1
|
Thoden JB, Benin BM, Priebe A, Shin WS, Muthyala R, Sham YY, Holden HM. Characterization of a novel inhibitor for the New Delhi metallo-β-lactamase-4: Implications for drug design and combating bacterial drug resistance. J Biol Chem 2023; 299:105135. [PMID: 37549809 PMCID: PMC10514461 DOI: 10.1016/j.jbc.2023.105135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023] Open
Abstract
The bacterial metallo-β-lactamases (MBLs) catalyze the inactivation of β-lactam antibiotics. Identifying novel pharmacophores remains crucial for the clinical development of additional MBL inhibitors. Previously, 1-hydroxypyridine-2(1H)-thione-6-carboxylic acid, hereafter referred to as 1,2-HPT-6-COOH, was reported as a low cytotoxic nanomolar β-lactamase inhibitor of Verona-integron-encoded metallo-β-lactamase 2, capable of rescuing β-lactam antibiotic activity. In this study, we explore its exact mechanism of inhibition and the extent of its activity through structural characterization of its binding to New Delhi metallo-β-lactamase 4 (NDM-4) and its inhibitory activity against both NDM-1 and NDM-4. Of all the structure-validated MBL inhibitors available, 1,2-HPT-6-COOH is the first discovered compound capable of forming an octahedral coordination sphere with Zn2 of the binuclear metal center. This unexpected mechanism of action provides important insight for the further optimization of 1,2-HPT-6-COOH and the identification of additional pharmacophores for MBL inhibition.
Collapse
Affiliation(s)
- James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Bogdan M Benin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Adam Priebe
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Woo Shik Shin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Ramaiah Muthyala
- Department of Experimental & Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yuk Yin Sham
- Department of Experimental & Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA; Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, Minnesota, USA.
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
2
|
van den Boom AJ, Zuilhof H. Sulfur-Phenolate Exchange as a Mild, Fast, and High-Yielding Method toward the Synthesis of Sulfonamides. Org Lett 2023; 25:788-793. [PMID: 36720015 PMCID: PMC9926510 DOI: 10.1021/acs.orglett.2c04292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Indexed: 02/02/2023]
Abstract
Sulfonamides have many important biological applications, yet their synthesis often involves long reaction times under dry and non-ambient conditions. Here we report the synthesis of a large range of sulfonamides at room temperature using 4-nitrophenyl benzylsulfonate as a starting material. Sulfonamides were prepared from a wide range of aliphatic, linear, and cyclic amines, anilines, and N-methylanilines. The yields and reaction times observed here were comparable to or better than those reported previously, establishing sulfur-phenolate exchange as a viable alternative.
Collapse
Affiliation(s)
- Alyssa
F. J. van den Boom
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- School
of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
3
|
Bugaenko DI, Tikhanova OA, Karchava AV. Synthesis of Quinoline-2-thiones by Selective Deoxygenative C -H/C -S Functionalization of Quinoline N-Oxides with Thiourea. J Org Chem 2023; 88:1018-1023. [PMID: 36594585 DOI: 10.1021/acs.joc.2c02433] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Quinoline-2-thiones valuable for synthetic and medicinal chemistry applications were obtained with excellent regioselectivity employing a deoxygenative C-H functionalization of readily available quinoline-N-oxides with thiourea upon activation with triflic anhydride. Unlike the current methods, this approach provides general access to diverse quinoline-2-thiones functionalized with groups of different electronic natures. Experimental simplicity and good to high yields are advantages of this protocol. Given the high reactivity of quinoline-2-thiones, this method provides an entry point for the synthesis of diverse organosulfur quinoline scaffolds.
Collapse
Affiliation(s)
- Dmitry I Bugaenko
- Department of Chemistry, Moscow State University, Moscow 119991, Russia
| | - Olga A Tikhanova
- Department of Chemistry, Moscow State University, Moscow 119991, Russia
| | | |
Collapse
|
4
|
Arshad JZ, Hanif M. Hydroxypyrone derivatives in drug discovery: from chelation therapy to rational design of metalloenzyme inhibitors. RSC Med Chem 2022; 13:1127-1149. [PMID: 36325396 PMCID: PMC9579940 DOI: 10.1039/d2md00175f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/28/2022] [Indexed: 07/31/2023] Open
Abstract
The versatile structural motif of hydroxypyrone is found in natural products and can be easily converted into hydroxypyridone and hydroxythiopyridone analogues. The favourable toxicity profile and ease of functionalization to access a vast library of compounds make them an ideal structural scaffold for drug design and discovery. This versatile scaffold possesses excellent metal chelating properties that can be exploited for chelation therapy in clinics. Deferiprone [1,2-dimethyl-3-hydroxy-4(1H)-one] was the first orally active chelator to treat iron overload in thalassemia major. Metal complexes of hydroxy-(thio)pyr(id)ones have been investigated as magnetic resonance imaging contrast agents, and anticancer and antidiabetic agents. In recent years, this compound class has demonstrated potential in discovering and developing metalloenzyme inhibitors. This review article summarizes recent literature on hydroxy-(thio)pyr(id)ones as inhibitors for metalloenzymes such as histone deacetylases, tyrosinase and metallo-β-lactamase. Different approaches to the design of hydroxy-(thio)pyr(id)ones and their biological properties against selected metalloenzymes are discussed.
Collapse
Affiliation(s)
- Jahan Zaib Arshad
- Department of Chemistry, Government College Women University Sialkot Sialkot Pakistan
| | - Muhammad Hanif
- School of Chemical Sciences, University of Auckland Private Bag 92019 Auckland 1142 New Zealand (+64) 9 373 7599 ext. 87422
- MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| |
Collapse
|
5
|
Que L. Alison Butler: papers in celebration of her 2018 ACS Alfred Bader Award in Bioorganic or Bioinorganic Chemistry. J Biol Inorg Chem 2021; 26:375-377. [PMID: 30288609 DOI: 10.1007/s00775-018-1618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lawrence Que
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN, 55455-0431, USA.
| |
Collapse
|
6
|
Adamek RN, Suire CN, Stokes RW, Brizuela MK, Cohen SM, Leissring MA. Hydroxypyridinethione Inhibitors of Human Insulin-Degrading Enzyme. ChemMedChem 2021; 16:1775-1787. [PMID: 33686743 DOI: 10.1002/cmdc.202100111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/28/2021] [Indexed: 01/29/2023]
Abstract
Insulin-degrading enzyme (IDE) is a human mononuclear Zn2+ -dependent metalloenzyme that is widely regarded as the primary peptidase responsible for insulin degradation. Despite its name, IDE is also critically involved in the hydrolysis of several other disparate peptide hormones, including glucagon, amylin, and the amyloid β-protein. As such, the study of IDE inhibition is highly relevant to deciphering the role of IDE in conditions such as type-2 diabetes mellitus and Alzheimer disease. There have been few reported IDE inhibitors, and of these, inhibitors that directly target the active-site Zn2+ ion have yet to be fully explored. In an effort to discover new, zinc-targeting inhibitors of IDE, a library of ∼350 metal-binding pharmacophores was screened against IDE, resulting in the identification of 1-hydroxypyridine-2-thione (1,2-HOPTO) as an effective Zn2+ -binding scaffold. Screening a focused library of HOPTO compounds identified 3-sulfonamide derivatives of 1,2-HOPTO as inhibitors of IDE (Ki values of ∼50 μM). Further structure-activity relationship studies yielded several thiophene-sulfonamide HOPTO derivatives with good, broad-spectrum activity against IDE that have the potential to be useful pharmacological tools for future studies of IDE.
Collapse
Affiliation(s)
- Rebecca N Adamek
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Caitlin N Suire
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Ryjul W Stokes
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Monica K Brizuela
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Malcolm A Leissring
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
7
|
Non-hydroxamate inhibitors of 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR): A critical review and future perspective. Eur J Med Chem 2020; 213:113055. [PMID: 33303239 DOI: 10.1016/j.ejmech.2020.113055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/22/2022]
Abstract
1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) catalyzes the second step of the non-mevalonate (or MEP) pathway that functions in several organisms and plants for the synthesis of isoprenoids. DXR is essential for the survival of multiple pathogenic bacteria/parasites, including those that cause tuberculosis and malaria in humans. DXR function is inhibited by fosmidomycin (1), a natural product, which forms a chelate with the active site divalent metal (Mg2+/Mn2+) through its hydroxamate metal-binding group (MBG). Most of the potent DXR inhibitors are structurally similar to 1 and retain hydroxamate despite the unfavourable pharmacokinetic and toxicity profile of the latter. We provide our perspective on the lack of non-hydroxamate DXR inhibitors. We also highlight the fundamental flaws in the design of MBG in these molecules, primarily responsible for their failure to inhibit DXR. We also suggest that for designing next-generation non-hydroxamate DXR inhibitors, approaches followed for other metalloenzymes targets may be exploited.
Collapse
|
8
|
Nawrot D, Suchánková E, Janďourek O, Konečná K, Bárta P, Doležal M, Zitko J. N-pyridinylbenzamides: an isosteric approach towards new antimycobacterial compounds. Chem Biol Drug Des 2020; 97:686-700. [PMID: 33068457 DOI: 10.1111/cbdd.13804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/02/2020] [Accepted: 10/11/2020] [Indexed: 11/27/2022]
Abstract
A series of N-pyridinylbenzamides was designed and prepared to investigate the influence of isosterism and positional isomerism on antimycobacterial activity. Comparison to previously published isosteric N-pyrazinylbenzamides was made as an attempt to draw structure-activity relationships in such type of compounds. In total, we prepared 44 different compounds, out of which fourteen had minimum inhibitory concentration (MIC) values against Mycobacterium tuberculosis H37Ra below 31.25 µg/ml, most promising being N-(5-chloropyridin-2-yl)-3-(trifluoromethyl)benzamide (23) and N-(6-chloropyridin-2-yl)-3-(trifluoromethyl)benzamide (24) with MIC = 7.81 µg/ml (26 µm). Five compounds showed broad-spectrum antimycobacterial activity against M. tuberculosis H37Ra, M. smegmatis and M. aurum. N-(pyridin-2-yl)benzamides were generally more active than N-(pyridin-3-yl)benzamides, indicating that N-1 in the parental structure of N-pyrazinylbenzamides might be more important for antimycobacterial activity than N-4. Marginal antibacterial and antifungal activity was observed for title compounds. The hepatotoxicity of title compounds was assessed in vitro on hepatocellular carcinoma cell line HepG2, and they may be considered non-toxic (22 compounds with IC50 over 200 µm).
Collapse
Affiliation(s)
- Daria Nawrot
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Eliška Suchánková
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Ondřej Janďourek
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Klára Konečná
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Pavel Bárta
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Martin Doležal
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Jan Zitko
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
9
|
Adamek RN, Ludford P, Duggan SM, Tor Y, Cohen SM. Identification of Adenosine Deaminase Inhibitors by Metal-binding Pharmacophore Screening. ChemMedChem 2020; 15:2151-2156. [PMID: 32729197 DOI: 10.1002/cmdc.202000271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/25/2020] [Indexed: 12/20/2022]
Abstract
Adenosine deaminase (ADA) is a human mononuclear Zn2+ metalloenzyme that converts adenosine to inosine. ADA is a validated drug target for cancer, but there has been little recent work on the development of new therapeutics against this enzyme. The lack of new advancements can be partially attributed to an absence of suitable assays for high-throughput screening (HTS) against ADA. To facilitate more rapid drug discovery efforts for this target, an in vitro assay was developed that utilizes the enzymatic conversion of a visibly emitting adenosine analogue to the corresponding fluorescent inosine analogue by ADA, which can be monitored via fluorescence intensity changes. Utilizing this assay, a library of ∼350 small molecules containing metal-binding pharmacophores (MBPs) was screened in an HTS format to identify new inhibitor scaffolds against ADA. This approach yielded a new metal-binding scaffold with a Ki value of 26±1 μM.
Collapse
Affiliation(s)
- Rebecca N Adamek
- Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, CA 92093, USA
| | - Paul Ludford
- Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, CA 92093, USA
| | - Stephanie M Duggan
- Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, CA 92093, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, CA 92093, USA
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, CA 92093, USA
| |
Collapse
|
10
|
Structural Isomerism and Enhanced Lipophilicity of Pyrithione Ligands of Organoruthenium(II) Complexes Increase Inhibition on AChE and BuChE. Int J Mol Sci 2020; 21:ijms21165628. [PMID: 32781544 PMCID: PMC7460603 DOI: 10.3390/ijms21165628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/25/2020] [Accepted: 08/01/2020] [Indexed: 01/13/2023] Open
Abstract
The increasing number of Alzheimer’s disease (AD) cases requires the development of new improved drug candidates, possessing the ability of more efficient treatment as well as less unwanted side effects. Cholinesterase enzymes are highly associated with the development of AD and thus represent important druggable targets. Therefore, we have synthesized eight organoruthenium(II) chlorido complexes 1a–h with pyrithione-type ligands (pyrithione = 1-hydroxypyridine-2(1H)-thione, a), bearing either pyrithione a, its methyl (b-e) or bicyclic aromatic analogues (f–h) and tested them for their inhibition towards electric eel acetylcholinesterase (eeAChE) and horse serum butyrylcholinesterase (hsBuChE). The experimental results have shown that the novel complex 1g with the ligand 1-hydroxyquinoline-2-(1H)-thione (g) improves the inhibition towards eeAChE (IC50 = 4.9 μM) and even more potently towards hsBuChE (IC50 = 0.2 μM) in comparison with the referenced 1a. Moreover, computational studies on Torpedo californica AChE have supported the experimental outcomes for 1g, possessing the lowest energy value among all tested complexes and have also predicted several interactions of 1g with the target protein. Consequently, we have shown that the aromatic ring extension of the ligand a, though only at the appropriate position, is a viable strategy to enhance the activity against cholinesterases.
Collapse
|
11
|
Jackson AC, Zaengle-Barone JM, Puccio EA, Franz KJ. A Cephalosporin Prochelator Inhibits New Delhi Metallo-β-lactamase 1 without Removing Zinc. ACS Infect Dis 2020; 6:1264-1272. [PMID: 32298084 DOI: 10.1021/acsinfecdis.0c00083] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antibacterial drug resistance is a rapidly growing clinical threat, partially due to expression of β-lactamase enzymes, which confer resistance to bacteria by hydrolyzing and inactivating β-lactam antibiotics. The increasing prevalence of metallo-β-lactamases poses a unique challenge, as currently available β-lactamase inhibitors target the active site of serine β-lactamases but are ineffective against the zinc-containing active sites of metallo-β-lactamases. There is an urgent need for metallo-β-lactamase inhibitors and antibiotics that circumvent resistance mediated by metallo-β-lactamases in order to extend the utility of existing β-lactam antibiotics for treating infection. Here we investigated the antibacterial chelator-releasing prodrug PcephPT (2-((((6R,7R)-2-carboxy-8-oxo-7-(2-phenylacetamido)-5-thia-1-azabicyclo[4.2.0]oct-2-en-3-yl)methyl)thio) pyridine 1-oxide) as an inhibitor of New Delhi metallo-β-lactamase 1 (NDM-1). PcephPT is an experimental compound that we have previously shown inhibits growth of β-lactamase-expressing E. coli using a mechanism that is dependent on both copper availability and β-lactamase expression. Here, we found that PcephPT, in addition to being a copper-dependent antibacterial compound, inhibits hydrolysis activity of purified NDM-1with an IC50 of 7.6 μM without removing zinc from the active site and restores activity of the carbapenem antibiotic meropenem against NDM-1-producing E. coli. This work demonstrates that targeting a metal-binding pharmacophore to β-lactamase-producing bacteria is a promising strategy for inhibition of both bacterial growth and metallo-β-lactamases.
Collapse
Affiliation(s)
- Abigail C. Jackson
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
| | | | - Elena A. Puccio
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
| | - Katherine J. Franz
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
| |
Collapse
|
12
|
Kladnik J, Kljun J, Burmeister H, Ott I, Romero-Canelón I, Turel I. Towards Identification of Essential Structural Elements of Organoruthenium(II)-Pyrithionato Complexes for Anticancer Activity. Chemistry 2019; 25:14169-14182. [PMID: 31461189 DOI: 10.1002/chem.201903109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/14/2019] [Indexed: 12/25/2022]
Abstract
An organoruthenium(II) complex with pyrithione (2-mercaptopyridine N-oxide) 1 a has previously been identified by our group as a compound with promising anticancer potential without cytotoxicity towards non-cancerous cells. To expand the rather limited research on compounds of this type, an array of novel chlorido and 1,3,5-triaza-7-phosphaadamantane (pta) organoruthenium(II) complexes with methyl-substituted pyrithiones has been prepared. After thorough investigation of the aqueous stability of these complexes, their modes of action have been elucidated at the cellular level. Minor structural alterations in the ruthenium-pyrithionato compounds resulted in fine-tuning of their cytotoxicities. The best performing compounds, 1 b and 2 b, with a chlorido or pta ligand bound to ruthenium, respectively, and a methyl group at the 3-position of the pyrithione scaffold, have been further investigated. Both compounds trigger early apoptosis, induce the generation of reactive oxygen species and G1 arrest in A549 cancer cells, and show no strong interaction with DNA. However, only 1 b also inhibits thioredoxin reductase. Wound healing assays and mitochondrial function evaluation have revealed differences between these two compounds at the cellular level.
Collapse
Affiliation(s)
- Jerneja Kladnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Hilke Burmeister
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Isolda Romero-Canelón
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| |
Collapse
|
13
|
Lopez Quezada L, Li K, McDonald SL, Nguyen Q, Perkowski AJ, Pharr CW, Gold B, Roberts J, McAulay K, Saito K, Somersan Karakaya S, Javidnia PE, Porras de Francisco E, Amieva MM, Dı́az SP, Mendoza Losana A, Zimmerman M, Liang HPH, Zhang J, Dartois V, Sans S, Lagrange S, Goullieux L, Roubert C, Nathan C, Aubé J. Dual-Pharmacophore Pyrithione-Containing Cephalosporins Kill Both Replicating and Nonreplicating Mycobacterium tuberculosis. ACS Infect Dis 2019; 5:1433-1445. [PMID: 31184461 DOI: 10.1021/acsinfecdis.9b00112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The historical view of β-lactams as ineffective antimycobacterials has given way to growing interest in the activity of this class against Mycobacterium tuberculosis (Mtb) in the presence of a β-lactamase inhibitor. However, most antimycobacterial β-lactams kill Mtb only or best when the bacilli are replicating. Here, a screen of 1904 β-lactams led to the identification of cephalosporins substituted with a pyrithione moiety at C3' that are active against Mtb under both replicating and nonreplicating conditions, neither activity requiring a β-lactamase inhibitor. Studies showed that activity against nonreplicating Mtb required the in situ release of the pyrithione, independent of the known class A β-lactamase, BlaC. In contrast, replicating Mtb could be killed both by released pyrithione and by the parent β-lactam. Thus, the antimycobacterial activity of pyrithione-containing cephalosporins arises from two mechanisms that kill mycobacteria in different metabolic states.
Collapse
Affiliation(s)
- Landys Lopez Quezada
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Stacey L. McDonald
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Quyen Nguyen
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Andrew J. Perkowski
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Cameron W. Pharr
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Julia Roberts
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Kathrine McAulay
- Center for Global Health, Weill Cornell Medicine, 402 East 67th Street, New York, New York 10065, United States
- Les Centres GHESKIO, 33, Boulevard Harry Truman, Port-au-Prince, Haiti
| | - Kohta Saito
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Selin Somersan Karakaya
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Prisca Elis Javidnia
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Esther Porras de Francisco
- Diseases of the Developing World (DDW), Tres Cantos Medicine Development Campus, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Manuel Marin Amieva
- Diseases of the Developing World (DDW), Tres Cantos Medicine Development Campus, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Sara Palomo Dı́az
- Diseases of the Developing World (DDW), Tres Cantos Medicine Development Campus, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Alfonso Mendoza Losana
- Diseases of the Developing World (DDW), Tres Cantos Medicine Development Campus, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Matthew Zimmerman
- Public Health Research Institute, New Jersey Medical School, Rutgers, the State University of New Jersey, 225 Warren Street, Newark, New Jersey 07013, United States
| | - Hsin-Pin Ho Liang
- Public Health Research Institute, New Jersey Medical School, Rutgers, the State University of New Jersey, 225 Warren Street, Newark, New Jersey 07013, United States
| | - Jun Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Veronique Dartois
- Public Health Research Institute, New Jersey Medical School, Rutgers, the State University of New Jersey, 225 Warren Street, Newark, New Jersey 07013, United States
| | - Stéphanie Sans
- Evotec ID (Lyon), SAS, 1541, Avenue Marcel Merieux, Marcy l’Etoile 69280, France
| | - Sophie Lagrange
- Evotec ID (Lyon), SAS, 1541, Avenue Marcel Merieux, Marcy l’Etoile 69280, France
| | - Laurent Goullieux
- Evotec ID (Lyon), SAS, 1541, Avenue Marcel Merieux, Marcy l’Etoile 69280, France
| | - Christine Roubert
- Evotec ID (Lyon), SAS, 1541, Avenue Marcel Merieux, Marcy l’Etoile 69280, France
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
14
|
5,5′-Thiobis(3-methoxy-4H-1,2,6-thiadiazin-4-one). MOLBANK 2019. [DOI: 10.3390/m1064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The reaction of 3-chloro-5-methoxy-4H-1,2,6-thiadiazin-4-one (9) with Na2S·9H2O (0.5 equiv) in tetrahydrofuran (THF) at ca. 20 °C for 20 h gives 5,5′-thiobis(3-methoxy-4H-1,2,6-thiadiazin-4-one) (10) in a 44% yield as yellow needles. The compound was fully characterized.
Collapse
|
15
|
Chen AY, Thomas PW, Cheng Z, Xu NY, Tierney DL, Crowder MW, Fast W, Cohen SM. Investigation of Dipicolinic Acid Isosteres for the Inhibition of Metallo-β-Lactamases. ChemMedChem 2019; 14:1271-1282. [PMID: 31124602 DOI: 10.1002/cmdc.201900172] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/24/2019] [Indexed: 12/31/2022]
Abstract
New Delhi metallo-β-lactamase-1 (NDM-1) poses an immediate threat to our most effective and widely prescribed drugs, the β-lactam-containing class of antibiotics. There are no clinically relevant inhibitors to combat NDM-1, despite significant efforts toward their development. Inhibitors that use a carboxylic acid motif for binding the ZnII ions in the active site of NDM-1 make up a large portion of the >500 inhibitors reported to date. New and structurally diverse scaffolds for inhibitor development are needed urgently. Herein we report the isosteric replacement of one carboxylate group of dipicolinic acid (DPA) to obtain DPA isosteres with good inhibitory activity against NDM-1 (and related metallo-β-lactamases, IMP-1 and VIM-2). It was determined that the choice of carboxylate isostere influences both the potency of NDM-1 inhibition and the mechanism of action. Additionally, we show that an isostere with a metal-stripping mechanism can be re-engineered into an inhibitor that favors ternary complex formation. This work provides a roadmap for future isosteric replacement of routinely used metal binding motifs (i.e., carboxylic acids) for the generation of new entities in NDM-1 inhibitor design and development.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Pei W Thomas
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas Austin, Austin, TX, 78712, USA
| | - Zishuo Cheng
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Nasa Y Xu
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas Austin, Austin, TX, 78712, USA
| | - David L Tierney
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Michael W Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Walter Fast
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas Austin, Austin, TX, 78712, USA
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|