1
|
Palma E, Içhedef C, Fernandes C, Belchior A, Raposinho P, Gano L, Miranda A, Moreira D, Lourenço P, Cruz C, Pires AS, Botelho MF, Paulo A. Targeting of G-quadruplex DNA with 99mTc(I)/Re(I) Tricarbonyl Complexes Carrying Pyridostatin Derivatives. Chemistry 2024; 30:e202400285. [PMID: 38386665 DOI: 10.1002/chem.202400285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
The main goal of this work was to elucidate the potential relevance of (radio)metal chelates of 99mTc and Re targeting G-quadruplex structures for the design of new tools for cancer theranostics. 99mTc provides the complexes with the ability to perform single-photon-emission computed tomography imaging studies, while the Re complexes should act as anticancer agents upon interaction with specific G4 DNA or RNA structures present in tumor tissues. Towards this goal, we have developed isostructural 99mTc(I) and Re(I) tricarbonyl complexes anchored by a pyrazolyl-diamine (Pz) chelator carrying a pendant pyridostatin (PDS) fragment as the G4-binding motif. The interaction of the PDF-Pz-Re (8) complex with different G4-forming oligonucleotides was studied by circular dichroism, fluorescence spectroscopy and FRET-melting assays. The results showed that the Re complex retained the ability to bind and stabilize G4-structures from different DNA or RNA sequences, namely those present on the SRC proto-oncogene and telomeric RNA (TERRA sequence). PDF-Pz-Re (8) showed low to moderate cytotoxicity in PC3 and MCF-7 cancer cell lines, as typically observed for G4-binders. Biodistribution studies of the congener PDF-Pz-99mTc (12) in normal mice showed that the complex undergoes a fast blood clearance with a predominant hepatobiliary excretion, pointing also for a high in vitro stability.
Collapse
Affiliation(s)
- Elisa Palma
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Cigdem Içhedef
- Ege University, Institute of Nuclear Sciences, 35100, Izmir, Turkey
| | - Célia Fernandes
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Ana Belchior
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Paula Raposinho
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Lurdes Gano
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - André Miranda
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - David Moreira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Pedro Lourenço
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Carla Cruz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- Departamento de Química, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001, Covilhã, Portugal
| | - Ana Salomé Pires
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548, Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-061, Coimbra, Portugal
| | - Maria Filomena Botelho
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548, Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-061, Coimbra, Portugal
| | - António Paulo
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| |
Collapse
|
2
|
Sidorenko GV, Miroslavov AE, Tyupina MY. Technetium(I) carbonyl complexes for nuclear medicine: Coordination-chemical aspect. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Ericson MD, Lensing CJ, Fleming KA, Schlasner KN, Doering SR, Haskell-Luevano C. Bench-top to clinical therapies: A review of melanocortin ligands from 1954 to 2016. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2414-2435. [PMID: 28363699 PMCID: PMC5600687 DOI: 10.1016/j.bbadis.2017.03.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
The discovery of the endogenous melanocortin agonists in the 1950s have resulted in sixty years of melanocortin ligand research. Early efforts involved truncations or select modifications of the naturally occurring agonists leading to the development of many potent and selective ligands. With the identification and cloning of the five known melanocortin receptors, many ligands were improved upon through bench-top in vitro assays. Optimization of select properties resulted in ligands adopted as clinical candidates. A summary of every melanocortin ligand is outside the scope of this review. Instead, this review will focus on the following topics: classic melanocortin ligands, selective ligands, small molecule (non-peptide) ligands, ligands with sex-specific effects, bivalent and multivalent ligands, and ligands advanced to clinical trials. Each topic area will be summarized with current references to update the melanocortin field on recent progress. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
Affiliation(s)
- Mark D Ericson
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cody J Lensing
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katlyn A Fleming
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katherine N Schlasner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Skye R Doering
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
4
|
Vultos F, Fernandes C, Mendes F, Marques F, Correia JDG, Santos I, Gano L. A Multifunctional Radiotheranostic Agent for Dual Targeting of Breast Cancer Cells. ChemMedChem 2017. [PMID: 28628723 DOI: 10.1002/cmdc.201700287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A straightforward synthetic route for a new multifunctional 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) derivative is described. To demonstrate the versatility of this pro-chelator for the preparation of radiolabeled hybrid compounds containing two different biological targeting moieties, an antitumor agent (e.g., a DNA-intercalating agent) and an estrogen receptor (ER) ligand (e.g., LXXLL-based peptide) were regiospecifically conjugated to the DOTA derivative. The bifunctional probe was radiolabeled with the auger electron emitter indium-111, and the resulting radioconjugate was demonstrated to induce DNA damage in vitro, which, along with the nuclear internalization exhibited in breast cancer cells, might enhance its therapeutic activity. This favorable in vitro performance suggests that these hybrid compounds could be attractive probes for theranostic applications.
Collapse
Affiliation(s)
- Filipe Vultos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139.7, 2695-066, Bobadela, LRS, Portugal
| | - Célia Fernandes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139.7, 2695-066, Bobadela, LRS, Portugal
| | - Filipa Mendes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139.7, 2695-066, Bobadela, LRS, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139.7, 2695-066, Bobadela, LRS, Portugal
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139.7, 2695-066, Bobadela, LRS, Portugal
| | - Isabel Santos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139.7, 2695-066, Bobadela, LRS, Portugal
| | - Lurdes Gano
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139.7, 2695-066, Bobadela, LRS, Portugal
| |
Collapse
|
5
|
Lensing CJ, Adank DN, Wilber SL, Freeman KT, Schnell SM, Speth RC, Zarth AT, Haskell-Luevano C. A Direct in Vivo Comparison of the Melanocortin Monovalent Agonist Ac-His-DPhe-Arg-Trp-NH 2 versus the Bivalent Agonist Ac-His-DPhe-Arg-Trp-PEDG20-His-DPhe-Arg-Trp-NH 2: A Bivalent Advantage. ACS Chem Neurosci 2017; 8:1262-1278. [PMID: 28128928 DOI: 10.1021/acschemneuro.6b00399] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bivalent ligands targeting putative melanocortin receptor dimers have been developed and characterized in vitro; however, studies of their functional in vivo effects have been limited. The current report compares the effects of homobivalent ligand CJL-1-87, Ac-His-DPhe-Arg-Trp-PEDG20-His-DPhe-Arg-Trp-NH2, to monovalent ligand CJL-1-14, Ac-His-DPhe-Arg-Trp-NH2, on energy homeostasis in mice after central intracerebroventricular (ICV) administration into the lateral ventricle of the brain. Bivalent ligand CJL-1-87 had noteworthy advantages as an antiobesity probe over CJL-1-14 in a fasting-refeeding in vivo paradigm. Treatment with CJL-1-87 significantly decreased food intake compared to CJL-1-14 or saline (50% less intake 2-8 h after treatment). Furthermore, CJL-1-87 treatment decreased the respiratory exchange ratio (RER) without changing the energy expenditure indicating that fats were being burned as the primary fuel source. Additionally, CJL-1-87 treatment significantly lowered body fat mass percentage 6 h after administration (p < 0.05) without changing the lean mass percentage. The bivalent ligand significantly decreased insulin, C-peptide, leptin, GIP, and resistin plasma levels compared to levels after CJL-1-14 or saline treatments. Alternatively, ghrelin plasma levels were significantly increased. Serum stability of CJL-1-87 and CJL-1-14 (T1/2 = 6.0 and 16.8 h, respectively) was sufficient to permit physiological effects. The differences in binding affinity of CJL-1-14 compared to CJL-1-87 are speculated as a possible mechanism for the bivalent ligand's unique effects. We also provide in vitro evidence for the formation of a MC3R-MC4R heterodimer complex, for the first time to our knowledge, that may be an unexploited neuronal molecular target. Regardless of the exact mechanism, the advantageous ability of CJL-1-87 compared to CJL-1-14 to increase in vitro binding affinity, increase the duration of action in spite of decreased serum stability, decrease in vivo food intake, decrease mice's body fat percent, and differentially affect mouse hormone levels demonstrates the distinct characteristics achieved from the current melanocortin agonist bivalent design strategy.
Collapse
Affiliation(s)
- Cody J. Lensing
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Danielle N. Adank
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stacey L. Wilber
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katie T. Freeman
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sathya M. Schnell
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert C. Speth
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida 33328-2018, United States
- Department of Pharmacology and Physiology, Georgetown University, Washington, D.C. 20057, United States
| | - Adam T. Zarth
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-210 CCRB, Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Charron CL, Hickey JL, Nsiama TK, Cruickshank DR, Turnbull WL, Luyt LG. Molecular imaging probes derived from natural peptides. Nat Prod Rep 2017; 33:761-800. [PMID: 26911790 DOI: 10.1039/c5np00083a] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: up to the end of 2015.Peptides are naturally occurring compounds that play an important role in all living systems and are responsible for a range of essential functions. Peptide receptors have been implicated in disease states such as oncology, metabolic disorders and cardiovascular disease. Therefore, natural peptides have been exploited as diagnostic and therapeutic agents due to the unique target specificity for their endogenous receptors. This review discusses a variety of natural peptides highlighting their discovery, endogenous receptors, as well as their derivatization to create molecular imaging agents, with an emphasis on the design of radiolabelled peptides. This review also highlights methods for discovering new and novel peptides when knowledge of specific targets and endogenous ligands are not available.
Collapse
Affiliation(s)
- C L Charron
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - J L Hickey
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - T K Nsiama
- London Regional Cancer Program, Lawson Health Research Institute, London, Canada
| | - D R Cruickshank
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - W L Turnbull
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - L G Luyt
- Department of Chemistry, The University of Western Ontario, London, Canada. and Departments of Oncology and Medical Imaging, The University of Western Ontario, London, Canada and London Regional Cancer Program, Lawson Health Research Institute, London, Canada
| |
Collapse
|
7
|
Silva F, Fernandes C, Campello MPC, Paulo A. Metal complexes of tridentate tripod ligands in medical imaging and therapy. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.11.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Lensing CJ, Freeman KT, Schnell SM, Adank DN, Speth RC, Haskell-Luevano C. An in Vitro and in Vivo Investigation of Bivalent Ligands That Display Preferential Binding and Functional Activity for Different Melanocortin Receptor Homodimers. J Med Chem 2016; 59:3112-28. [PMID: 26959173 DOI: 10.1021/acs.jmedchem.5b01894] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pharmacological probes for the melanocortin receptors have been utilized for studying various disease states including cancer, sexual function disorders, Alzheimer's disease, social disorders, cachexia, and obesity. This study focused on the design and synthesis of bivalent ligands to target melanocortin receptor homodimers. Lead ligands increased binding affinity by 14- to 25-fold and increased cAMP signaling potency by 3- to 5-fold compared to their monovalent counterparts. Unexpectedly, different bivalent ligands showed preferences for particular melanocortin receptor subtypes depending on the linker that connected the binding scaffolds, suggesting structural differences between the various dimer subtypes. Homobivalent compound 12 possessed a functional profile that was unique from its monovalent counterpart providing evidence of the discrete effects of bivalent ligands. Lead compound 7 significantly decreased feeding in mice after intracerebroventricular administration. To the best of our knowledge, this is the first report of a melanocortin bivalent ligand's in vivo physiological effects.
Collapse
Affiliation(s)
- Cody J Lensing
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Katie T Freeman
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Sathya M Schnell
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Danielle N Adank
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Robert C Speth
- College of Pharmacy, Nova Southeastern University , Fort Lauderdale, Florida 33328-2018, United States.,Department of Pharmacology and Physiology, Georgetown University , Washington, D.C. 20057, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
9
|
Chang CC, Chang CH, Shen CC, Chen CL, Liu RS, Lin MH, Wang HE. Synthesis and characterization of a novel radioiodinated phenylacetamide and its homolog as theranostic agents for malignant melanoma. Eur J Pharm Sci 2015; 81:201-9. [PMID: 26517961 DOI: 10.1016/j.ejps.2015.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/16/2015] [Accepted: 10/25/2015] [Indexed: 01/22/2023]
Abstract
Melanin is an attractive target for the diagnosis and treatment of malignant melanoma. This study reports the preparation and biological characterizations of N-(2-(diethylamino)ethyl)-2-(3-(123/131)I-iodo-4- hydroxyphenyl)acetamide and N-(2-(diethylamino)ethyl)-3-(3-(123/131)I-iodo-4-hydroxyphenyl)propanamide (123/131)I-IHPA and 123/131I-IHPP) as novel melanin-specific theranostic agents. These two tracers were hydrophilic, exhibited good serum stability and high binding affinity to melanin. In vitro and in vivo studies revealed rapid, high and tenacious uptakes of both 131I-IHPA and 131I-IHPP in melanotic B16F0 cell line and in C57BL/6 mice bearing B16F0 melanoma, but not in amelanonic A375 cell line and tumors. Small-animal SPECT imaging also clearly delineate B16F0 melanoma since 1 h postinjection of 123I-IHPA and 123I-IHPP in tumor-bearing mice. Owing to the favorable biodistribution of 131I-IHPA and 131I-IHPP after intravenous administration, the estimated absorption dose was low in most normal organs and relatively high in melanotic tumor. The melanin-specific binding ability, sustained tumor retention, fast normal tissues clearance and acceptable projected human dosimetry supported that these two tracers are promising theranostic agents for melanin-positive melanoma.
Collapse
Affiliation(s)
- Chih-Chao Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Hsien Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan; Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Chih-Chieh Shen
- Department of Nuclear Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Chuan-Lin Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ren-Shyan Liu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan; Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan; National PET/Cyclotron Center and Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Hsien Lin
- Department of Nuclear Medicine, Taipei City Hospital, Zhongxiao Branch, Taipei, Taiwan.
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
10
|
Chan CY, Barnard PJ. Rhenium complexes of bidentate, bis-bidentate and tridentate N-heterocyclic carbene ligands. Dalton Trans 2015; 44:19126-40. [DOI: 10.1039/c5dt03295d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rhenium(i) tricarbonyl complexes of a range of bidentate, bis-bidentate and tridentate NHC ligands have been prepared. These NHC ligands are of interest for possible applications in the development of Tc-99m or Re-186/188 radiopharmaceuticals and the stability of two complexes were evaluated in ligand challenge experiments using the metal binding amino acids l-histidine or l-cysteine.
Collapse
Affiliation(s)
- Chung Ying Chan
- Department of Chemistry and Physics
- La Trobe Institute for Molecular Science
- La Trobe University
- Victoria
- Australia
| | - Peter J. Barnard
- Department of Chemistry and Physics
- La Trobe Institute for Molecular Science
- La Trobe University
- Victoria
- Australia
| |
Collapse
|
11
|
Chan CY, Pellegrini PA, Greguric I, Barnard PJ. Rhenium and technetium tricarbonyl complexes of N-heterocyclic carbene ligands. Inorg Chem 2014; 53:10862-73. [PMID: 25280253 DOI: 10.1021/ic500917s] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A strategy for the conjugation of N-heterocyclic carbene (NHC) ligands to biomolecules via amide bond formation is described. Both 1-(2-pyridyl)imidazolium or 1-(2-pyridyl)benzimidazolium salts functionalized with a pendant carboxylic acid group were prepared and coupled to glycine benzyl ester using 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide. A series of 10 rhenium(I) tricarbonyl complexes of the form [ReX(CO)3(ĈN)] (ĈN is a bidentate NHC ligand, and X is a monodentate anionic ligand: Cl(-), RCO2(-)) were synthesized via a Ag2O transmetalation protocol from the Re(I) precursor compound Re(CO)5Cl. The synthesized azolium salts and Re(I) complexes were characterized by elemental analysis and by (1)H and (13)C NMR spectroscopy, and the molecular structures for one imidazolium salt and seven Re(I) complexes were determined by single-crystal X-ray diffraction. (1)H NMR and mass spectrometry studies for an acetonitrile-d3 solution of [ReCl(CO)3(1-(2-pyridyl)-3-methylimidazolylidene)] show that the monodentate chloride ligand is labile and exchanges with this solvent yielding a cationic acetonitrile adduct. For the first time the labeling of an NHC ligand with technetium-99m is reported. Rapid Tc-99m labeling was achieved by heating the imidazolium salt 1-(2-pyridyl)-3-methylimidazolium iodide and Ag2O in methanol, followed by the addition of fac-[(99m)Tc(OH2)3(CO)3](+). To confirm the structure of the (99m)Tc-labeled complex, the equivalent (99)Tc complex was prepared, and mass spectrometric studies showed that the formed Tc complexes are of the form [(99m/99)Tc(CH3CN)(CO)3(1-(2-pyridyl)-3-methylimidazolylidene)](+) with an acetonitrile molecule coordinated to the metal center.
Collapse
Affiliation(s)
- Chung Ying Chan
- Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria 3086, Australia
| | | | | | | |
Collapse
|
12
|
Kasten BB, Ma X, Liu H, Hayes TR, Barnes CL, Qi S, Cheng K, Bottorff SC, Slocumb WS, Wang J, Cheng Z, Benny PD. Clickable, hydrophilic ligand for fac-[M(I)(CO)3](+) (M = Re/(99m)Tc) applied in an S-functionalized α-MSH peptide. Bioconjug Chem 2014; 25:579-92. [PMID: 24568284 PMCID: PMC3983144 DOI: 10.1021/bc5000115] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The copper(I)-catalyzed azide–alkyne
cycloaddition (CuAAC)
click reaction was used to incorporate alkyne-functionalized dipicolylamine
(DPA) ligands (1 and 3) for fac-[MI(CO)3]+ (M = Re/99mTc) complexation into an α-melanocyte stimulating hormone (α-MSH)
peptide analogue. A novel DPA ligand with carboxylate substitutions
on the pyridyl rings (3) was designed to increase the
hydrophilicity and to decrease in vivo hepatobiliary retention of fac-[99mTcI(CO)3]+ complexes used in single photon emission computed tomography (SPECT)
imaging studies with targeting biomolecules. The fac-[ReI(CO)3(3)] complex (4) was used for chemical characterization and X-ray crystal
analysis prior to radiolabeling studies between 3 and fac-[99mTcI(OH2)3(CO)3]+. The corresponding 99mTc
complex (4a) was obtained in high radiochemical yields,
was stable in vitro for 24 h during amino acid challenge and serum
stability assays, and showed increased hydrophilicity by log P analysis compared to an analogous complex with nonfunctionalized
pyridine rings (2a). An α-MSH peptide functionalized
with an azide was labeled with fac-[MI(CO)3]+ using both click, then chelate (CuAAC reaction with 1 or 3 followed by
metal complexation) and chelate, then click (metal
complexation of 1 and 3 followed by CuAAC
with the peptide) strategies to assess the effects of CuAAC conditions
on fac-[MI(CO)3]+ complexation within a peptide framework. The peptides from the click, then chelate strategy had different HPLC tR’s and in vitro stabilities compared
to those from the chelate, then click strategy, suggesting
nonspecific coordination of fac-[MI(CO)3]+ using this synthetic route. The fac-[MI(CO)3]+-complexed peptides from
the chelate, then click strategy showed >90% stability
during in vitro challenge conditions for 6 h, demonstrated high affinity
and specificity for the melanocortin 1 receptor (MC1R) in IC50 analyses, and led to moderately high uptake in B16F10 melanoma cells.
Log P analysis of the 99mTc-labeled peptides
confirmed the enhanced hydrophilicity of the peptide bearing the novel,
carboxylate-functionalized DPA chelate (10a′)
compared to the peptide with the unmodified DPA chelate (9a′). In vivo biodistribution analysis of 9a′ and 10a′ showed moderate tumor uptake in a B16F10 melanoma
xenograft mouse model with enhanced renal uptake and surprising intestinal
uptake for 10a′ compared to predominantly hepatic
accumulation for 9a′. These results, coupled with
the versatility of CuAAC, suggests this novel, hydrophilic chelate
can be incorporated into numerous biomolecules containing azides for
generating targeted fac-[MI(CO)3]+ complexes in future studies.
Collapse
Affiliation(s)
- Benjamin B Kasten
- Department of Chemistry, Washington State University , Pullman, Washington 99164, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Morais M, Paulo A, Gano L, Santos I, Correia JD. Target-specific Tc(CO)3-complexes for in vivo imaging. J Organomet Chem 2013. [DOI: 10.1016/j.jorganchem.2013.05.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Morais M, Oliveira BL, Correia JDG, Oliveira MC, Jiménez MA, Santos I, Raposinho PD. Influence of the Bifunctional Chelator on the Pharmacokinetic Properties of 99mTc(CO)3-Labeled Cyclic α-Melanocyte Stimulating Hormone Analog. J Med Chem 2013; 56:1961-73. [DOI: 10.1021/jm301647t] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maurício Morais
- Unidade de Ciências Químicas
e Radiofarmacêuticas, IST/ITN, Instituto Superior Técnico,
Universidade Técnica de Lisboa, Estrada Nacional 10, 2686-953,
Sacavém, Portugal
| | - Bruno L. Oliveira
- Unidade de Ciências Químicas
e Radiofarmacêuticas, IST/ITN, Instituto Superior Técnico,
Universidade Técnica de Lisboa, Estrada Nacional 10, 2686-953,
Sacavém, Portugal
| | - João D. G. Correia
- Unidade de Ciências Químicas
e Radiofarmacêuticas, IST/ITN, Instituto Superior Técnico,
Universidade Técnica de Lisboa, Estrada Nacional 10, 2686-953,
Sacavém, Portugal
| | - Maria Cristina Oliveira
- Unidade de Ciências Químicas
e Radiofarmacêuticas, IST/ITN, Instituto Superior Técnico,
Universidade Técnica de Lisboa, Estrada Nacional 10, 2686-953,
Sacavém, Portugal
| | - Maria Angeles Jiménez
- Instituto de Química
Física Rocasolano, Consejo Superior de Investigaciones Científicas
(CSIC), Serrano 119, 28006 Madrid, Spain
| | - Isabel Santos
- Unidade de Ciências Químicas
e Radiofarmacêuticas, IST/ITN, Instituto Superior Técnico,
Universidade Técnica de Lisboa, Estrada Nacional 10, 2686-953,
Sacavém, Portugal
| | - Paula D. Raposinho
- Unidade de Ciências Químicas
e Radiofarmacêuticas, IST/ITN, Instituto Superior Técnico,
Universidade Técnica de Lisboa, Estrada Nacional 10, 2686-953,
Sacavém, Portugal
| |
Collapse
|
15
|
Jiang H, Kasten BB, Liu H, Qi S, Liu Y, Tian M, Barnes CL, Zhang H, Cheng Z, Benny PD. Novel, cysteine-modified chelation strategy for the incorporation of [M(I)(CO)(3)](+) (M = Re, (99m)Tc) in an α-MSH peptide. Bioconjug Chem 2012; 23:2300-12. [PMID: 23110503 DOI: 10.1021/bc300509k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Engineering peptide-based targeting agents with residues for site-specific and stable complexation of radionuclides is a highly desirable strategy for producing diagnostic and therapeutic agents for cancer and other diseases. In this report, a model N-S-N(Py) ligand (3) and a cysteine-derived α-melanocyte stimulating hormone (α-MSH) peptide (6) were used as novel demonstrations of a widely applicable chelation strategy for incorporation of the [M(I)(CO)(3)](+) (M = Re, (99m)Tc) core into peptide-based molecules for radiopharmaceutical applications. The structural details of the core ligand-metal complexes as model systems were demonstrated by full chemical characterization of fac-[Re(I)(CO)(3)(N,S,N(Py)-3)](+) (4) and comparative high-performance liquid chromatography (HPLC) analysis between 4 and [(99m)Tc(I)(CO)(3)(N,S,N(Py)-3)](+) (4a). The α-MSH analogue bearing the N-S-N(Py) chelate on a modified cysteine residue (6) was generated and complexed with [M(I)(CO)(3)](+) to confirm the chelation strategy's utility when applied in a peptide-based targeting agent. Characterization of the Re(I)(CO)(3)-6 peptide conjugate (7) confirmed the efficient incorporation of the metal center, and the (99m)Tc(I)(CO)(3)-6 analogue (7a) was explored as a potential single photon emission computed tomography (SPECT) compound for imaging the melanocortin 1 receptor (MC1R) in melanoma. Peptide 7a showed excellent radiolabeling yields and in vitro stability during amino acid challenge and serum stability assays. In vitro B16F10 melanoma cell uptake of 7a reached a modest value of 2.3 ± 0.08% of applied activity at 2 h at 37 °C, while this uptake was significantly reduced by coincubation with a nonlabeled α-MSH analogue, NAPamide (3.2 μM) (P < 0.05). In vivo SPECT/X-ray computed tomography (SPECT/CT) imaging and biodistribution of 7a were evaluated in a B16F10 melanoma xenografted mouse model. SPECT/CT imaging clearly visualized the tumor at 1 h post injection (p.i.) with high tumor-to-background contrast. Blocking studies with coinjected NAPamide (10 mg per kg of mouse body weight) confirmed the in vivo specificity of 7a for MC1R-positive tumors. Biodistribution results with 7a yielded a moderate tumor uptake of 1.20 ± 0.09 percentage of the injected radioactive dose per gram of tissue (% ID/g) at 1 h p.i. Relatively high uptake of 7a was also seen in the kidneys and liver at 1 h p.i. (6.55 ± 0.36% ID/g and 4.44 ± 0.17% ID/g, respectively), although reduced kidney uptake was seen at 4 h p.i. (3.20 ± 0.48% ID/g). These results demonstrate the utility of the novel [M(I)(CO)(3)](+) chelation strategy when applied in a targeting peptide.
Collapse
Affiliation(s)
- Han Jiang
- Department of Nuclear Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Center of Excellence in Medical Molecular Imaging of Zhejiang State, Hangzhou, 310009, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Morais M, Raposinho PD, Oliveira MC, Pantoja-Uceda D, Jiménez MA, Santos I, Correia JDG. NMR Structural Analysis of MC1R-Targeted Rhenium(I) Metallopeptides and Biological Evaluation of 99mTc(I) Congeners. Organometallics 2012. [DOI: 10.1021/om300502n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maurício Morais
- Unidade de Ciências Quı́micas
e Radiofarmacêuticas, ITN, Instituto Superior
Técnico, Universidade Técnica de Lisboa, Estrada Nacional 10, 2686-953, Sacavém, Portugal
| | - Paula D. Raposinho
- Unidade de Ciências Quı́micas
e Radiofarmacêuticas, ITN, Instituto Superior
Técnico, Universidade Técnica de Lisboa, Estrada Nacional 10, 2686-953, Sacavém, Portugal
| | - Maria Cristina Oliveira
- Unidade de Ciências Quı́micas
e Radiofarmacêuticas, ITN, Instituto Superior
Técnico, Universidade Técnica de Lisboa, Estrada Nacional 10, 2686-953, Sacavém, Portugal
| | - David Pantoja-Uceda
- Instituto de Quı́mica Fı́sica Rocasolano, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 119, 28006 Madrid, Spain
| | - Maria Angeles Jiménez
- Instituto de Quı́mica Fı́sica Rocasolano, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 119, 28006 Madrid, Spain
| | - Isabel Santos
- Unidade de Ciências Quı́micas
e Radiofarmacêuticas, ITN, Instituto Superior
Técnico, Universidade Técnica de Lisboa, Estrada Nacional 10, 2686-953, Sacavém, Portugal
| | - João D. G. Correia
- Unidade de Ciências Quı́micas
e Radiofarmacêuticas, ITN, Instituto Superior
Técnico, Universidade Técnica de Lisboa, Estrada Nacional 10, 2686-953, Sacavém, Portugal
| |
Collapse
|
17
|
Morais GR, Paulo A, Santos I. Organometallic Complexes for SPECT Imaging and/or Radionuclide Therapy. Organometallics 2012. [DOI: 10.1021/om300501d] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Goreti Ribeiro Morais
- Unidade de Ciências
Quı́micas e Radiofarmacêuticas, Instituto
Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Estrada Nacional
10, 2686-953, Sacavém, Portugal
| | - António Paulo
- Unidade de Ciências
Quı́micas e Radiofarmacêuticas, Instituto
Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Estrada Nacional
10, 2686-953, Sacavém, Portugal
| | - Isabel Santos
- Unidade de Ciências
Quı́micas e Radiofarmacêuticas, Instituto
Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Estrada Nacional
10, 2686-953, Sacavém, Portugal
| |
Collapse
|