1
|
Kalapos MP, de Bari L. The evolutionary arch of bioenergetics from prebiotic mechanisms to the emergence of a cellular respiratory chain. Biosystems 2024; 244:105288. [PMID: 39128646 DOI: 10.1016/j.biosystems.2024.105288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
This article proposes an evolutionary trajectory for the development of biological energy producing systems. Six main stages of energy producing system evolution are described, from early evolutionary pyrite-pulled mechanism through the Last Universal Common Ancestor (LUCA) to contemporary systems. We define the Last Pure Chemical Entity (LPCE) as the last completely non-enzymatic entity. LPCE could have had some life-like properties, but lacked genetic information carriers, thus showed greater instability and environmental dependence than LUCA. A double bubble model is proposed for compartmentalization and cellularization as a prerequisite to both highly efficient protein synthesis and transmembrane ion-gradient. The article finds that although LUCA predominantly functioned anaerobically, it was a non-exclusive anaerobe, and sulfur dominated metabolism preceded phosphate dominated one.
Collapse
Affiliation(s)
| | - Lidia de Bari
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| |
Collapse
|
2
|
Gray DA, Wang B, Sidarta M, Cornejo FA, Wijnheijmer J, Rani R, Gamba P, Turgay K, Wenzel M, Strahl H, Hamoen LW. Membrane depolarization kills dormant Bacillus subtilis cells by generating a lethal dose of ROS. Nat Commun 2024; 15:6877. [PMID: 39128925 PMCID: PMC11317493 DOI: 10.1038/s41467-024-51347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/02/2024] [Indexed: 08/13/2024] Open
Abstract
The bactericidal activity of several antibiotics partially relies on the production of reactive oxygen species (ROS), which is generally linked to enhanced respiration and requires the Fenton reaction. Bacterial persister cells, an important cause of recurring infections, are tolerant to these antibiotics because they are in a dormant state. Here, we use Bacillus subtilis cells in stationary phase, as a model system of dormant cells, to show that pharmacological induction of membrane depolarization enhances the antibiotics' bactericidal activity and also leads to ROS production. However, in contrast to previous studies, this results primarily in production of superoxide radicals and does not require the Fenton reaction. Genetic analyzes indicate that Rieske factor QcrA, the iron-sulfur subunit of respiratory complex III, seems to be a primary source of superoxide radicals. Interestingly, the membrane distribution of QcrA changes upon membrane depolarization, suggesting a dissociation of complex III. Thus, our data reveal an alternative mechanism by which antibiotics can cause lethal ROS levels, and may partially explain why membrane-targeting antibiotics are effective in eliminating persisters.
Collapse
Affiliation(s)
- Declan A Gray
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Baddiley-Clark Building, Newcastle upon Tyne, NE2 4AX, UK
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Biwen Wang
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, C3.108, 1098 XH, Amsterdam, The Netherlands
| | - Margareth Sidarta
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemigården 4, 412 96, Gothenburg, Sweden
| | - Fabián A Cornejo
- Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117, Berlin, Germany
| | - Jurian Wijnheijmer
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, C3.108, 1098 XH, Amsterdam, The Netherlands
| | - Rupa Rani
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemigården 4, 412 96, Gothenburg, Sweden
| | - Pamela Gamba
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Baddiley-Clark Building, Newcastle upon Tyne, NE2 4AX, UK
- Charles River Laboratories, Keele Science Park, Keele, ST5 5SP, UK
| | - Kürşad Turgay
- Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117, Berlin, Germany
- Leibniz Universität Hannover, Institut für Mikrobiologie, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Michaela Wenzel
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemigården 4, 412 96, Gothenburg, Sweden
| | - Henrik Strahl
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Baddiley-Clark Building, Newcastle upon Tyne, NE2 4AX, UK
| | - Leendert W Hamoen
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Baddiley-Clark Building, Newcastle upon Tyne, NE2 4AX, UK.
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, C3.108, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Rogers MS, Gordon AM, Rappe TM, Goodpaster JD, Lipscomb JD. Contrasting Mechanisms of Aromatic and Aryl-Methyl Substituent Hydroxylation by the Rieske Monooxygenase Salicylate 5-Hydroxylase. Biochemistry 2023; 62:507-523. [PMID: 36583545 PMCID: PMC9854337 DOI: 10.1021/acs.biochem.2c00610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The hydroxylase component (S5HH) of salicylate-5-hydroxylase catalyzes C5 ring hydroxylation of salicylate but switches to methyl hydroxylation when a C5 methyl substituent is present. The use of 18O2 reveals that both aromatic and aryl-methyl hydroxylations result from monooxygenase chemistry. The functional unit of S5HH comprises a nonheme Fe(II) site located 12 Å across a subunit boundary from a one-electron reduced Rieske-type iron-sulfur cluster. Past studies determined that substrates bind near the Fe(II), followed by O2 binding to the iron to initiate catalysis. Stopped-flow-single-turnover reactions (STOs) demonstrated that the Rieske cluster transfers an electron to the iron site during catalysis. It is shown here that fluorine ring substituents decrease the rate constant for Rieske electron transfer, implying a prior reaction of an Fe(III)-superoxo intermediate with a substrate. We propose that the iron becomes fully oxidized in the resulting Fe(III)-peroxo-substrate-radical intermediate, allowing Rieske electron transfer to occur. STO using 5-CD3-salicylate-d8 occurs with an inverse kinetic isotope effect (KIE). In contrast, STO of a 1:1 mixture of unlabeled and 5-CD3-salicylate-d8 yields a normal product isotope effect. It is proposed that aromatic and aryl-methyl hydroxylation reactions both begin with the Fe(III)-superoxo reaction with a ring carbon, yielding the inverse KIE due to sp2 → sp3 carbon hybridization. After Rieske electron transfer, the resulting Fe(III)-peroxo-salicylate intermediate can continue to aromatic hydroxylation, whereas the equivalent aryl-methyl intermediate formation must be reversible to allow the substrate exchange necessary to yield a normal product isotope effect. The resulting Fe(III)-(hydro)peroxo intermediate may be reactive or evolve through a high-valent iron intermediate to complete the aryl-methyl hydroxylation.
Collapse
Affiliation(s)
- Melanie S. Rogers
- Department of Biochemistry, Molecular Biology, and Biophysics and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Adrian M. Gordon
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Todd M. Rappe
- Minnesota NMR Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jason D. Goodpaster
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Valer L, Rossetto D, Parkkila T, Sebastianelli L, Guella G, Hendricks AL, Cowan JA, Sang L, Mansy SS. Histidine Ligated Iron-Sulfur Peptides. Chembiochem 2022; 23:e202200202. [PMID: 35674331 PMCID: PMC9400863 DOI: 10.1002/cbic.202200202] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/08/2022] [Indexed: 11/17/2022]
Abstract
Iron-sulfur clusters are thought to be ancient cofactors that could have played a role in early protometabolic systems. Thus far, redox active, prebiotically plausible iron-sulfur clusters have always contained cysteine ligands to the cluster. However, extant iron-sulfur proteins can be found to exploit other modes of binding, including ligation by histidine residues, as seen with [2Fe-2S] Rieske and MitoNEET proteins. Here, we investigated the ability of cysteine- and histidine-containing peptides to coordinate a mononuclear Fe2+ center and a [2Fe-2S] cluster and compare their properties with purified iron-sulfur proteins. The iron-sulfur peptides were characterized by UV-vis, circular dichroism, and paramagnetic NMR spectroscopies and cyclic voltammetry. Small (≤6 amino acids) peptides can coordinate [2Fe-2S] clusters through a combination of cysteine and histidine residues with similar reduction potentials as their corresponding proteins. Such complexes may have been important for early cell-like systems.
Collapse
Affiliation(s)
- Luca Valer
- D-CIBIOUniversity of Trentovia Sommarive 938123Trento 28123Italy
- Department of ChemistryUniversity of Alberta11227 Saskatchewan DriveEdmontonT6G 2G2AlbertaCanada
| | - Daniele Rossetto
- D-CIBIOUniversity of Trentovia Sommarive 938123Trento 28123Italy
- Department of ChemistryUniversity of Alberta11227 Saskatchewan DriveEdmontonT6G 2G2AlbertaCanada
| | - Taylor Parkkila
- Department of ChemistryUniversity of Alberta11227 Saskatchewan DriveEdmontonT6G 2G2AlbertaCanada
| | - Lorenzo Sebastianelli
- Department of ChemistryUniversity of Alberta11227 Saskatchewan DriveEdmontonT6G 2G2AlbertaCanada
| | - Graziano Guella
- Department of PhysicsUniversity of TrentoVia Sommarive 14Trento38123Italy
| | - Amber L. Hendricks
- Department of Chemistry and BiochemistryThe Ohio State University100 West 18th AveColumbusOH 43210USA
| | - James A. Cowan
- Department of Chemistry and BiochemistryThe Ohio State University100 West 18th AveColumbusOH 43210USA
| | - Lingzi Sang
- Department of ChemistryUniversity of Alberta11227 Saskatchewan DriveEdmontonT6G 2G2AlbertaCanada
| | - Sheref S. Mansy
- D-CIBIOUniversity of Trentovia Sommarive 938123Trento 28123Italy
- Department of ChemistryUniversity of Alberta11227 Saskatchewan DriveEdmontonT6G 2G2AlbertaCanada
| |
Collapse
|
5
|
The α- and β-Subunit Boundary at the Stem of the Mushroom-Like α
3
β
3
-Type Oxygenase Component of Rieske Non-Heme Iron Oxygenases Is the Rieske-Type Ferredoxin-Binding Site. Appl Environ Microbiol 2022; 88:e0083522. [PMID: 35862661 PMCID: PMC9361823 DOI: 10.1128/aem.00835-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cumene dioxygenase (CumDO) is an initial enzyme in the cumene degradation pathway of Pseudomonas fluorescens IP01 and is a Rieske non-heme iron oxygenase (RO) that comprises two electron transfer components (reductase [CumDO-R] and Rieske-type ferredoxin [CumDO-F]) and one catalytic component (α3β3-type oxygenase [CumDO-O]). Catalysis is triggered by electrons that are transferred from NAD(P)H to CumDO-O by CumDO-R and CumDO-F. To investigate the binding mode between CumDO-F and CumDO-O and to identify the key CumDO-O amino acid residues for binding, we simulated docking between the CumDO-O crystal structure and predicted model of CumDO-F and identified two potential binding sites: one is at the side-wise site and the other is at the top-wise site in mushroom-like CumDO-O. Then, we performed alanine mutagenesis of 16 surface amino acid residues at two potential binding sites. The results of reduction efficiency analyses using the purified components indicated that CumDO-F bound at the side-wise site of CumDO-O, and K117 of the α-subunit and R65 of the β-subunit were critical for the interaction. Moreover, these two positively charged residues are well conserved in α3β3-type oxygenase components of ROs whose electron donors are Rieske-type ferredoxins. Given that these residues were not conserved if the electron donors were different types of ferredoxins or reductases, the side-wise site of the mushroom-like structure is thought to be the common binding site between Rieske-type ferredoxin and α3β3-type oxygenase components in ROs. IMPORTANCE We clarified the critical amino acid residues of the oxygenase component (Oxy) of Rieske non-heme iron oxygenase (RO) for binding with Rieske-type ferredoxin (Fd). Our results showed that Rieske-type Fd-binding site is commonly located at the stem (side-wise site) of the mushroom-like α3β3 quaternary structure in many ROs. The resultant binding site was totally different from those reported at the top-wise site of the doughnut-like α3-type Oxy, although α3-type Oxys correspond to the cap (α3 subunit part) of the mushroom-like α3β3-type Oxys. Critical amino acid residues detected in this study were not conserved if the electron donors of Oxys were different types of Fds or reductases. Altogether, we can suggest that unique binding modes between Oxys and electron donors have evolved, depending on the nature of the electron donors, despite Oxy molecules having shared α3β3 quaternary structures.
Collapse
|
6
|
Gemünde A, Lai B, Pause L, Krömer J, Holtmann D. Redox mediators in microbial electrochemical systems. ChemElectroChem 2022. [DOI: 10.1002/celc.202200216] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- André Gemünde
- Technische Hochschule Mittelhessen Institute of Bioprocess Engineering and Pharmaceutical Technology Wiesenstraße 14 35390 Gießen GERMANY
| | - Bin Lai
- Helmholtz Centre for Environmental Research UFZ Department of Environmental Microbiology: Helmholtz-Zentrum fur Umweltforschung UFZ Abteilung Umweltmikrobiologie Systems Biotechnology 04318 Leipzig GERMANY
| | - Laura Pause
- Helmholtz Centre for Environmental Research UFZ Environmental Engineering and Biotechnology Research Unit: Helmholtz-Zentrum fur Umweltforschung UFZ Themenbereich Umwelt- und Biotechnologie Systems Biotechnology 04318 Leipzig GERMANY
| | - Jens Krömer
- Helmholtz Centre for Environmental Research UFZ Environmental Engineering and Biotechnology Research Unit: Helmholtz-Zentrum fur Umweltforschung UFZ Themenbereich Umwelt- und Biotechnologie Systems Biotechnology 04318 Leipzig GERMANY
| | - Dirk Holtmann
- Technische Hochschule Mittelhessen IBPT Wiesenstrasse 14 35390 Giessen GERMANY
| |
Collapse
|
7
|
Jafari S, Tavares Santos YA, Bergmann J, Irani M, Ryde U. Benchmark Study of Redox Potential Calculations for Iron-Sulfur Clusters in Proteins. Inorg Chem 2022; 61:5991-6007. [PMID: 35403427 PMCID: PMC9044450 DOI: 10.1021/acs.inorgchem.1c03422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Redox potentials
have been calculated for 12 different iron–sulfur
sites of 6 different types with 1–4 iron ions. Structures were
optimized with combined quantum mechanical and molecular mechanical
(QM/MM) methods, and the redox potentials were calculated using the
QM/MM energies, single-point QM methods in a continuum solvent or
by QM/MM thermodynamic cycle perturbations. We show that the best
results are obtained with a large QM system (∼300 atoms, but
a smaller QM system, ∼150 atoms, can be used for the QM/MM
geometry optimization) and a large value of the dielectric constant
(80). For absolute redox potentials, the B3LYP density functional
method gives better results than TPSS, and the results are improved
with a larger basis set. However, for relative redox potentials, the
opposite is true. The results are insensitive to the force field (charges
of the surroundings) used for the QM/MM calculations or whether the
protein and solvent outside the QM system are relaxed or kept fixed
at the crystal structure. With the best approach for relative potentials,
mean absolute and maximum deviations of 0.17 and 0.44 V, respectively,
are obtained after removing a systematic error of −0.55 V.
Such an approach can be used to identify the correct oxidation states
involved in a certain redox reaction. We
have studied redox potentials of 12 iron−sulfur
sites of 6 types with 1−4 iron ions. Structures were optimized
with combined quantum mechanical and molecular mechanical (QM/MM)
methods, and the redox potentials were calculated with QM/MM, QM calculations
in a continuum solvent or by QM/MM thermodynamic cycle perturbations.
The best results are obtained with the second approach using ∼300
atoms in the QM model and a large dielectric constant.
Collapse
Affiliation(s)
- Sonia Jafari
- Department of Chemistry, University of Kurdistan, 66175-416 Sanandaj, Iran.,Department of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Yakini A Tavares Santos
- Department of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Justin Bergmann
- Department of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Mehdi Irani
- Department of Chemistry, University of Kurdistan, 66175-416 Sanandaj, Iran
| | - Ulf Ryde
- Department of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
8
|
Spontaneous assembly of redox-active iron-sulfur clusters at low concentrations of cysteine. Nat Commun 2021; 12:5925. [PMID: 34635654 PMCID: PMC8505563 DOI: 10.1038/s41467-021-26158-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Iron-sulfur (FeS) proteins are ancient and fundamental to life, being involved in electron transfer and CO2 fixation. FeS clusters have structures similar to the unit-cell of FeS minerals such as greigite, found in hydrothermal systems linked with the origin of life. However, the prebiotic pathway from mineral surfaces to biological clusters is unknown. Here we show that FeS clusters form spontaneously through interactions of inorganic Fe2+/Fe3+ and S2- with micromolar concentrations of the amino acid cysteine in water at alkaline pH. Bicarbonate ions stabilize the clusters and even promote cluster formation alone at concentrations >10 mM, probably through salting-out effects. We demonstrate robust, concentration-dependent formation of [4Fe4S], [2Fe2S] and mononuclear iron clusters using UV-Vis spectroscopy, 57Fe-Mössbauer spectroscopy and 1H-NMR. Cyclic voltammetry shows that the clusters are redox-active. Our findings reveal that the structures responsible for biological electron transfer and CO2 reduction could have formed spontaneously from monomers at the origin of life.
Collapse
|
9
|
Vallée Y, Youssef-Saliba S. Sulfur Amino Acids: From Prebiotic Chemistry to Biology and Vice Versa. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1472-7914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractTwo sulfur-containing amino acids are included in the list of the 20 classical protein amino acids. A methionine residue is introduced at the start of the synthesis of all current proteins. Cysteine, thanks to its thiol function, plays an essential role in a very large number of catalytic sites. Here we present what is known about the prebiotic synthesis of these two amino acids and homocysteine, and we discuss their introduction into primitive peptides and more elaborate proteins.1 Introduction2 Sulfur Sources3 Prebiotic Synthesis of Cysteine4 Prebiotic Synthesis of Methionine5 Homocysteine and Its Thiolactone6 Methionine and Cystine in Proteins7 Prebiotic Scenarios Using Sulfur Amino Acids8 Introduction of Cys and Met in the Genetic Code9 Conclusion
Collapse
|
10
|
Endoplasmic reticulum Ca2+ release causes Rieske iron-sulfur protein-mediated mitochondrial ROS generation in pulmonary artery smooth muscle cells. Biosci Rep 2020; 39:221066. [PMID: 31710081 PMCID: PMC6893167 DOI: 10.1042/bsr20192414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial reactive oxygen species (ROS) cause Ca2+ release from the endoplasmic reticulum (ER) via ryanodine receptors (RyRs) in pulmonary artery smooth muscle cells (PASMCs), playing an essential role in hypoxic pulmonary vasoconstriction (HPV). Here we tested a novel hypothesis that hypoxia-induced RyR-mediated Ca2+ release may, in turn, promote mitochondrial ROS generation contributing to hypoxic cellular responses in PASMCs. Our data reveal that application of caffeine to elevate intracellular Ca2+ concentration ([Ca2+]i) by activating RyRs results in a significant increase in ROS production in cytosol and mitochondria of PASMCs. Norepinephrine to increase [Ca2+]i due to the opening of inositol 1,4,5-triphosphate receptors (IP3Rs) produces similar effects. Exogenous Ca2+ significantly increases mitochondrial-derived ROS generation as well. Ru360 also inhibits the hypoxic ROS production. The RyR antagonist tetracaine or RyR2 gene knockout (KO) suppresses hypoxia-induced responses as well. Inhibition of mitochondrial Ca2+ uptake with Ru360 eliminates N- and Ca2+-induced responses. RISP KD abolishes the hypoxia-induced ROS production in mitochondria of PASMCs. Rieske iron–sulfur protein (RISP) gene knockdown (KD) blocks caffeine- or NE-induced ROS production. Taken together, these findings have further demonstrated that ER Ca2+ release causes mitochondrial Ca2+ uptake and RISP-mediated ROS production; this novel local ER/mitochondrion communication-elicited, Ca2+-mediated, RISP-dependent ROS production may play a significant role in hypoxic cellular responses in PASMCs.
Collapse
|
11
|
Melin F, Hellwig P. Redox Properties of the Membrane Proteins from the Respiratory Chain. Chem Rev 2020; 120:10244-10297. [DOI: 10.1021/acs.chemrev.0c00249] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Frederic Melin
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| | - Petra Hellwig
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| |
Collapse
|
12
|
Islam ZF, Cordero PRF, Greening C. Putative Iron-Sulfur Proteins Are Required for Hydrogen Consumption and Enhance Survival of Mycobacteria. Front Microbiol 2019; 10:2749. [PMID: 31824474 PMCID: PMC6883350 DOI: 10.3389/fmicb.2019.02749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/12/2019] [Indexed: 01/01/2023] Open
Abstract
Aerobic soil bacteria persist by scavenging molecular hydrogen (H2) from the atmosphere. This key process is the primary sink in the biogeochemical hydrogen cycle and supports the productivity of oligotrophic ecosystems. In Mycobacterium smegmatis, atmospheric H2 oxidation is catalyzed by two phylogenetically distinct [NiFe]-hydrogenases, Huc (group 2a) and Hhy (group 1h). However, it is currently unresolved how these enzymes transfer electrons derived from H2 oxidation into the aerobic respiratory chain. In this work, we used genetic approaches to confirm that two putative iron-sulfur cluster proteins encoded on the hydrogenase structural operons, HucE and HhyE, are required for H2 consumption in M. smegmatis. Sequence analysis show that these proteins, while homologous, fall into distinct phylogenetic clades and have distinct metal-binding motifs. H2 oxidation was reduced when the genes encoding these proteins were deleted individually and was eliminated when they were deleted in combination. In turn, the growth yield and long-term survival of these deletion strains was modestly but significantly reduced compared to the parent strain. In both biochemical and phenotypic assays, the mutant strains lacking the putative iron-sulfur proteins phenocopied those of hydrogenase structural subunit mutants. We hypothesize that these proteins mediate electron transfer between the catalytic subunits of the hydrogenases and the menaquinone pool of the M. smegmatis respiratory chain; however, other roles (e.g., in maturation) are also plausible and further work is required to resolve their role. The conserved nature of these proteins within most Hhy- or Huc-encoding organisms suggests that these proteins are important determinants of atmospheric H2 oxidation.
Collapse
Affiliation(s)
| | | | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
13
|
Sutherlin KD, Rivard BS, Böttger LH, Liu LV, Rogers MS, Srnec M, Park K, Yoda Y, Kitao S, Kobayashi Y, Saito M, Seto M, Hu M, Zhao J, Lipscomb JD, Solomon EI. NRVS Studies of the Peroxide Shunt Intermediate in a Rieske Dioxygenase and Its Relation to the Native Fe II O 2 Reaction. J Am Chem Soc 2018; 140:5544-5559. [PMID: 29618204 PMCID: PMC5973823 DOI: 10.1021/jacs.8b01822] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The Rieske dioxygenases are a major subclass of mononuclear nonheme iron enzymes that play an important role in bioremediation. Recently, a high-spin FeIII-(hydro)peroxy intermediate (BZDOp) has been trapped in the peroxide shunt reaction of benzoate 1,2-dioxygenase. Defining the structure of this intermediate is essential to understanding the reactivity of these enzymes. Nuclear resonance vibrational spectroscopy (NRVS) is a recently developed synchrotron technique that is ideal for obtaining vibrational, and thus structural, information on Fe sites, as it gives complete information on all vibrational normal modes containing Fe displacement. In this study, we present NRVS data on BZDOp and assign its structure using these data coupled to experimentally calibrated density functional theory calculations. From this NRVS structure, we define the mechanism for the peroxide shunt reaction. The relevance of the peroxide shunt to the native FeII/O2 reaction is evaluated. For the native FeII/O2 reaction, an FeIII-superoxo intermediate is found to react directly with substrate. This process, while uphill thermodynamically, is found to be driven by the highly favorable thermodynamics of proton-coupled electron transfer with an electron provided by the Rieske [2Fe-2S] center at a later step in the reaction. These results offer important insight into the relative reactivities of FeIII-superoxo and FeIII-hydroperoxo species in nonheme Fe biochemistry.
Collapse
Affiliation(s)
- Kyle D. Sutherlin
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Brent S. Rivard
- Department of Biochemistry, Molecular Biology, & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lars H. Böttger
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Lei V. Liu
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Melanie S. Rogers
- Department of Biochemistry, Molecular Biology, & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Martin Srnec
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- J. HeyrovskýInstitute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Kiyoung Park
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Yoshitaka Yoda
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
| | - Shinji Kitao
- Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan
| | | | - Makina Saito
- Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan
| | - Makoto Seto
- Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan
| | - Michael Hu
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jiyong Zhao
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
14
|
Yin S, Bernstein ER. Photoelectron spectroscopy and density functional theory studies of (FeS) mH - (m = 2-4) cluster anions: effects of the single hydrogen. Phys Chem Chem Phys 2017; 20:367-382. [PMID: 29210391 DOI: 10.1039/c7cp07012h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single hydrogen containing iron hydrosulfide cluster anions (FeS)mH- (m = 2-4) are studied by photoelectron spectroscopy (PES) at 3.492 eV (355 nm) and 4.661 eV (266 nm) photon energies, and by Density Functional Theory (DFT) calculations. The structural properties, relative energies of different spin states and isomers, and the first calculated vertical detachment energies (VDEs) of different spin states for these (FeS)mH- (m = 2-4) cluster anions are investigated at various reasonable theory levels. Two types of structural isomers are found for these (FeS)mH- (m = 2-4) clusters: (1) the single hydrogen atom bonds to a sulfur site (SH-type); and (2) the single hydrogen atom bonds to an iron site (FeH-type). Experimental and theoretical results suggest such available different SH- and FeH-type structural isomers should be considered when evaluating the properties and behavior of these single hydrogen containing iron sulfide clusters in real chemical and biological systems. Compared to their related, respective pure iron sulfur (FeS)m- clusters, the first VDE trend of the diverse type (FeS)mH0,1- (m = 1-4) clusters can be understood through (1) the different electron distribution properties of their highest singly occupied molecular orbital employing natural bond orbital analysis (NBO/HSOMO), and (2) the partial charge distribution on the NBO/HSOMO localized sites of each cluster anion. Generally, the properties of the NBO/HSOMOs play the principal role with regard to the physical and chemical properties of all the anions. The change of cluster VDE from low to high is associated with the change in nature of their NBO/HSOMO from a dipole bound and valence electron mixed character, to a valence p orbital on S, to a valence d orbital on Fe, and to a valence p orbital on Fe or an Fe-Fe delocalized valence bonding orbital. For clusters having the same properties for NBO/HSOMOs, the partial charge distributions at the NBO/HSOMO localized sites additionally affect their VDEs: a more negative or less positive localized charge distribution is correlated with a lower first VDE. The single hydrogen in these (FeS)mH- (m = 2-4) cluster anions is suggested to affect their first VDEs through the different structure types (SH- or FeH-), the nature of the NBO/HSOMOs at the local site, and the value of partial charge number at the local site of the NBO/HSOMO.
Collapse
Affiliation(s)
- Shi Yin
- Department of Chemistry, NSF ERC for Extreme Ultraviolet Science and Technology, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
15
|
Kumari A, Singh D, Ramaswamy S, Ramanathan G. Structural and functional studies of ferredoxin and oxygenase components of 3-nitrotoluene dioxygenase from Diaphorobacter sp. strain DS2. PLoS One 2017; 12:e0176398. [PMID: 28448625 PMCID: PMC5407579 DOI: 10.1371/journal.pone.0176398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/10/2017] [Indexed: 11/23/2022] Open
Abstract
3-nitrotoluene dioxygenase (3NTDO) from Diaphorobacter sp. strain DS2 catalyses the conversion of 3-nitrotoluene (3NT) into a mixture of 3- and 4-methylcatechols with release of nitrite. We report here, X-ray crystal structures of oxygenase and ferredoxin components of 3NTDO at 2.9 Å and 2.4 Å, respectively. The residues responsible for nitrite release in 3NTDO were further probed by four single and two double mutations in the catalytic site of α-subunit of the dioxygenase. Modification of Val 350 to Phe, Ile 204 to Ala, and Asn258 to Val by site directed mutagenesis resulted in inactive enzymes revealing the importance of these residues in catalysis. Docking studies of meta nitrotoluene to the active site of 3NTDO suggested possible orientations of binding that favor the formation of 3-methylcatechol (3MC) over 4-methylcatechol energetically. The electron transfer pathway from ferredoxin subunit to the active site of the oxygenase subunit is also proposed.
Collapse
Affiliation(s)
- Archana Kumari
- Department of Chemistry, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh, India
| | - Deepak Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh, India
| | - S Ramaswamy
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Science, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - Gurunath Ramanathan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
16
|
Yin S, Bernstein ER. Properties of iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide cluster anions through photoelectron spectroscopy and density functional theory calculations. J Chem Phys 2016; 145:154302. [DOI: 10.1063/1.4964651] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Shi Yin
- Department of Chemistry, NSF ERC for Extreme Ultraviolet Science and Technology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Elliot R. Bernstein
- Department of Chemistry, NSF ERC for Extreme Ultraviolet Science and Technology, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
17
|
Hosseinzadeh P, Lu Y. Design and fine-tuning redox potentials of metalloproteins involved in electron transfer in bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:557-581. [PMID: 26301482 PMCID: PMC4761536 DOI: 10.1016/j.bbabio.2015.08.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/20/2015] [Indexed: 12/25/2022]
Abstract
Redox potentials are a major contributor in controlling the electron transfer (ET) rates and thus regulating the ET processes in the bioenergetics. To maximize the efficiency of the ET process, one needs to master the art of tuning the redox potential, especially in metalloproteins, as they represent major classes of ET proteins. In this review, we first describe the importance of tuning the redox potential of ET centers and its role in regulating the ET in bioenergetic processes including photosynthesis and respiration. The main focus of this review is to summarize recent work in designing the ET centers, namely cupredoxins, cytochromes, and iron-sulfur proteins, and examples in design of protein networks involved these ET centers. We then discuss the factors that affect redox potentials of these ET centers including metal ion, the ligands to metal center and interactions beyond the primary ligand, especially non-covalent secondary coordination sphere interactions. We provide examples of strategies to fine-tune the redox potential using both natural and unnatural amino acids and native and nonnative cofactors. Several case studies are used to illustrate recent successes in this area. Outlooks for future endeavors are also provided. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Collapse
Affiliation(s)
- Parisa Hosseinzadeh
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews St., Urbana, IL, 61801, USA
| | - Yi Lu
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews St., Urbana, IL, 61801, USA.
| |
Collapse
|
18
|
Barupala DP, Dzul SP, Riggs-Gelasco PJ, Stemmler TL. Synthesis, delivery and regulation of eukaryotic heme and Fe-S cluster cofactors. Arch Biochem Biophys 2016; 592:60-75. [PMID: 26785297 PMCID: PMC4784227 DOI: 10.1016/j.abb.2016.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 11/25/2022]
Abstract
In humans, the bulk of iron in the body (over 75%) is directed towards heme- or Fe-S cluster cofactor synthesis, and the complex, highly regulated pathways in place to accomplish biosynthesis have evolved to safely assemble and load these cofactors into apoprotein partners. In eukaryotes, heme biosynthesis is both initiated and finalized within the mitochondria, while cellular Fe-S cluster assembly is controlled by correlated pathways both within the mitochondria and within the cytosol. Iron plays a vital role in a wide array of metabolic processes and defects in iron cofactor assembly leads to human diseases. This review describes progress towards our molecular-level understanding of cellular heme and Fe-S cluster biosynthesis, focusing on the regulation and mechanistic details that are essential for understanding human disorders related to the breakdown in these essential pathways.
Collapse
Affiliation(s)
- Dulmini P Barupala
- Departments of Biochemistry and Molecular Biology, and Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Stephen P Dzul
- Departments of Biochemistry and Molecular Biology, and Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | | | - Timothy L Stemmler
- Departments of Biochemistry and Molecular Biology, and Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
19
|
The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part III. {[Fe2S2](Cys)3(X)} (X=Asp, Arg, His) and {[Fe2S2](Cys)2(His)2} proteins. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Oyala PH, Stich TA, Britt RD. Metal ion oxidation state assignment based on coordinating ligand hyperfine interaction. PHOTOSYNTHESIS RESEARCH 2015; 124:7-18. [PMID: 25663565 DOI: 10.1007/s11120-015-0086-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/12/2015] [Indexed: 06/04/2023]
Abstract
In exchange-coupled mixed-valence spin systems, the magnitude and sign of the effective ligand hyperfine interaction (HFI) can be useful in determining the formal oxidation state of the coordinating metal ion, as well as provide information about the coordination geometry. This is due to the fact that the observed ligand HFI is a function of the projection factor (Clebsch-Gordon coefficient) that maps the site spin value S i of the local paramagnetic center onto the total spin of the exchange-coupled system, S T. Recently, this relationship has been successfully exploited in identifying the oxidation state of the Mn ion coordinated by the sole nitrogenous ligand to the oxygen-evolving complex in certain states of photosystem II. The origin and evolution of these efforts is described.
Collapse
Affiliation(s)
- Paul H Oyala
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
| | | | | |
Collapse
|
21
|
Karagas NE, Jones CN, Osborn DJ, Dzierlenga AL, Oyala P, Konkle ME, Whitney EM, David Britt R, Hunsicker-Wang LM. The reduction rates of DEPC-modified mutant Thermus thermophilus Rieske proteins differ when there is a negative charge proximal to the cluster. J Biol Inorg Chem 2014; 19:1121-35. [PMID: 24916128 DOI: 10.1007/s00775-014-1167-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/31/2014] [Indexed: 10/25/2022]
Abstract
Rieske and Rieske-type proteins are electron transport proteins involved in key biological processes such as respiration, photosynthesis, and detoxification. They have a [2Fe-2S] cluster ligated by two cysteines and two histidines. A series of mutations, L135E, L135R, L135A, and Y158F, of the Rieske protein from Thermus thermophilus has been produced which probe the effects of the neighboring residues, in the second sphere, on the dynamics of cluster reduction and the reactivity of the ligating histidines. These properties were probed using titrations and modifications with diethyl pyrocarbonate (DEPC) at various pH values monitored using UV-Visible and circular dichroism spectrophotometry. These results, along with results from EPR studies, provide information on ligating histidine modification and rate of reduction of each of the mutant proteins. L135R, L135A, and Y158F react with DEPC similarly to wild type, resulting in modified protein with a reduced [2Fe-2S] cluster in <90 min, whereas L135E requires >15 h under the same conditions. Thus, the negative charge slows down the rate of reduction and provides an explanation as to why negatively charged residues are rarely, if ever, found in the equivalent position of other Rieske and Rieske-type proteins.
Collapse
Affiliation(s)
- Nicholas E Karagas
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, TX, 78212, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kim HS, Cha SY, Jo CH, Han A, Hwang KY. The crystal structure of arginyl-tRNA synthetase fromHomo sapiens. FEBS Lett 2014; 588:2328-34. [DOI: 10.1016/j.febslet.2014.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/12/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
|
23
|
Zhang T, Zhang A, Bell SG, Wong LL, Zhou W. The structure of a novel electron-transfer ferredoxin from Rhodopseudomonas palustris HaA2 which contains a histidine residue in its iron-sulfur cluster-binding motif. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1453-64. [PMID: 24816113 DOI: 10.1107/s139900471400474x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/01/2014] [Indexed: 11/10/2022]
Abstract
Rhodopseudomonas palustris HaA2 contains a gene, RPB3630, encoding a ferredoxin, HaPuxC, with an atypical CXXHXXC(X)nCP iron-sulfur cluster-binding motif. The ferredoxin gene is associated with a cytochrome P450 (CYP) monooxygenase-encoding gene, CYP194A3, an arrangement which is conserved in several strains of bacteria. Similar ferredoxin genes are found in other bacteria, such as Mycobacterium tuberculosis, where they are also associated with CYP genes. The crystal structure of HaPuxC has been solved at 2.3 Å resolution. The overall fold of this [3Fe-4S] cluster-containing ferredoxin is similar to other [3Fe-4S] and [4Fe-4S] species, with the loop around the iron-sulfur cluster more closely resembling those of [3Fe-4S] ferredoxins. The side chain of His17 from the cluster-binding motif in HaPuxC points away from the vacant site of the cluster and interacts with Glu61 and one of the sulfide ions of the cluster. This is the first cytochrome P450 electron-transfer partner of this type to be structurally characterized and will provide a better understanding of the electron-transfer processes between these ferredoxins and their CYP enzymes.
Collapse
Affiliation(s)
- Ting Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Aili Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Stephen G Bell
- School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia
| | - Luet-Lok Wong
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, England
| | - Weihong Zhou
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
24
|
Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev 2014; 114:4366-469. [PMID: 24758379 PMCID: PMC4002152 DOI: 10.1021/cr400479b] [Citation(s) in RCA: 624] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Liu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Saumen Chakraborty
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Parisa Hosseinzadeh
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yang Yu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shiliang Tian
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Igor Petrik
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ambika Bhagi
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
25
|
Albers A, Demeshko S, Dechert S, Saouma CT, Mayer JM, Meyer F. Fast proton-coupled electron transfer observed for a high-fidelity structural and functional [2Fe-2S] Rieske model. J Am Chem Soc 2014; 136:3946-54. [PMID: 24506804 PMCID: PMC3985845 DOI: 10.1021/ja412449v] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Rieske cofactors
have a [2Fe–2S] cluster with unique {His2Cys2} ligation and distinct Fe subsites. The histidine
ligands are functionally relevant, since they allow for coupling of
electron and proton transfer (PCET) during quinol oxidation in respiratory
and photosynthetic ET chains. Here we present the highest fidelity
synthetic analogue for the Rieske [2Fe–2S] cluster reported
so far. This synthetic analogue 5x– emulates the heteroleptic {His2Cys2} ligation of the [2Fe–2S] core, and it also serves
as a functional model that undergoes fast concerted proton and electron
transfer (CPET) upon reaction of the mixed-valent (ferrous/ferric)
protonated 5H2– with TEMPO. The thermodynamics
of the PCET square scheme for 5x– have been determined, and three species (diferric 52–, protonated diferric 5H–, and mixed-valent 53–) have been characterized by X-ray diffraction. pKa values for 5H– and 5H2– differ by about 4 units, and the reduction
potential of 5H– is shifted anodically
by about +230 mV compared to that of 52–. While the N–H bond dissociation free energy of 5H2– (60.2 ± 0.5 kcal mol–1) and the free energy, ΔG°CPET, of its reaction with TEMPO (−6.3 kcal mol–1) are similar to values recently reported for a homoleptic {N2/N2}-coordinated [2Fe–2S] cluster, CPET
is significantly faster for 5H2– with
biomimetic {N2/S2} ligation (k = (9.5 ± 1.2) × 104 M–1 s–1, ΔH‡ = 8.7
± 1.0 kJ mol–1, ΔS‡ = −120 ± 40 J mol–1 K–1, and ΔG‡ = 43.8 ± 0.3 kJ mol–1 at 293 K). These parameters,
and the comparison with homoleptic analogues, provide important information
and new perspectives for the mechanistic understanding of the biological
Rieske cofactor.
Collapse
Affiliation(s)
- Antonia Albers
- Institute of Inorganic Chemistry, Georg-August-University Göttingen , Tammannstrasse 4, D-37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Tampier S, Bleifuss SM, Abd-Elzaher MM, Sutter J, Heinemann FW, Burzlaff N. Bis(pyrazol-1-yl)acetic Acid Bearing Ferrocenyl Substituents. Organometallics 2013. [DOI: 10.1021/om400495f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefan Tampier
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), University of Erlangen-Nürnberg, Egerlandstraße 1, D-91058 Erlangen, Germany
| | - Sascha M. Bleifuss
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), University of Erlangen-Nürnberg, Egerlandstraße 1, D-91058 Erlangen, Germany
| | - Mokhles M. Abd-Elzaher
- Inorganic Chemistry Department, National Research Center, P.O. 12622 Dokki, Cairo, Egypt
| | - Jörg Sutter
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), University of Erlangen-Nürnberg, Egerlandstraße 1, D-91058 Erlangen, Germany
| | - Frank W. Heinemann
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), University of Erlangen-Nürnberg, Egerlandstraße 1, D-91058 Erlangen, Germany
| | - Nicolai Burzlaff
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), University of Erlangen-Nürnberg, Egerlandstraße 1, D-91058 Erlangen, Germany
| |
Collapse
|
27
|
In silico bioremediation of polycyclic aromatic hydrocarbon: A frontier in environmental chemistry. J Mol Graph Model 2013; 44:1-8. [DOI: 10.1016/j.jmgm.2013.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 04/24/2013] [Accepted: 04/27/2013] [Indexed: 11/23/2022]
|
28
|
Bandeiras TM, Freitas MC, Petrasch D, Kletzin A, Frazão C. SAD phasing towards structure determination of a thermostable Rieske ferredoxin with a novel stabilizing disulfide bridge. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:555-8. [PMID: 23695576 PMCID: PMC3660900 DOI: 10.1107/s1744309113008385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 03/26/2013] [Indexed: 11/10/2022]
Abstract
Rieske proteins and Rieske ferredoxins are ubiquitous electron-transfer metalloproteins that are characterized by a [2Fe-2S] cluster coordinated by pairs of cysteine and histidine residues. The thermoacidophilic archaeon Acidianus ambivalens contains a Rieske ferredoxin termed RFd2, which has an hitherto unknown additional region of 40-44 residues at the C-terminus with a Cx3C motif that introduces a novel disulfide bond within the Rieske fold. RFd2 was crystallized with the aim of determining its three-dimensional structure in order to understand the contribution of this as yet unique disulfide bridge to the function and stability of RFd2. RFd2 crystals were successively improved, increasing their diffraction to 1.9 Å resolution. Molecular replacement did not solve the RFd2 structure, but a highly multiple in-house diffraction data set collected at the Cu Kα edge led to solution of the phase problem.
Collapse
Affiliation(s)
- Tiago M. Bandeiras
- IBET – Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- ITQB–UNL, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da Republica, 2780-157 Oeiras, Portugal
| | - Micael C. Freitas
- IBET – Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- ITQB–UNL, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da Republica, 2780-157 Oeiras, Portugal
| | - Dennis Petrasch
- Microbiology – Sulfur Biochemistry and Microbial Bioenergetics, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Arnulf Kletzin
- Microbiology – Sulfur Biochemistry and Microbial Bioenergetics, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Carlos Frazão
- ITQB–UNL, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da Republica, 2780-157 Oeiras, Portugal
| |
Collapse
|
29
|
Iwasaki T, Fukazawa R, Miyajima-Nakano Y, Baldansuren A, Matsushita S, Lin MT, Gennis RB, Hasegawa K, Kumasaka T, Dikanov SA. Dissection of hydrogen bond interaction network around an iron-sulfur cluster by site-specific isotope labeling of hyperthermophilic archaeal Rieske-type ferredoxin. J Am Chem Soc 2012; 134:19731-8. [PMID: 23145461 DOI: 10.1021/ja308049u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The electronic structure and geometry of redox-active metal cofactors in proteins are tuned by the pattern of hydrogen bonding with the backbone peptide matrix. In this study we developed a method for selective amino acid labeling of a hyperthermophilic archaeal metalloprotein with engineered Escherichia coli auxotroph strains, and we applied this to resolve the hydrogen bond interactions with the reduced Rieske-type [2Fe-2S] cluster by two-dimensional pulsed electron spin resonance technique. Because deep electron spin-echo envelope modulation of two histidine (14)N(δ) ligands of the cluster decreased non-coordinating (15)N signal intensities via the cross-suppression effect, an inverse labeling strategy was employed in which (14)N amino acid-labeled archaeal Rieske-type ferredoxin samples were examined in an (15)N-protein background. This has directly identified Lys45 N(α) as providing the major pathway for the transfer of unpaired electron spin density from the reduced cluster by a "through-bond" mechanism. All other backbone peptide nitrogens interact more weakly with the reduced cluster. The extension of this approach will allow visualizing the three-dimensional landscape of preferred pathways for the transfer of unpaired spin density from a paramagnetic metal center onto the protein frame, and will discriminate specific interactions by a "through-bond" mechanism from interactions which are "through-space" in various metalloproteins.
Collapse
Affiliation(s)
- Toshio Iwasaki
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Sendagi, Tokyo 113-8602, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Izumi A, Schnell R, Schneider G. Crystal structure of NirD, the small subunit of the nitrite reductase NirbD from Mycobacterium tuberculosis
at 2.0 Å resolution. Proteins 2012; 80:2799-803. [DOI: 10.1002/prot.24177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/01/2012] [Accepted: 08/26/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Atsushi Izumi
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | | | |
Collapse
|
31
|
Reetz MT. Artificial Metalloenzymes as Catalysts in Stereoselective Diels-Alder Reactions. CHEM REC 2012; 12:391-406. [DOI: 10.1002/tcr.201100043] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Indexed: 11/05/2022]
|
32
|
Dicus MM, Conlan A, Nechushtai R, Jennings PA, Paddock ML, Britt RD, Stoll S. Binding of histidine in the (Cys)3(His)1-coordinated [2Fe-2S] cluster of human mitoNEET. J Am Chem Soc 2010; 132:2037-49. [PMID: 20099820 PMCID: PMC2820139 DOI: 10.1021/ja909359g] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Human mitoNEET is a homodimeric iron-sulfur protein located in the outer mitochondrial membrane with unknown function, but which is known to interact with thiazolidinedione diabetes drugs. Each monomer houses a [2Fe-2S] cluster with an unusual (Cys)(3)(His)(1) ligation. The His ligand is important for enabling cluster release and for tuning the redox potential. We use multifrequency (X-, Ka-, and Q-band) and multitechnique (continuous-wave, electron spin-echo envelope modulation (ESEEM), pulsed electron-nuclear double resonance (ENDOR), and hyperfine sublevel correlation (HYSCORE)) electron paramagnetic resonance spectroscopy to investigate the cluster in its paramagnetic reduced [Fe(2+)Fe(3+)] (S = 1/2) state. It has a rhombic g tensor (2.007, 1.937, 1.897) with an average g value of 1.947 that falls between those of Rieske-type and ferredoxin-type [2Fe-2S] clusters. Simulation and least-squares fitting of orientation-selective Ka- and Q-band ENDOR, 1D ESEEM, and HYSCORE spectra of (14)N and (15)N-labeled mitoNEET yield the principal values and orientations of both the hyperfine tensor ((14)N, A(iso) = -6.25 MHz, T = -0.94 MHz) and the quadrupolar tensor (e(2)Qq/h = -2.47 MHz, eta = 0.38) of the ligating histidine nitrogen N(delta). From these, we can infer the absolute g tensor orientation with respect to the cluster: The g(2) axis is close to perpendicular to the [2Fe-2S] plane, and g(1) and g(3) are in-plane, but skewed from the Fe-Fe and S-S axes. In X-band ENDOR and ESEEM spectra, a weakly coupled nitrogen is visible, most likely the N(epsilon) of the histidine in the protonated state. We find that the cluster is in a valence-localized state, where Fe(2+) is His-bound. The field-sweep spectra show evidence of intercluster dipolar coupling that can be simulated using an uncoupled spin model for each cluster (S(Fe(2+)) = 2, S(Fe(3+)) = 5/2). The parameters determined in this work can function as reporters on how the cluster structure is altered upon pH changes and drug binding.
Collapse
Affiliation(s)
- Michelle M Dicus
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Botelho HM, Leal SS, Veith A, Prosinecki V, Bauer C, Fröhlich R, Kletzin A, Gomes CM. Role of a novel disulfide bridge within the all-beta fold of soluble Rieske proteins. J Biol Inorg Chem 2009; 15:271-81. [PMID: 19862563 DOI: 10.1007/s00775-009-0596-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 10/04/2009] [Indexed: 11/25/2022]
Abstract
Rieske proteins and Rieske ferredoxins are present in the three domains of life and are involved in a variety of cellular processes. Despite their functional diversity, these small Fe-S proteins contain a highly conserved all-beta fold, which harbors a [2Fe-2S] Rieske center. We have identified a novel subtype of Rieske ferredoxins present in hyperthermophilic archaea, in which a two-cysteine conserved SKTPCX((2-3))C motif is found at the C-terminus. We establish that in the Acidianus ambivalens representative, Rieske ferredoxin 2 (RFd2), these cysteines form a novel disulfide bond within the Rieske fold, which can be selectively broken under mild reducing conditions insufficient to reduce the [2Fe-2S] cluster or affect the secondary structure of the protein, as shown by visible circular dichroism, absorption, and attenuated total reflection Fourier transform IR spectroscopies. RFd2 presents all the EPR, visible absorption, and visible circular dichroism spectroscopic features of the [2Fe-2S] Rieske center. The cluster has a redox potential of +48 mV (25 degrees C and pH 7) and a pK (a) of 10.1 +/- 0.2. These shift to +77 mV and 8.9 +/- 0.3, respectively, upon reduction of the disulfide. RFd2 has a melting temperature near the boiling point of water (T(m) = 99 degrees C, pH 7.0), but it becomes destabilized upon disulfide reduction (DeltaT(m) = -9 degrees C, DeltaC(m) = -0.7 M guanidinium hydrochloride). This example illustrates how the incorporation of an additional structural element such as a disulfide bond in a highly conserved fold such as that of the Rieske domain may fine-tune the protein for a particular function or for increased stability.
Collapse
Affiliation(s)
- Hugo M Botelho
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Groysman S, Holm RH. Biomimetic chemistry of iron, nickel, molybdenum, and tungsten in sulfur-ligated protein sites. Biochemistry 2009; 48:2310-20. [PMID: 19206188 PMCID: PMC2765533 DOI: 10.1021/bi900044e] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biomimetic inorganic chemistry has as its primary goal the synthesis of molecules that approach or achieve the structures, oxidation states, and electronic and reactivity features of native metal-containing sites of variant nuclearity. Comparison of properties of accurate analogues and these sites ideally provides insight into the influence of protein structure and environment on intrinsic properties as represented by the analogue. For polynuclear sites in particular, the goal provides a formidable challenge for, with the exception of iron-sulfur clusters, all such site structures have never been achieved and few have even been closely approximated by chemical synthesis. This account describes the current status of the synthetic analogue approach as applied to the mononuclear sites in certain molybdoenzymes and the polynuclear sites in hydrogenases, nitrogenase, and carbon monoxide dehydrogenases.
Collapse
Affiliation(s)
- Stanislav Groysman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - R. H. Holm
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
35
|
Friemann R, Lee K, Brown EN, Gibson DT, Eklund H, Ramaswamy S. Structures of the multicomponent Rieske non-heme iron toluene 2,3-dioxygenase enzyme system. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2009; 65:24-33. [PMID: 19153463 PMCID: PMC2628974 DOI: 10.1107/s0907444908036524] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 11/06/2008] [Indexed: 11/14/2022]
Abstract
Bacterial Rieske non-heme iron oxygenases catalyze the initial hydroxylation of aromatic hydrocarbon substrates. The structures of all three components of one such system, the toluene 2,3-dioxygenase system, have now been determined. This system consists of a reductase, a ferredoxin and a terminal dioxygenase. The dioxygenase, which was cocrystallized with toluene, is a heterohexamer containing a catalytic and a structural subunit. The catalytic subunit contains a Rieske [2Fe-2S] cluster and mononuclear iron at the active site. This iron is not strongly bound and is easily removed during enzyme purification. The structures of the enzyme with and without mononuclear iron demonstrate that part of the structure is flexible in the absence of iron. The orientation of the toluene substrate in the active site is consistent with the regiospecificity of oxygen incorporation seen in the product formed. The ferredoxin is Rieske type and contains a [2Fe-2S] cluster close to the protein surface. The reductase belongs to the glutathione reductase family of flavoenzymes and consists of three domains: an FAD-binding domain, an NADH-binding domain and a C-terminal domain. A model for electron transfer from NADH via FAD in the reductase and the ferredoxin to the terminal active-site mononuclear iron of the dioxygenase is proposed.
Collapse
Affiliation(s)
- Rosmarie Friemann
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, 751 24 Uppsala, Sweden
| | - Kyoung Lee
- Department of Microbiology, Changwon National University, Changwon, Kyoungnam 641-773, Republic of Korea
- Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Eric N. Brown
- Department of Biochemistry, The University of Iowa, Iowa City, Iowa 52242, USA
| | - David T. Gibson
- Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Hans Eklund
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, 751 24 Uppsala, Sweden
| | - S. Ramaswamy
- Department of Biochemistry, The University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|