1
|
Ehlen Q, Costello JP, Mirsky NA, Slavin BV, Parra M, Ptashnik A, Nayak VV, Coelho PG, Witek L. Treatment of Bone Defects and Nonunion via Novel Delivery Mechanisms, Growth Factors, and Stem Cells: A Review. ACS Biomater Sci Eng 2024; 10:7314-7336. [PMID: 39527574 PMCID: PMC11632667 DOI: 10.1021/acsbiomaterials.4c01279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Bone nonunion following a fracture represents a significant global healthcare challenge, with an overall incidence ranging between 2 and 10% of all fractures. The management of nonunion is not only financially prohibitive but often necessitates invasive surgical interventions. This comprehensive manuscript aims to provide an extensive review of the published literature involving growth factors, stem cells, and novel delivery mechanisms for the treatment of fracture nonunion. Key growth factors involved in bone healing have been extensively studied, including bone morphogenic protein (BMP), vascular endothelial growth factor (VEGF), and platelet-derived growth factor. This review includes both preclinical and clinical studies that evaluated the role of growth factors in acute and chronic nonunion. Overall, these studies revealed promising bridging and fracture union rates but also elucidated complications such as heterotopic ossification and inferior mechanical properties associated with chronic nonunion. Stem cells, particularly mesenchymal stem cells (MSCs), are an extensively studied topic in the treatment of nonunion. A literature search identified articles that demonstrated improved healing responses, osteogenic capacity, and vascularization of fractures due to the presence of MSCs. Furthermore, this review addresses novel mechanisms and materials being researched to deliver these growth factors and stem cells to nonunion sites, including natural/synthetic polymers and bioceramics. The specific mechanisms explored in this review include BMP-induced osteoblast differentiation, VEGF-mediated angiogenesis, and the role of MSCs in multilineage differentiation and paracrine signaling. While these therapeutic modalities exhibit substantial preclinical promise in treating fracture nonunion, there remains a need for further research, particularly in chronic nonunion and large animal models. This paper seeks to identify such translational hurdles which must be addressed in order to progress the aforementioned treatments from the lab to the clinical setting.
Collapse
Affiliation(s)
- Quinn
T. Ehlen
- University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Joseph P. Costello
- University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Nicholas A. Mirsky
- University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Blaire V. Slavin
- University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Marcelo Parra
- Center
of Excellence in Morphological and Surgical Studies (CEMyQ), Faculty
of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
- Department
of Comprehensive Adult Dentistry, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile
| | - Albert Ptashnik
- Biomaterials
Division, NYU Dentistry, New York, New York 10010, United States
| | - Vasudev Vivekanand Nayak
- Department
of Biochemistry and Molecular Biology, University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Paulo G. Coelho
- Department
of Biochemistry and Molecular Biology, University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
- Division
of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Lukasz Witek
- Biomaterials
Division, NYU Dentistry, New York, New York 10010, United States
- Department
of Biomedical Engineering, NYU Tandon School
of Engineering, Brooklyn, New York 11201, United States
- Hansjörg
Wyss Department of Plastic Surgery, NYU
Grossman School of Medicine, New
York, New York 10016, United States
| |
Collapse
|
2
|
Lee JH, Seo H, Cho YC, Sung IY, Son JH. Addition of recombinant human bone morphogenic protein-2 to the graft materials improves the clinical outcomes of implants placed in grafted maxillary sinus. J Dent Sci 2024; 19:865-870. [PMID: 38618057 PMCID: PMC11010705 DOI: 10.1016/j.jds.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/21/2023] [Indexed: 04/16/2024] Open
Abstract
Background/purpose The long-term outcomes of implants placed in grafted sinuses using recombinant human bone morphogenetic protein-2 (rhBMP-2) are unclear. This study aimed to compare 3- and 5-year implant survival rates and marginal bone loss (MBL) during functional loading. Materials and methods In this retrospective study, we analyzed 63 implants inserted after maxillary sinus floor augmentation (MSFA) in 45 patients between January 2016 and April 2019. The outcome variables were: 1) 3- and 5-year cumulative survival rates of the implants and 2) MBL after functional loading. Other assessed variables included patient demographic information, preoperative residual bone height (RBH), surgical site, implant length and diameter, graft material, healing period before loading, prosthetic type, and opposing dentition. Results The cumulative 3- and 5-year survival rates of the implants were 100% in the rhBMP-2 group and 95.5% and 86.4% in the non-rhBMP-2 group, respectively. The average 3- and 5-year MBL were 1.14 ± 0.67 mm, 1.30 ± 0.74 mm in the rhBMP-2 group and 1.68 ± 0.90 mm, 2.27 ± 1.29 mm in the non-rhBMP-2 group, respectively. Significant differences were observed between 3 and 5 years between the two groups. Conclusion Addition of the rhBMP-2 to the graft materials positively affects implant placement in the grafted maxillary sinus in terms of implant survival and MBL when preoperative RBH is unfavorable.
Collapse
Affiliation(s)
- Jin-Ho Lee
- Department of Oral and Maxillofacial Surgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, South Korea
| | - Hyejun Seo
- Department of Dentistry, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, South Korea
| | - Yeong-Cheol Cho
- Department of Oral and Maxillofacial Surgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, South Korea
| | - Iel-Yong Sung
- Department of Oral and Maxillofacial Surgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, South Korea
| | - Jang-Ho Son
- Department of Oral and Maxillofacial Surgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, South Korea
| |
Collapse
|
3
|
Barastegui D, Gallardo-Calero I, Rodriguez-Carunchio L, Barrera-Ochoa S, Knorr J, Rivas-Nicolls D, Soldado F. Effect of vascularized periosteum on revitalization of massive bone isografts: An experimental study in a rabbit model. Microsurgery 2021; 41:157-164. [PMID: 32949430 DOI: 10.1002/micr.30647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/28/2020] [Accepted: 08/28/2020] [Indexed: 11/09/2022]
Abstract
INTRODUCTION In the last years, limb salvage has become the gold standard treatment over amputation. Today, 90% of extremity osteogenic sarcomas can be treated with limb salvage surgery. However, these reconstructions are not exempt from complications. Massive allografts have been associated to high risk of nonunion (12-57%), fracture (7-30%) and infection (5-21%). Association of vascularized periosteum flap to a massive bone allograft (MBA) has shown to halve the average time of allograft union in clinical series, even compared to vascularized fibular flap. Creeping substitution process has been reported in massive allograft when periosteum flap was associated. However, we have little data about whether it results into allograft revitalization. We hypothesize that the association of a periosteum flap to a bone isograft promotes isograft revitalization, defined as the colonization of the devitalized bone by new-form vessels and viable osteocytes, turning it vital. MATERIALS AND METHODS Forty-four New Zealand white male rabbits underwent a 10 mm segmental radial bone defect. In 24 rabbits the bone excision included the periosteum (controls); in 20 rabbits (periosteum group) bone excision was performed carefully detaching periosteum in order to preserve it. Cryopreserved bone isograft from another rabbit was trimmed and placed to the defect gap and was fixed with a retrograde intramedullar 0.6 mm Kirschner wire. Rabbits were randomized and distributed in 3 subgroups depending on the follow-up (control group: 5 rabbits in 5-week follow up group, 8 rabbits in 10-week follow-up group, 7 rabbits in 20-week follow-up group; periosteum group: 5 rabbits in 5-week follow up group, 7 rabbits in 10-week follow-up group, 7 rabbits in 20-week follow-up group). Fluoroscopic images of rabbit forelimb were taken after sacrifice to address union. Each specimen was blindly evaluated in optical microscope (magnification, ×4) after hematoxylin and eosin staining to qualitative record: presence of new vessels and osteocytes in bone graft lacunae (yes/no) to address revitalization, presence of callus (yes/no) and woven bone and cartilage tissue area (mm2 ) to address remodeling (osteoclast resorption of old bone and substitution by osteoblastic new bone formation). RESULTS No isograft revitalization occurred in any group, but it was observed bone graft resorption and substitution by new-formed bone in periosteum group. This phenomenon was accelerated in 5-week periosteum group (control group: 49.5 ± 9.6 mm2 vs. periosteum group: 34.9 ± 10.4 mm2 ; p = .07). Remodeled lamellar bone was observed in both 20-week groups (control group: 6.1 ± 6.3 mm2 vs. periosteum group: 5.8 ± 3.0 mm2 , p = .67). Periosteum group showed complete integration and graft substitution, whereas devitalized osteons were still observed in 20-week controls. All periosteum group samples showed radiographic union through a bone callus, whereas controls showed nonunion in eight specimens (Union rate: control group 60% vs. periosteum group 100%, p = .003). CONCLUSIONS Association of vascularized periosteum to a massive bone isograft has shown to accelerate bone graft substitution into a newly formed bone, thus, no bone graft revitalization occurs.
Collapse
Affiliation(s)
- David Barastegui
- Orthopedic and Trauma Surgery, Instituto Cugat, Fundación García Cugat, Hospital Quiron, Barcelona, Spain
| | - Irene Gallardo-Calero
- Hand Surgery Unit, Orthopaedic Surgery, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Leonardo Rodriguez-Carunchio
- Department of Pathology, Faculty of Medicine, Hospital Clinic, Barcelona, Spain
- University of Vic. Central University of Catalonia (UVic-UCC), Barcelona, Spain
| | - Sergi Barrera-Ochoa
- icatMA Hand and Microsugery Unit, ICATME, Hospital Universitari Quiron-Dexeus, Barcelona, Spain
| | - Jorge Knorr
- Pediatric Hand Surgery and Microsurgery Unit, Barcelona University, Childrens Hospital HM Nens, Barcelona, Spain
- Unidad UCA Mikel Sanchez, Vithas San José, Vitoria, Spain
| | - Danilo Rivas-Nicolls
- Department of Plastic, Aesthetic and Reconstructive Surgery, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Francisco Soldado
- Pediatric Hand Surgery and Microsurgery Unit, Barcelona University, Childrens Hospital HM Nens, Barcelona, Spain
- Unidad UCA Mikel Sanchez, Vithas San José, Vitoria, Spain
| |
Collapse
|
4
|
Zhang M, Matinlinna JP, Tsoi JK, Liu W, Cui X, Lu WW, Pan H. Recent developments in biomaterials for long-bone segmental defect reconstruction: A narrative overview. J Orthop Translat 2020; 22:26-33. [PMID: 32440496 PMCID: PMC7231954 DOI: 10.1016/j.jot.2019.09.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/19/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Reconstruction of long-bone segmental defects (LBSDs) has been one of the biggest challenges in orthopaedics. Biomaterials for the reconstruction are required to be strong, osteoinductive, osteoconductive, and allowing for fast angiogenesis, without causing any immune rejection or disease transmission. There are four main types of biomaterials including autograft, allograft, artificial material, and tissue-engineered bone. Remarkable progress has been made in LBSD reconstruction biomaterials in the last ten years. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Our aim is to summarize recent developments in the divided four biomaterials utilized in the LBSD reconstruction to provide the clinicians with new information and comprehension from the biomaterial point of view.
Collapse
Key Words
- ADSC, allogenic adipose-derived stem cells
- ALLO, partially demineralized allogeneic bone block
- ALP, alkaline phosphatase
- ASC, adipose-derived stem cell
- Allograft
- Artificial material
- Autograft
- BMP-2 & 4, bone morphogenetic protein-2 & 4
- BMSC, bone marrow–derived mesenchymal stem cell
- BV, baculovirus
- Biomaterial
- CS, chitosan
- DBM, decalcified bone matrix
- FGF-2, Fibroblast Growth Factor-2
- HDB, heterogeneous deproteinized bone
- LBSD, long-bone segmental defect
- Long-bone segmental defect reconstruction
- M-CSF, macrophage colony-stimulating factor
- MIC, fresh marrow-impregnated ceramic block
- MSC, autologous mesenchymal stem cells
- PCL, polycaprolactone
- PDGF, Platelet-Derived Growth Factor
- PDLLA, poly(DL-lactide)
- PET/CT, positron emission- and computed tomography
- PLA, poly(lactic acid)
- PPF, propylene fumarate
- SF, silk fibroin
- TCP, tricalcium phosphate
- TEB, combining ceramic block with osteogenic-induced mesenchymal stem cells and platelet-rich plasma
- TGF-β, Transforming Growth Factor-β
- Tissue engineering
- VEGF, Vascular Endothelial Growth Factor
- bFGF, basic Fibroblast Growth Factor
- htMSCs, human tubal mesenchymal stem cells
- nHA, nano-hydroxyapatite
- poly, (L-lactide-co-D,L-lactide)
- rADSC, rabbit adipose-derived mesenchymal stem cell
- rVEGF-A, recombinant vascular endothelial growth factor-A
- rhBMP-2, recombinant human bone morphogenetic protein-2
- rhBMP-7, recombinant human bone morphogenetic protein 7
- sRANKL, soluble RANKL
- β-TCP, β-tricalcium phosphate
Collapse
Affiliation(s)
- Meng Zhang
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - Jukka P. Matinlinna
- Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China
| | - James K.H. Tsoi
- Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China
| | - Wenlong Liu
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - Xu Cui
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - William W. Lu
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
- Department of Orthopaedic and Traumatology, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Haobo Pan
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| |
Collapse
|
5
|
Cheng TL, Leblanc E, Kalinina A, Cantrill LC, Valtchev P, Dehghani F, Little DG, Schindeler A. A Bioactive Coating Enhances Bone Allografts in Rat Models of Bone Formation and Critical Defect Repair. J Orthop Res 2019; 37:2278-2286. [PMID: 31283054 DOI: 10.1002/jor.24409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/26/2019] [Indexed: 02/04/2023]
Abstract
Bone allografts are inferior to autografts for the repair of critical-sized defects. Prior studies have suggested that bone morphogenetic protein-2 (BMP-2) can be combined with allografts to produce superior healing. We created a bioactive coating on bone allografts using polycondensed deoxyribose isobutyrate ester (PDIB) polymer to deliver BMP-2 ± the bisphosphonate zoledronic acid (ZA) and tested its ability to enhance the functional utility of allografts in preclinical Wistar rat models. One ex vivo and two in vivo proof-of-concept studies were performed. First, PDIB was shown to be able to coat bone grafts (BGs). Second, PDIB was used to coat structural allogenic corticocancellous BG with BMP-2 ± ZA ± hydroxyapatite (HA) microparticles and compared with PDIB-coated grafts in a rat muscle pouch model. Next, a rat critical defect model was performed with treatment groups including (i) empty defect, (ii) BG, (iii) collagen sponge + BMP-2, (iv) BG + PDIB/BMP-2, and (v) BG + PDIB/BMP-2/ZA. Key outcome measures included detection of fluorescent bone labels, microcomputed tomography (CT) quantification of bone, and radiographic healing. In the muscle pouch study, BMP-2 did not increase net bone volume measured by microCT, however, fluorescent labeling showed large amounts of new bone. Addition of ZA increased BV by sevenfold (p < 0.01). In the critical defect model, allografts were insufficient to promote reliable union, however, union was achieved in collagen/BMP-2 and all BG/BMP-2 groups. Statement of clinical significance: These data support the concept that PDIB is a viable delivery method for BMP-2 and ZA delivery to enhance the bone forming potential of allografts. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2278-2286, 2019.
Collapse
Affiliation(s)
- Tegan L Cheng
- Orthopaedic Research and Biotechnology, Children's Hospital at Westmead, Sydney, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | | | - Anastassia Kalinina
- Orthopaedic Research and Biotechnology, Children's Hospital at Westmead, Sydney, Australia
| | - Laurence C Cantrill
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia
- Microscopy Services at Kids Research, Children's Hospital at Westmead, Sydney, Australia
| | - Peter Valtchev
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
| | - David G Little
- Orthopaedic Research and Biotechnology, Children's Hospital at Westmead, Sydney, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Aaron Schindeler
- Orthopaedic Research and Biotechnology, Children's Hospital at Westmead, Sydney, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
6
|
Vascularized Periosteal Flaps Accelerate Osteointegration and Revascularization of Allografts in Rats. Clin Orthop Relat Res 2019; 477:741-755. [PMID: 30810538 PMCID: PMC6437352 DOI: 10.1097/corr.0000000000000400] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Surgical reconstruction of large bone defects with structural bone allografts can restore bone stock but is associated with complications such as nonunion, fracture, and infection. Vascularized reconstructive techniques may provide an alternative in the repair of critical bone defects; however, no studies specifically addressing the role of vascularized periosteal flaps in stimulating bone allograft revascularization and osseointegration have been reported. QUESTIONS/PURPOSES (1) Does a vascularized periosteal flap increase the likelihood of union at the allograft-host junction in a critical-size defect femoral model in rats? (2) Does a vascularized periosteal flap promote revascularization of a critical-size defect structural bone allograft in a rat model? (3) What type of ossification occurs in connection with a vascularized periosteal flap? METHODS Sixty-four rats were assigned to two equal groups. In both the control and experimental groups, a 5-cm critical size femoral defect was created in the left femur and then reconstructed with a cryopreserved structural bone allograft and intramedullary nail. In the experimental group, a vascularized periosteal flap from the medial femoral condyle, with a pedicle based on the descending genicular vessels, was associated with the allograft. The 32 rats of each group were divided into subgroups of 4-week (eight rats), 6-week (eight rats), and 10-week (16 rats) followup. At the end of their assigned followup periods, the animals were euthanized and their femurs were harvested for semiquantitative and quantitative analysis using micro-CT (all followup groups), quantitative biomechanical evaluation (eight rats from each 10-week followup group), qualitative confocal microscopic, backscattered electron microscopic, and histology analysis (4-week and 6-week groups and eight rats from each 10-week followup group). When making their analyses, all the examiners were blinded to the treatment groups from which the samples came. RESULTS There was an improvement in allograft-host bone union in the 10-week experimental group (odds ratio [OR], 19.29 [3.63-184.50], p < 0.05). In contrast to control specimens, greater bone neoformation in the allograft segment was observed in the experimental group (OR [4-week] 63.3 [39.6-87.0], p < 0.05; OR [6-week] 43.4 [20.5-66.3], p < 0.05; OR [10-week] 62.9 [40.1-85.7], p < 0.05). In our biomechanical testing, control samples were not evaluable as a result of premature breakage during the embedding and assembly processes. Therefore, experimental samples were compared with untreated contralateral femurs. No difference in torsion resistance pattern was observed between both groups. Both backscattered electron microscopy and histology showed newly formed bone tissue and osteoclast lacunae, indicating a regulated process of bone regeneration of the initial allograft in evaluated samples from the experimental group. They also showed intramembranous ossification produced by the vascularized periosteal flap in evaluated samples from the experimental group, whereas samples from the control group showed an attempted endochondral ossification in the allograft-host bone junctions. CONCLUSIONS A vascularized periosteal flap promotes and accelerates allograft-host bone union and revascularization of cryopreserved structural bone allografts through intramembranous ossification in a preclinical rat model. CLINICAL RELEVANCE If large-animal models substantiate the findings made here, this approach might be used in allograft reconstructions for critical defects using fibular or tibial periosteal flaps as previously described.
Collapse
|
7
|
Jiao D, Cao L, Liu Y, Wu J, Zheng A, Jiang X. Synergistic Osteogenesis of Biocompatible Reduced Graphene Oxide with Methyl Vanillate in BMSCs. ACS Biomater Sci Eng 2019; 5:1920-1936. [PMID: 33405565 DOI: 10.1021/acsbiomaterials.8b01264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methyl vanillate (MV), a recently characterized small molecule, can promote the Wnt/β-catenin signaling pathway and induce osteoblast differentiation both in vitro and in vivo. On the other hand, graphene-based materials have been introduced into the field of biomedical sciences in the past decade, and graphene oxide (GO), which serves as an efficient nanocarrier for drug delivery, has attracted great attention for its biomedical applications in tissue engineering. This study aimed to develop a biocompatible gelatin-reduced graphene oxide (GOG) for MV delivery so as to realize the effective osteogenesis for bone repair. First, GOG was prepared, and its morphology as well as properties were then characterized using scanning electron microscope (SEM), transmission electron microscopy (TEM), atomic force microscope (AFM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermal gravimetric analysis (TGA), respectively. In addition, the endocytosis of GOG in bone marrow stromal cells (BMSCs) was also investigated with the treatment of Rhodamine 6G (R6G)-labeled GOG. Our results found that GOG could be easily absorbed by cells and was distributed in both nucleus and cytoplasm, thus suggesting the favorable biocompatibility of GOG. Moreover, the effect of MV on osteogenesis was also tested, the results of which indicated that MV could promote BMSC osteogenesis in a concentration-dependent manner, and significant enhancement could be achieved at the concentration of 1 μg/mL. In addition, the complex containing different concentrations of GOG and an optimal concentration of MV was used to investigate the synergistic effect between GOG and MV on pro-osteogenesis. The results revealed that the weight ratio of MV/GOG of 1:1000 could attain remarkably enhanced osteoinduction in BMSCs, as evaluated by alkaline phosphatase (ALP) assay, alizarin red S (ARS) staining, immunofluorescence staining, and gene expression of related osteogenic markers. Taken together, these data had provided strong evidence that the complex of MV and GOG could induce osteogenesis, which was promising for bone tissue engineering.
Collapse
Affiliation(s)
- Delong Jiao
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.,National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China.,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
| | - Lingyan Cao
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.,National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China.,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yang Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiannan Wu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.,National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China.,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
| | - Ao Zheng
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.,National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China.,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.,National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China.,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
| |
Collapse
|
8
|
Moeinzadeh S, Shariati SRP, Kader S, Melero-Martin JM, Jabbari E. Devitalized Stem Cell Microsheets for Sustainable Release of Osteogenic and Vasculogenic Growth Factors and Regulation of Anti-Inflammatory Immune Response. ACTA ACUST UNITED AC 2017; 1. [PMID: 30221188 DOI: 10.1002/adbi.201600011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The objective of this work was to investigate the effect of devitalized human mesenchymal stem cells (hMSCs) and endothelial colony-forming cells (ECFCs) seeded on mineralized nanofiber microsheets on protein release, osteogenesis, vasculogenesis, and macrophage polarization. Calcium phosphate nanocrystals were grown on the surface of aligned, functionalized nanofiber microsheets. The microsheets were seeded with hMSCs, ECFCs, or a mixture of hMSCs+ECFCs, cultured for cell attachment, differentiated to the osteogenic or vasculogenic lineage, and devitalized by lyophilization. The release kinetic of total protein, bone morphogenetic protein-2 (BMP2), and vascular endothelial growth factor (VEGF) from the devitalized microsheets was measured. Next, hMSCs and/or ECFCs were seeded on the devitalized cell microsheets and cultured in the absence of osteo-/vasculo-inductive factors to determine the effect of devitalized cell microsheets on hMSC/ECFC differentiation. Human macrophages were seeded on the microsheets to determine the effect of devitalized cells on macrophage polarization. Based on the results, devitalized undifferentiated hMSC and vasculogenic-differentiated ECFC microsheets had highest sustained release of BMP2 and VEGF, respectively. The devitalized hMSC microsheets did not affect M2 macrophage polarization while vascular-differentiated, devitalized ECFC microsheets did not affect M1 polarization. Both groups stimulated higher M2 macrophage polarization compared to M1.
Collapse
Affiliation(s)
- Seyedsina Moeinzadeh
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Seyed Ramin Pajoum Shariati
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Safaa Kader
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA.,Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Esmaiel Jabbari
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
9
|
Abstract
Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for restoration. In particular, there is increasing interest in separating ECMs into simplified functional domains and/or biopolymeric assemblies so that these components/constituents can be discretely exploited and manipulated for the production of bioscaffolds and new biomimetic biomaterials. Here, following an overview of tissue auto-/allo-transplantation, we discuss the recent trends and advances as well as the challenges and future directions in the evolution and application of human-derived biomaterials for reconstructive surgery and tissue engineering. In particular, we focus on an exploration of the structural, mechanical, biochemical and biological information present in native human tissue for bioengineering applications and to provide inspiration for the design of future biomaterials.
Collapse
|
10
|
Antebi B, Zhang L, Sheyn D, Pelled G, Zhang X, Gazit Z, Schwarz EM, Gazit D. Controlling Arteriogenesis and Mast Cells Are Central to Bioengineering Solutions for Critical Bone Defect Repair Using Allografts. Bioengineering (Basel) 2016; 3. [PMID: 27141513 PMCID: PMC4851447 DOI: 10.3390/bioengineering3010006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although most fractures heal, critical defects in bone fail due to aberrant differentiation of mesenchymal stem cells towards fibrosis rather than osteogenesis. While conventional bioengineering solutions to this problem have focused on enhancing angiogenesis, which is required for bone formation, recent studies have shown that fibrotic non-unions are associated with arteriogenesis in the center of the defect and accumulation of mast cells around large blood vessels. Recently, recombinant parathyroid hormone (rPTH; teriparatide; Forteo) therapy have shown to have anti-fibrotic effects on non-unions and critical bone defects due to inhibition of arteriogenesis and mast cell numbers within the healing bone. As this new direction holds great promise towards a solution for significant clinical hurdles in craniofacial reconstruction and limb salvage procedures, this work reviews the current state of the field, and provides insights as to how teriparatide therapy could be used as an adjuvant for healing critical defects in bone. Finally, as teriparatide therapy is contraindicated in the setting of cancer, which constitutes a large subset of these patients, we describe early findings of adjuvant therapies that may present future promise by directly inhibiting arteriogenesis and mast cell accumulation at the defect site.
Collapse
Affiliation(s)
- Ben Antebi
- US Army Institute of Surgical Research, Multi-Organ Support Technology, 3698 Chambers Pass, Fort Sam Houston, TX 78234, USA;
| | - Longze Zhang
- Center for Musculoskeletal Research, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA; (L.Z.); (X.Z.); (E.M.S.)
| | - Dmitriy Sheyn
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (D.S.); (G.P.); (Z.G.)
| | - Gadi Pelled
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (D.S.); (G.P.); (Z.G.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Skeletal Biotech Laboratory, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem 91120, Israel
| | - Xinping Zhang
- Center for Musculoskeletal Research, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA; (L.Z.); (X.Z.); (E.M.S.)
| | - Zulma Gazit
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (D.S.); (G.P.); (Z.G.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Skeletal Biotech Laboratory, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem 91120, Israel
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA; (L.Z.); (X.Z.); (E.M.S.)
| | - Dan Gazit
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (D.S.); (G.P.); (Z.G.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Skeletal Biotech Laboratory, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem 91120, Israel
- Correspondence: ; Tel.: +1-310-248-8575
| |
Collapse
|
11
|
Barati D, Shariati SRP, Moeinzadeh S, Melero-Martin JM, Khademhosseini A, Jabbari E. Spatiotemporal release of BMP-2 and VEGF enhances osteogenic and vasculogenic differentiation of human mesenchymal stem cells and endothelial colony-forming cells co-encapsulated in a patterned hydrogel. J Control Release 2015; 223:126-136. [PMID: 26721447 DOI: 10.1016/j.jconrel.2015.12.031] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/30/2015] [Accepted: 12/16/2015] [Indexed: 01/02/2023]
Abstract
Reconstruction of large bone defects is limited by insufficient vascularization and slow bone regeneration. The objective of this work was to investigate the effect of spatial and temporal release of recombinant human bone morphogenetic protein-2 (BMP2) and vascular endothelial growth factor (VEGF) on the extent of osteogenic and vasculogenic differentiation of human mesenchymal stem cells (hMSCs) and endothelial colony-forming cells (ECFCs) encapsulated in a patterned hydrogel. Nanogels (NGs) based on polyethylene glycol (PEG) macromers chain-extended with short lactide (L) and glycolide (G) segments were used for grafting and timed-release of BMP2 and VEGF. NGs with 12kDa PEG molecular weight (MW), 24 LG segment length, and 60/40L/G ratio (P12-II, NG(10)) released the grafted VEGF in 10days. NGs with 8kDa PEG MW, 26 LG segment length, and 60/40L/G ratio (P8-I, NG(21)) released the grafted BMP2 in 21days. hMSCs and NG-BMP2 were encapsulated in a patterned matrix based on acrylate-functionalized lactide-chain-extended star polyethylene glycol (SPELA) hydrogel and microchannel patterns filled with a suspension of hMSCs+ECFCs and NG-VEGF in a crosslinked gelatin methacryloyl (GelMA) hydrogel. Groups included patterned constructs without BMP2/VEGF (None), with directly added BMP2/VEGF, and NG-BMP2/NG-VEGF. Based on the results, timed-release of VEGF in the microchannels in 10days from NG(10) and BMP2 in the matrix in 21days from NG(21) resulted in highest extent of osteogenic and vasculogenic differentiation of the encapsulated hMSCs and ECFCs compared to direct addition of VEGF and BMP2. Further, timed-release of VEGF from NG(10) in hMSC+ECFC encapsulating microchannels and BMP2 from NG(21) in hMSC encapsulating matrix sharply increased bFGF expression in the patterned constructs. The results suggest that mineralization and vascularization are coupled by localized secretion of paracrine signaling factors by the differentiating hMSCs and ECFCs.
Collapse
Affiliation(s)
- Danial Barati
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Seyed Ramin Pajoum Shariati
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Seyedsina Moeinzadeh
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, MA, USA; Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayangdong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Esmaiel Jabbari
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
12
|
Barati D, Walters JD, Shariati SRP, Moeinzadeh S, Jabbari E. Effect of organic acids on calcium phosphate nucleation and osteogenic differentiation of human mesenchymal stem cells on peptide functionalized nanofibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:5130-5140. [PMID: 25879768 DOI: 10.1021/acs.langmuir.5b00615] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Carboxylate-rich organic acids play an important role in controlling the growth of apatite crystals and the extent of mineralization in the natural bone. The objective of this work was to investigate the effect of organic acids on calcium phosphate (CaP) nucleation on nanofiber microsheets functionalized with a glutamic acid peptide and osteogenic differentiation of human mesenchymal stem cells (hMSCs) seeded on the CaP-nucleated microsheets. High molecular weight poly(dl-lactide) (DL-PLA) was mixed with low molecular weight L-PLA conjugated with Glu-Glu-Gly-Gly-Cys peptide, and the mixture was electrospun to generate aligned nanofiber microsheets. The nanofiber microsheets were incubated in a modified simulated body fluid (mSBF) supplemented with different organic acids for nucleation and growth of CaP crystals on the nanofibers. Organic acids included citric acid (CA), hydroxycitric acid (HCA), tartaric acid (TART), malic acid (MA), ascorbic acid (AsA), and salicylic acid (SalA). HCA microsheets had the highest CaP content at 240 ± 10% followed by TART and CA with 225 ± 8% and 225 ± 10%, respectively. The Ca/P ratio and percent crystallinity of the nucleated CaP in TART microsheets was closest to that of stoichiometric hydroxyapatite. The extent of CaP nucleation and growth on the nanofiber microsheets depended on the acidic strength and number of hydrogen-bonding hydroxyl groups of the organic acids. Compressive modulus and degradation of the CaP nucleated microsheets were related to percent crystallinity and CaP content. Osteogenic differentiation of hMSCs seeded on the microsheets and cultured in osteogenic medium increased only for those microsheets nucleated with CaP by incubation in CA or AsA-supplemented mSBF. Further, only CA microsheets stimulated bone nodule formation by the seeded hMSCs.
Collapse
Affiliation(s)
- Danial Barati
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Joshua D Walters
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Seyed Ramin Pajoum Shariati
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Seyedsina Moeinzadeh
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Esmaiel Jabbari
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
13
|
Ruiz-Ibán MA, Gonzalez-Lizán F, Diaz-Heredia J, Elías-Martin ME, Correa Gorospe C. Effect of VEGF-A165 addition on the integration of a cortical allograft in a tibial segmental defect in rabbits. Knee Surg Sports Traumatol Arthrosc 2015; 23:1393-1400. [PMID: 24296989 DOI: 10.1007/s00167-013-2785-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 11/17/2013] [Indexed: 11/24/2022]
Abstract
PURPOSE Long-bone segmental defects caused by infection, fracture, or tumour are a challenge for orthopaedic surgeons. Structural allografts are sometimes used in their treatment but their poor biological characteristics are a liability. The objective of this study was to determine whether the addition of recombinant vascular endothelial growth factor-A (VEGF) to a structural allograft improved its integration into a rabbit tibial segmental defect in a non-union model. METHODS Tibial segmental defects were filled with heat sterilized allogenic tubular tibiae sections and then stabilized with a screw plate. In the VEGF treatment group (n = 6 tibiae), 2 μg of VEGF added to a 50 μl matrigel solution was inserted into the allograft cavity. In the control group (n = 6 tibiae), only matrigel was added. After 12 weeks, macroscopic and microscopic analysis, radiographs, and computerized micro-tomography (micro-CT) were performed. If allograft consolidation was present, a torsional resistance analysis was performed. RESULTS Addition of VEGF to the allograft decreased the rate of osteosynthesis failure compared with the control group (1/6 vs. 5/6, p = 0.08), increased trabecular continuity evaluated by micro-CT in the bone-allograft interphases (8/12 vs. 2/12, p = 0.036) and histological trabecular continuity (7/12 vs. 0/12, p = 0.0046). Full consolidation was observed in three tibiae of the VEGF group and one in the control group (differences not significant); however, torsional resistance showed no significant differences (n.s.). CONCLUSION Addition of VEGF to a structural allograph inserted into a rabbit tibial segmental defect increased allograft integration rate. Further research in this direction might help clinicians in dealing with large bone defects.
Collapse
Affiliation(s)
- Miguel Angel Ruiz-Ibán
- Department of Orthopaedic Surgery and Trauma, Hospital Universitario Ramón y Cajal, Cta Colmenar Km 9.100, 28034, Madrid, Spain.
| | - Fausto Gonzalez-Lizán
- Department of Orthopaedic Surgery and Trauma, Hospital Universitario Ramón y Cajal, Cta Colmenar Km 9.100, 28034, Madrid, Spain
| | - Jorge Diaz-Heredia
- Department of Orthopaedic Surgery and Trauma, Hospital Universitario Ramón y Cajal, Cta Colmenar Km 9.100, 28034, Madrid, Spain
| | - Maria Elena Elías-Martin
- Department of Anesthesiology and Reanimation, Hospital Universitario Ramón y Cajal, Cta Colmenar Km 9.100, 28034, Madrid, Spain
| | - Carlos Correa Gorospe
- Experimental Surgery Unit, Hospital Universitario Ramón y Cajal, Cta Colmenar Km 9.100, 28034, Madrid, Spain
| |
Collapse
|
14
|
Fassbender M, Minkwitz S, Thiele M, Wildemann B. Efficacy of two different demineralised bone matrix grafts to promote bone healing in a critical-size-defect: a radiological, histological and histomorphometric study in rat femurs. INTERNATIONAL ORTHOPAEDICS 2014; 38:1963-9. [DOI: 10.1007/s00264-014-2321-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/07/2014] [Indexed: 11/28/2022]
|
15
|
Culpepper BK, Morris DS, Prevelige PE, Bellis SL. Engineering nanocages with polyglutamate domains for coupling to hydroxyapatite biomaterials and allograft bone. Biomaterials 2013; 34:2455-62. [PMID: 23312905 DOI: 10.1016/j.biomaterials.2012.12.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/22/2012] [Indexed: 02/01/2023]
Abstract
Hydroxyapatite (HA) is the principal constituent of bone mineral, and synthetic HA is widely used as a biomaterial for bone repair. Previous work has shown that polyglutamate domains bind selectively to HA and that these domains can be utilized to couple bioactive peptides onto many different HA-containing materials. In the current study we have adapted this technology to engineer polyglutamate domains into cargo-loaded nanocage structures derived from the P22 bacteriophage. P22 nanocages have demonstrated significant potential as a drug delivery system due to their stability, large capacity for loading with a diversity of proteins and other types of cargo, and ability to resist degradation by proteases. Site-directed mutagenesis was used to modify the primary coding sequence of the P22 coat protein to incorporate glutamate-rich regions. Relative to wild-type P22, the polyglutamate-modified nanocages (E2-P22) exhibited increased binding to ceramic HA disks, particulate HA and allograft bone. Furthermore, E2-P22 binding was HA selective, as evidenced by negligible binding of the nanocages to non-HA materials including polystyrene, agarose, and polycaprolactone (PCL). Taken together these results establish a new mechanism for the directed coupling of nanocage drug delivery systems to a variety of HA-containing materials commonly used in diverse bone therapies.
Collapse
Affiliation(s)
- Bonnie K Culpepper
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
16
|
Culpepper BK, Bonvallet PP, Reddy MS, Ponnazhagan S, Bellis SL. Polyglutamate directed coupling of bioactive peptides for the delivery of osteoinductive signals on allograft bone. Biomaterials 2012. [PMID: 23182349 DOI: 10.1016/j.biomaterials.2012.10.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Allograft bone is commonly used as an alternative to autograft, however allograft lacks many osteoinductive factors present in autologous bone due to processing. In this study, we investigated a method to reconstitute allograft with osteoregenerative factors. Specifically, an osteoinductive peptide from collagen I, DGEA, was engineered to express a heptaglutamate (E7) domain, which binds the hydroxyapatite within bone mineral. Addition of E7 to DGEA resulted in 9× greater peptide loading on allograft, and significantly greater retention after a 5-day interval with extensive washing. When factoring together greater initial loading and retention, the E7 domain directed a 45-fold enhancement of peptide density on the allograft surface. Peptide-coated allograft was also implanted subcutaneously into rats and it was found that E7DGEA was retained in vivo for at least 3 months. Interestingly, E7DGEA peptides injected intravenously accumulated within bone tissue, implicating a potential role for E7 domains in drug delivery to bone. Finally, we determined that, as with DGEA, the E7 modification enhanced coupling of a bioactive BMP2-derived peptide on allograft. These results suggest that E7 domains are useful for coupling many types of bone-regenerative molecules to the surface of allograft to reintroduce osteoinductive signals and potentially advance allograft treatments.
Collapse
Affiliation(s)
- Bonnie K Culpepper
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|