters, although the biochemical mechanisms vary. In most well-understood examples, activators function by either increasing the affinity of RNA polymerase (RNAP) for the target promoter, or by increasing the isomerization of the initial closed complex to the open complex. We report that Bacillus subtilis Btr, a member of the AraC family of activators, functions principally as a ligand-dependent activator of promoter clearance. In the presence of its co-activator, the siderophore bacillibactin (BB), the Btr:BB complex enhances productive transcription, while having only modest effects on either RNAP promoter association or the production of abortive transcripts. Btr binds to two direct repeat sequences adjacent to the −35 region; recognition of the downstream motif is most important for establishing a productive interaction between the Btr:BB complex and RNAP. The resulting Btr:BB dependent increase in transcription enables the production of the ferric-BB importer to be activated by the presence of its cognate substrate.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | | | |
Collapse
|
23
|
Schröder J, Maus I, Trost E, Tauch A. Complete genome sequence of Corynebacterium variabile DSM 44702 isolated from the surface of smear-ripened cheeses and insights into cheese ripening and flavor generation. BMC Genomics 2011; 12:545. [PMID: 22053731 PMCID: PMC3219685 DOI: 10.1186/1471-2164-12-545] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/03/2011] [Indexed: 11/14/2022] Open
Abstract
Background Corynebacterium variabile is part of the complex microflora on the surface of smear-ripened cheeses and contributes to the development of flavor and textural properties during cheese ripening. Still little is known about the metabolic processes and microbial interactions during the production of smear-ripened cheeses. Therefore, the gene repertoire contributing to the lifestyle of the cheese isolate C. variabile DSM 44702 was deduced from the complete genome sequence to get a better understanding of this industrial process. Results The chromosome of C. variabile DSM 44702 is composed of 3, 433, 007 bp and contains 3, 071 protein-coding regions. A comparative analysis of this gene repertoire with that of other corynebacteria detected 1, 534 predicted genes to be specific for the cheese isolate. These genes might contribute to distinct metabolic capabilities of C. variabile, as several of them are associated with metabolic functions in cheese habitats by playing roles in the utilization of alternative carbon and sulphur sources, in amino acid metabolism, and fatty acid degradation. Relevant C. variabile genes confer the capability to catabolize gluconate, lactate, propionate, taurine, and gamma-aminobutyric acid and to utilize external caseins. In addition, C. variabile is equipped with several siderophore biosynthesis gene clusters for iron acquisition and an exceptional repertoire of AraC-regulated iron uptake systems. Moreover, C. variabile can produce acetoin, butanediol, and methanethiol, which are important flavor compounds in smear-ripened cheeses. Conclusions The genome sequence of C. variabile provides detailed insights into the distinct metabolic features of this bacterium, implying a strong adaption to the iron-depleted cheese surface habitat. By combining in silico data obtained from the genome annotation with previous experimental knowledge, occasional observations on genes that are involved in the complex metabolic capacity of C. variabile were integrated into a global view on the lifestyle of this species.
Collapse
Affiliation(s)
- Jasmin Schröder
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 27, D-33615 Bielefeld, Germany
| | | | | | | |
Collapse
|
24
|
Wen Y, Wu X, Teng Y, Qian C, Zhan Z, Zhao Y, Li O. Identification and analysis of the gene cluster involved in biosynthesis of paenibactin, a catecholate siderophore produced by Paenibacillus elgii B69. Environ Microbiol 2011; 13:2726-37. [DOI: 10.1111/j.1462-2920.2011.02542.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Sandy M, Butler A. Chrysobactin siderophores produced by Dickeya chrysanthemi EC16. JOURNAL OF NATURAL PRODUCTS 2011; 74:1207-1212. [PMID: 21545171 PMCID: PMC3126860 DOI: 10.1021/np200126z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The plant pathogen Dickeya chrysanthemi EC16 (formerly known as Petrobacterium chrysanthemi EC16 and Erwinia chrysanthemi EC16) was found to produce a new triscatecholamide siderophore, cyclic trichrysobactin, the related catecholamide compounds, linear trichrysobactin and dichrysobactin, and the previously reported monomeric siderophore unit, chrysobactin. Chrysobactin is comprised of L-serine, D-lysine, and 2,3-dihydroxybenzoic acid (DHBA). Trichrysobactin is a cyclic trimer of chrysobactin joined by a triserine lactone backbone. The chirality of the ferric complex of cyclic trichrysobactin is found to be in the Λ configuration, similar to Fe(III)-bacillibactin, which contains a glycine spacer between the DHBA and L-threonine components and is opposite that of Fe(III)-enterobactin, which contains DHBA ligated directly to L-serine.
Collapse
Affiliation(s)
| | - Alison Butler
- To whom correspondence should be addressed. Tel: 805-893-8178. Fax: 805-893-4120.
| |
Collapse
|
26
|
Abergel RJ, Zawadzka AM, Hoette TM, Raymond KN. Enzymatic hydrolysis of trilactone siderophores: where chiral recognition occurs in enterobactin and bacillibactin iron transport. J Am Chem Soc 2009; 131:12682-92. [PMID: 19673474 PMCID: PMC2782669 DOI: 10.1021/ja903051q] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacillibactin and enterobactin are hexadentate catecholate siderophores produced by bacteria upon iron limitation to scavenge ferric ion and seem to be the ultimate siderophores of their two respective domains: Gram-positive and Gram-negative. Iron acquisition mediated by these trilactone-based ligands necessitates enzymatic hydrolysis of the scaffold for successful intracellular iron delivery. The esterases BesA and Fes hydrolyze bacillibactin and enterobactin, respectively, as well as the corresponding iron complexes. Bacillibactin binds iron through three 2,3-catecholamide moieties linked to a trithreonine scaffold via glycine spacers, whereas in enterobactin the iron-binding moieties are directly attached to a tri-l-serine backbone; although apparently minor, these structural differences result in markedly different iron coordination properties and iron transport behavior. Comparison of the solution thermodynamic and circular dichroism properties of bacillibactin, enterobactin and the synthetic analogs d-enterobactin, SERGlyCAM and d-SERGlyCAM has determined the role of each different feature in the siderophores' molecular structures in ferric complex stability and metal chirality. While opposite metal chiralities in the different complexes did not affect transport and incorporation in Bacillus subtilis, ferric complexes formed with the various siderophores did not systematically promote growth of the bacteria. The bacillibactin esterase BesA is less specific than the enterobactin esterase Fes; BesA can hydrolyze the trilactones of both siderophores, while only the tri-l-serine trilactone is a substrate of Fes. Both enzymes are stereospecific and cannot cleave tri-d-serine lactones. These data provide a complete picture of the microbial iron transport mediated by these two siderophores, from initial recognition and transport to intracellular iron release.
Collapse
Affiliation(s)
- Rebecca J Abergel
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA
| | | | | | | |
Collapse
|
27
|
Characterization of a Bacillus subtilis transporter for petrobactin, an anthrax stealth siderophore. Proc Natl Acad Sci U S A 2009; 106:21854-9. [PMID: 19955416 DOI: 10.1073/pnas.0904793106] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Iron deprivation activates the expression of components of the siderophore-mediated iron acquisition systems in Bacillus subtilis, including not only the synthesis and uptake of its siderophore bacillibactin but also expression of multiple ABC transporters for iron scavenging using xenosiderophores. The yclNOPQ operon is shown to encode the complete transporter for petrobactin (PB), a photoreactive 3,4-catecholate siderophore produced by many members of the B. cereus group, including B. anthracis. Isogenic disruption mutants in the yclNOPQ transporter, including permease YclN, ATPase YclP, and a substrate-binding protein YclQ, are unable to use either PB or the photoproduct of FePB (FePB(nu)) for iron delivery and growth, in contrast to the wild-type B. subtilis. Complementation of the mutations with the copies of the respective genes restores this capability. The YclQ receptor binds selectively iron-free and ferric PB, the PB precursor, 3,4-dihydroxybenzoic acid (3,4-DHB), and FePB(nu) with high affinity; the ferric complexes are seen in ESI-MS, implying strong electrostatic interaction between the protein-binding pocket and siderophore. The first structure of a gram-positive siderophore receptor is presented. The 1.75-A crystal structure of YclQ reveals a bilobal periplasmic binding protein (PBP) fold consisting of two alpha/beta/alpha sandwich domains connected by a long alpha-helix with the binding pocket containing conserved positively charged and aromatic residues and large enough to accommodate FePB. Orthologs of the B. subtilis PB-transporter YclNOPQ in PB-producing Bacilli are likely contributors to the pathogenicity of these species and provide a potential target for antibacterial strategies.
Collapse
|
28
|
Zawadzka AM, Abergel RJ, Nichiporuk R, Andersen UN, Raymond KN. Siderophore-mediated iron acquisition systems in Bacillus cereus: Identification of receptors for anthrax virulence-associated petrobactin . Biochemistry 2009; 48:3645-57. [PMID: 19254027 DOI: 10.1021/bi8018674] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
During growth under iron limitation, Bacillus cereus and Bacillus anthracis, two human pathogens from the Bacillus cereus group of Gram-positive bacteria, secrete two siderophores, bacillibactin (BB) and petrobactin (PB), for iron acquisition via membrane-associated substrate-binding proteins (SBPs) and other ABC transporter components. Since PB is associated with virulence traits in B. anthracis, the PB-mediated iron uptake system presents a potential target for antimicrobial therapies; its characterization in B. cereus is described here. Separate transporters for BB, PB, and several xenosiderophores are suggested by (55)Fe-siderophore uptake studies. The PB precursor, 3,4-dihydroxybenzoic acid (3,4-DHB), and the photoproduct of FePB (FePB(nu)) also mediate iron delivery into iron-deprived cells. Putative SBPs were recombinantly expressed, and their ligand specificity and binding affinity were assessed using fluorescence spectroscopy. The noncovalent complexes of the SBPs with their respective siderophores were characterized using ESI-MS. The differences between solution phase behavior and gas phase measurements are indicative of noncovalent interactions between the siderophores and the binding sites of their respective SBPs. These studies combined with bioinformatics sequence comparison identify SBPs from five putative transporters specific for BB and enterobactin (FeuA), 3,4-DHB and PB (FatB), PB (FpuA), schizokinen (YfiY), and desferrioxamine and ferrichrome (YxeB). The two PB receptors show different substrate ranges: FatB has the highest affinity for ferric 3,4-DHB, iron-free PB, FePB, and FePB(nu), whereas FpuA is specific to only apo- and ferric PB. The biochemical characterization of these SBPs provides the first identification of the transporter candidates that most likely play a role in the B. cereus group pathogenicity.
Collapse
Affiliation(s)
- Anna M Zawadzka
- Department of Chemistry, University of California, Berkeley, 94720-1460, USA
| | | | | | | | | |
Collapse
|
29
|
Raza W, Wu H, Shah MAA, Shen Q. Retracted: A catechol type siderophore, bacillibactin: biosynthesis, regulation and transport in Bacillus subtilis. J Basic Microbiol 2008; 48. [PMID: 18785660 DOI: 10.1002/jobm.200800097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Retraction: The following article from the Journal of Basic Microbiology, "A catechol type siderophore, bacillibactin: biosynthesis, regulation and transport in Bacillus subtilis" by Waseem Raza, Hongsheng Wu, Muhammad Ali Abdullah Shah and Qirong Shen, published online on 11 September 2008 in Wiley InterScience (www.interscience.wiley.com), has been retracted by agreement between the authors, the journal Editor-in-Chief, Erika Kothe, and the publisher Wiley-VCH. The retraction has been agreed due to substantial overlap of the content of this article with previously published articles in other journals.The Journal of Basic Microbiology apologises to our readership.
Collapse
Affiliation(s)
- Waseem Raza
- College of Resource and Environmental Sciences, Nanjing Agriculture University, Nanjing, China
| | | | | | | |
Collapse
|
30
|
Gaballa A, Helmann JD. Substrate induction of siderophore transport in Bacillus subtilis mediated by a novel one-component regulator. Mol Microbiol 2007; 66:164-73. [PMID: 17725565 PMCID: PMC3022416 DOI: 10.1111/j.1365-2958.2007.05905.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
When iron is scarce, Bacillus subtilis expresses genes involved in the synthesis and uptake of the siderophore bacillibactin (BB) and uptake systems to pirate other microbial siderophores. Here, we demonstrate that transcriptional induction of the feuABCybbA operon, encoding the Fe-BB uptake system, is mediated by Btr (formerly YbbB), which is encoded by the immediately upstream gene. Btr contains an AraC-type DNA binding domain fused to a substrate binding protein (SBP) domain related to FeuA, the SBP for Fe-BB uptake. When cells are iron-limited, the Fur-mediated repression of btr is relieved and Btr binds to a conserved direct repeat sequence adjacent to feuA to activate transcription. If BB is present, Btr further activates feuA expression. Btr binds with high affinity to both apo-BB and Fe-BB, and the resulting complex displays a significantly increased efficacy as a transcriptional activator relative to Btr alone. Btr can also activate transcription in response to the structurally similar siderophore enterobactin, although genetic analyses indicate that the two siderophores make distinct interactions with the Btr substrate binding domain. Thus, the FeuABC transporter is optimally expressed under conditions of iron starvation, when Fur-mediated repression is relieved, and in the presence of its cognate substrate.
Collapse
Affiliation(s)
| | - John D. Helmann
- Corresponding author: Department of Microbiology, 370 Wing Hall, Cornell University, Ithaca, NY 14853,.Phone: 607-255-6570, FAX: 607-255-3904,
| |
Collapse
|
31
|
Abstract
Synthetic analogues were designed to highlight the effect of the glycine moiety of bacillibactin on the overall stability of the ferric complex as compared to synthetic analogues of enterobactin. Insertion of a variety of amino acids to catecholamide analogues based on a Tren (tris(2-aminoethyl)amine) backbone increased the overall acidity of the ligands, causing an enhancement of the stability of the resulting ferric complex as compared to TRENCAM. Solution thermodynamic behavior of these siderophores and their synthetic analogues was investigated through potentiometric and spectrophotometric titrations. X-ray crystallography, circular dichroism, and molecular modeling were used to determine the chirality and geometry of the ferric complexes of bacillibactin and its analogues. In contrast to the Tren scaffold, addition of a glycine to the catechol chelating arms causes an inversion of the trilactone backbone, resulting in opposite chiralities of the two siderophores and a destabilization of the ferric complex of bacillibactin compared to ferric enterobactin.
Collapse
Affiliation(s)
- Emily A. Dertz
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Jide Xu
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Kenneth N. Raymond
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| |
Collapse
|