1
|
Subcutaneous Regeneration of Engineered Cartilage: A Comparison of Cell Sheets and Chondrocyte-Scaffold Constructs in a Porcine Model. Plast Reconstr Surg 2021; 148:669e-670e. [PMID: 34468405 DOI: 10.1097/prs.0000000000008349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
A tri-component knee plug for the 3rd generation of autologous chondrocyte implantation. Sci Rep 2020; 10:17048. [PMID: 33046760 PMCID: PMC7550599 DOI: 10.1038/s41598-020-73863-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 09/10/2020] [Indexed: 02/01/2023] Open
Abstract
Here, we report a newly designed knee plug to be used in the 3rd generation of Autologous Chondrocyte Implantation (ACI) in order to heal the damaged knee cartilage. It is composed of three components: The first component (Bone Portion) is a 3D printed hard scaffold with large pores (~ 850 µm), made by hydroxyapatite and β-tricalcium phosphate to accommodate the bony parts underneath the knee cartilage. It is a cylinder with a diameter of 20 mm and height of 7.5 mm, with a slight dome shape on top. The plug also comprises a Cartilage Portion (component 2) which is a 3D printed gelatin/elastin/sodium-hyaluronate soft thick porous membrane with large pores to accommodate chondrocytes. Cartilage Portion is secured on top of the Bone Portion using mechanical interlocking by designing specific knobs in the 3D printed construct of the Cartilage Portion. The third component of the plug (Film) is a stitchable permeable membrane consisting of polycaprolactone (PCL) on top of the Cartilage Portion to facilitate sliding of the knee joint and to hold the entire plug in place while allowing nutrients delivery to the Cartilage Portion. The PCL Film is prepared using a combination of film casting and sacrificial material leaching with a pore size of 10 µm. It is surface modified to have specific affinity with the Cartilage Portion. The detailed design criteria and production process of this plug is presented in this report. Full in vitro analyses have been performed, which indicate the compatibility of the different components of the plug relative to their expected functions.
Collapse
|
3
|
Haraguchi Y, Kagawa Y, Kubo H, Shimizu T. Analysis of force vector field during centrifugation for optimizing cell sheet adhesion. Biotechnol Prog 2019; 35:e2857. [PMID: 31148395 DOI: 10.1002/btpr.2857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/16/2019] [Accepted: 05/24/2019] [Indexed: 11/08/2022]
Abstract
A three-dimensional tissue was fabricated by layering cell sheets with centrifugation. In this system, an optimal centrifugal force promoted the adhesion between (a) a cell sheet and a culture dish, and (b) layered cell sheets, resulting in a significant decrease in the fabrication time of the tissue. However, negative effects like sliding/significant deformation of cell sheets were observed upon high rotational speed use. These negative effects inhibit the further shortening of the fabrication time. The sliding/deformation suggests that the centrifugal forces were applied on the cell sheets in unwanted directions. Studies on the force vector field applied to the object placed on the plate during centrifugation are not available, and thus, the reason for the occurrence of such negative effects is unclear. Here, we theoretically derived the spatial distribution of acceleration applied on a plate during centrifugation. Using this theory, we found that the negative effects were triggered by the centrifugal force in the direction parallel to the plate surface, which appeared due to an inclination of the plate surface against a horizontal plane. Therefore, by adding weights on the plate edge to maintain the plate surface in a horizontal position, we succeeded in eliminating the negative effects and in increasing the rotational speed, with the minimum risk of sliding/deformation of cell sheets. We succeeded in reducing the time to establish tight adhesion between a mouse myoblast sheet and a culture dish, and layered cell sheets by increasing the centrifugal force from 5 min to 1 min without significant cytotoxicity.
Collapse
Affiliation(s)
- Yuji Haraguchi
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Yuki Kagawa
- Ogino Memorial Laboratory, Nihon Kohden Corporation, TWIns, Shinjuku-ku, Tokyo, Japan
| | - Hirotsugu Kubo
- Ogino Memorial Laboratory, Nihon Kohden Corporation, TWIns, Shinjuku-ku, Tokyo, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
4
|
Haraguchi Y, Matsuura K, Kagawa Y, Hasegawa A, Kubo H, Shimizu T. Rapid creation system of morphologically and functionally communicative three-dimensional cell-dense tissue by centrifugation. Biotechnol Prog 2018; 34:1447-1453. [PMID: 30009512 DOI: 10.1002/btpr.2691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/28/2018] [Accepted: 06/26/2018] [Indexed: 12/22/2022]
Abstract
This study reports a rapid fabrication system of a morphologically and functionally communicative three-dimensional (3D) cell-dense tissue without scaffolds by centrifugation. The tight adhesion between C2C12 myoblasts and culture surface was accelerated without significant cell damage by centrifugation (80 x g, 37 °C, 30 min). A thicker tissue created on a temperature-responsive culture surface was harvested by decreasing temperature. The 3D myoblast tissues having approximately 200 μm-thickness were created at 1.5 h [centrifugation (80 x g, 37 °C) for 30 min and tissue harvest for 1 h]. However, in the case of without centrifugation, the myoblast tissues had fragile parts even at 7.5 h after the incubation. Additionally, electrically/functionally communicative and thicker human induced pluripotent stem (iPS) cell-derived cardiac tissues were created rapidly by the centrifugation and cultivation at 37 °C. We report a centrifugation system that significantly shortens the creation time of 3D tissues. We envision that this procedure will contribute to the field of tissue engineering and regenerative medicine. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1447-1453, 2018.
Collapse
Affiliation(s)
- Yuji Haraguchi
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Katsuhisa Matsuura
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Yuki Kagawa
- Ogino Memorial Laboratory, Nihon Kohden Corporation, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Akiyuki Hasegawa
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Hirotsugu Kubo
- Ogino Memorial Laboratory, Nihon Kohden Corporation, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
5
|
Naghizadeh F, Solouk A, Khoulenjani SB. Osteochondral scaffolds based on electrospinning method: General review on new and emerging approaches. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1393682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Farnaz Naghizadeh
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Atefeh Solouk
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Shadab Bagheri Khoulenjani
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
6
|
Osteochondral Tissue Engineering and Regenerative Strategies. REGENERATIVE STRATEGIES FOR THE TREATMENT OF KNEE JOINT DISABILITIES 2017. [DOI: 10.1007/978-3-319-44785-8_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Hasegawa A, Haraguchi Y, Shimizu T, Okano T. Rapid fabrication system for three-dimensional tissues using cell sheet engineering and centrifugation. J Biomed Mater Res A 2015; 103:3825-33. [DOI: 10.1002/jbm.a.35526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/04/2015] [Accepted: 06/16/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Akiyuki Hasegawa
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University; Tokyo Japan
| | - Yuji Haraguchi
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University; Tokyo Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University; Tokyo Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University; Tokyo Japan
| |
Collapse
|
8
|
Yousefi AM, Hoque ME, Prasad RGSV, Uth N. Current strategies in multiphasic scaffold design for osteochondral tissue engineering: A review. J Biomed Mater Res A 2014; 103:2460-81. [PMID: 25345589 DOI: 10.1002/jbm.a.35356] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/04/2014] [Accepted: 10/12/2014] [Indexed: 12/23/2022]
Abstract
The repair of osteochondral defects requires a tissue engineering approach that aims at mimicking the physiological properties and structure of two different tissues (cartilage and bone) using specifically designed scaffold-cell constructs. Biphasic and triphasic approaches utilize two or three different architectures, materials, or composites to produce a multilayered construct. This article gives an overview of some of the current strategies in multiphasic/gradient-based scaffold architectures and compositions for tissue engineering of osteochondral defects. In addition, the application of finite element analysis (FEA) in scaffold design and simulation of in vitro and in vivo cell growth outcomes has been briefly covered. FEA-based approaches can potentially be coupled with computer-assisted fabrication systems for controlled deposition and additive manufacturing of the simulated patterns. Finally, a summary of the existing challenges associated with the repair of osteochondral defects as well as some recommendations for future directions have been brought up in the concluding section of this article.
Collapse
Affiliation(s)
- Azizeh-Mitra Yousefi
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, Ohio, 45056
| | - Md Enamul Hoque
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Malaysia Campus, Malaysia
| | - Rangabhatala G S V Prasad
- Biomedical and Pharmaceutical Technology Research Group, Nano Research for Advanced Materials, Bangalore, Karnataka, India
| | - Nicholas Uth
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, Ohio, 45056
| |
Collapse
|
9
|
Miyagi S, Tensho K, Wakitani S, Takagi M. Construction of an osteochondral-like tissue graft combining β-tricalcium phosphate block and scaffold-free mesenchymal stem cell sheet. J Orthop Sci 2013; 18:471-7. [PMID: 23471715 DOI: 10.1007/s00776-013-0368-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 02/12/2013] [Indexed: 02/09/2023]
Abstract
BACKGROUND Aiming to construct an osteochondral-like structure, the combination of a β-tricalcium phosphate (βTCP) block with a scaffold-free sheet formed using mesenchymal stem cells (MSCs) was investigated. METHODS Human bone marrow MSCs in a cell culture insert that was set in a 24-well plate were cultivated using a chondrogenic medium containing dexamethasone, IGF-1, and TGFβ3 for 3 weeks during which a cylindrical βTCP block was put on the sheet at day 1, and the cell sheet construct was harvested. In other experiments, at day 14, the construct was put on a cell sheet that was prepared the day before and cultivated for 3 weeks. RESULTS The addition of a βTCP block resulted in a combined osteochondral-like construct and comparable staining intensity by Alcian blue, while the expression levels of the aggrecan and type II collagen genes decreased a little. During the culture with the βTCP block, the expression levels of the aggrecan gene increased monotonically. The increase in the inoculum cell number from 1.86 to 3.72 × 10(6) cells resulted in marked increases in the thickness of cell sheet parts in the βTCP block and expression levels of the aggrecan and type II collagen genes, while the thickness of cell sheet parts on the βTCP block scarcely changed. On the other hand, the addition of a cell sheet that was prepared a day before to the construct at day 14 resulted in the marked increase in thickness of the cell sheet part on the βTCP block, while the thickness of that in the βTCP block did not increase. CONCLUSION A combined osteochondral-like structure was produced by putting a βTCP block on the sheet of MSC. The thickness of the cell sheet parts in and on the βTCP block could be increased by the increase in inoculum cell number and by providing an additional cell sheet, respectively.
Collapse
Affiliation(s)
- Shigeharu Miyagi
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, N13W8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | | | | | | |
Collapse
|
10
|
Renth AN, Detamore MS. Leveraging "raw materials" as building blocks and bioactive signals in regenerative medicine. TISSUE ENGINEERING. PART B, REVIEWS 2012; 18:341-62. [PMID: 22462759 PMCID: PMC3458620 DOI: 10.1089/ten.teb.2012.0080] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/28/2012] [Indexed: 01/15/2023]
Abstract
Components found within the extracellular matrix (ECM) have emerged as an essential subset of biomaterials for tissue engineering scaffolds. Collagen, glycosaminoglycans, bioceramics, and ECM-based matrices are the main categories of "raw materials" used in a wide variety of tissue engineering strategies. The advantages of raw materials include their inherent ability to create a microenvironment that contains physical, chemical, and mechanical cues similar to native tissue, which prove unmatched by synthetic biomaterials alone. Moreover, these raw materials provide a head start in the regeneration of tissues by providing building blocks to be bioresorbed and incorporated into the tissue as opposed to being biodegraded into waste products and removed. This article reviews the strategies and applications of employing raw materials as components of tissue engineering constructs. Utilizing raw materials holds the potential to provide both a scaffold and a signal, perhaps even without the addition of exogenous growth factors or cytokines. Raw materials contain endogenous proteins that may also help to improve the translational success of tissue engineering solutions to progress from laboratory bench to clinical therapies. Traditionally, the tissue engineering triad has included cells, signals, and materials. Whether raw materials represent their own new paradigm or are categorized as a bridge between signals and materials, it is clear that they have emerged as a leading strategy in regenerative medicine. The common use of raw materials in commercial products as well as their growing presence in the research community speak to their potential. However, there has heretofore not been a coordinated or organized effort to classify these approaches, and as such we recommend that the use of raw materials be introduced into the collective consciousness of our field as a recognized classification of regenerative medicine strategies.
Collapse
Affiliation(s)
- Amanda N. Renth
- Bioengineering Program, University of Kansas, Lawrence, Kansas
| | - Michael S. Detamore
- Bioengineering Program, University of Kansas, Lawrence, Kansas
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas
| |
Collapse
|
11
|
A new era of cartilage repair using cell therapy and tissue engineering: turning current clinical limitations into new ideas. Tissue Eng Regen Med 2012. [DOI: 10.1007/s13770-012-0370-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
12
|
Castro NJ, Hacking SA, Zhang LG. Recent Progress in Interfacial Tissue Engineering Approaches for Osteochondral Defects. Ann Biomed Eng 2012; 40:1628-40. [DOI: 10.1007/s10439-012-0605-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 05/25/2012] [Indexed: 01/02/2023]
|