1
|
Juntarachot N, Sirilun S, Kantachote D, Sittiprapaporn P, Tongpong P, Peerajan S, Chaiyasut C. Anti- Streptococcus mutans and anti-biofilm activities of dextranase and its encapsulation in alginate beads for application in toothpaste. PeerJ 2020; 8:e10165. [PMID: 33240599 PMCID: PMC7678491 DOI: 10.7717/peerj.10165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/22/2020] [Indexed: 01/01/2023] Open
Abstract
Background The accumulation of plaque causes oral diseases. Dental plaque is formed on teeth surfaces by oral bacterial pathogens, particularly Streptococcus mutans, in the oral cavity. Dextranase is one of the enzymes involved in antiplaque accumulation as it can prevent dental caries by the degradation of dextran, which is a component of plaque biofilm. This led to the idea of creating toothpaste containing dextranase for preventing oral diseases. However, the dextranase enzyme must be stable in the product; therefore, encapsulation is an attractive way to increase the stability of this enzyme. Methods The activity of food-grade fungal dextranase was measured on the basis of increasing ratio of reducing sugar concentration, determined by the reaction with 3, 5-dinitrosalicylic acid reagent. The efficiency of the dextranase enzyme was investigated based on its minimal inhibitory concentration (MIC) against biofilm formation by S. mutans ATCC 25175. Box-Behnken design (BBD) was used to study the three factors affecting encapsulation: pH, calcium chloride concentration, and sodium alginate concentration. Encapsulation efficiency (% EE) and the activity of dextranase enzyme trapped in alginate beads were determined. Then, the encapsulated dextranase in alginate beads was added to toothpaste base, and the stability of the enzyme was examined. Finally, sensory test and safety evaluation of toothpaste containing encapsulated dextranase were done. Results The highest activity of the dextranase enzyme was 4401.71 unit/g at a pH of 6 and 37 °C. The dextranase at its MIC (4.5 unit/g) showed strong inhibition against the growth of S. mutans. This enzyme at 1/2 MIC also showed a remarkable decrease in biofilm formation by S. mutans. The most effective condition of dextranase encapsulation was at a pH of 7, 20% w/v calcium chloride and 0.85% w/v sodium alginate. Toothpaste containing encapsulated dextranase alginate beads produced under suitable condition was stable after 3 months of storage, while the sensory test of the product was accepted at level 3 (like slightly), and it was safe. Conclusion This research achieved an alternative health product for oral care by formulating toothpaste with dextranase encapsulated in effective alginate beads to act against cariogenic bacteria, like S. mutants, by preventing dental plaque.
Collapse
Affiliation(s)
- Nucharee Juntarachot
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Mueang Chiang Mai, Chiang Mai, Thailand
| | - Sasithorn Sirilun
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Mueang Chiang Mai, Chiang Mai, Thailand
| | - Duangporn Kantachote
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Phakkharawat Sittiprapaporn
- Brain Science and Engineering Innovation Research Group, School of Anti-Aging and Regenerative Medicine and Department of Anti-Aging Science, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Wattana, Bangkok, Thailand
| | - Piyachat Tongpong
- Brain Science and Engineering Innovation Research Group, School of Anti-Aging and Regenerative Medicine and Department of Anti-Aging Science, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Wattana, Bangkok, Thailand
| | - Sartjin Peerajan
- Health Innovation Institute, Mueang Chiang Mai, Chiang Mai, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Mueang Chiang Mai, Chiang Mai, Thailand
| |
Collapse
|
2
|
Mynenivenkatasatya SR, Wang H, Cooley W, Garcia-Smith E, Shewale J, Ratcliff J. Effectiveness of a Novel Dentifrice Containing Stabilized Chlorine Dioxide, Sarkosyl, and Sodium Fluoride. Dent J (Basel) 2020; 8:dj8040122. [PMID: 33121042 PMCID: PMC7712167 DOI: 10.3390/dj8040122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/03/2022] Open
Abstract
This in vitro study evaluated the effectiveness of a novel dentifrice containing stabilized chlorine dioxide, sodium lauroyl sarcosinate (sarkosyl), and sodium fluoride in enhancing enamel fluoride uptake, remineralization, pellicle cleaning and inhibiting biofilm regrowth. Remineralization was measured by fluoride uptake and surface microhardness assessment tests. Artificial stains were removed and scored based on pellicle cleaning ratio. Biofilm regrowth was measured by counting colonies on the agar plates. All studies were conducted using bovine teeth specimens. The efficacy of Toothpaste C (CloSYS anticavity toothpaste) was compared with United States Pharmacopoeia Reference Dentifrice, Toothpaste B (discontinued CloSYS anticavity toothpaste formulation) and leading commercial toothpastes. The enamel fluoride uptake and remineralization by Toothpaste C was 96.1% to 303.3% and 38.0% to 102.4% higher than the tested toothpastes, respectively. The mean pellicle cleaning ratio of Toothpaste C was similar to American Dental Association Reference Material. Toothpaste C had a significant reduction in regrowth of the oral polymicrobial biofilm compared to the control. All tested toothpastes contained 0.24% sodium fluoride. Toothpaste C exhibited significantly superior performance towards fluoride uptake and remineralization compared to the tested toothpastes. Therefore, toothpaste ingredients other than sodium fluoride accounted for the enhanced fluoride uptake and remineralization.
Collapse
Affiliation(s)
| | - Howard Wang
- Department of Periodontology, Stony Brook University, Stony Brook, NY 11794, USA;
| | | | | | - Jaiprakash Shewale
- Rowpar Pharmaceuticals, Inc., Scottsdale, AZ 85260, USA; (E.G.-S.); (J.S.); (J.R.)
| | - James Ratcliff
- Rowpar Pharmaceuticals, Inc., Scottsdale, AZ 85260, USA; (E.G.-S.); (J.S.); (J.R.)
| |
Collapse
|
3
|
Valkenburg C, Else Slot D, Van der Weijden GF. What is the effect of active ingredients in dentifrice on inhibiting the regrowth of overnight plaque? A systematic review. Int J Dent Hyg 2019; 18:128-141. [PMID: 31675470 PMCID: PMC7217014 DOI: 10.1111/idh.12423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/29/2019] [Accepted: 10/30/2019] [Indexed: 01/08/2023]
Abstract
Objectives The aim of this systematic review was to establish the adjuvant clinical effect of brushing with a dentifrice containing purported active ingredients as compared to a regular sodium fluoride dentifrice with respect to the inhibition of overnight dental plaque regrowth from studies with human participants. Methods MEDLINE‐PubMed, EMBASE and Cochrane CENTRAL were searched, up to June 2019. The inclusion criteria were controlled clinical trials with participants aged ≥ 18 years in good general health. Studies were included that evaluated the effect of toothbrushing with a dentifrice on the inhibition of overnight dental plaque regrowth when an active ingredient was added to the dentifrice as compared to a common sodium fluoride product. Data were extracted from the eligible studies, the risk of bias was assessed, and a meta‐analysis was performed where feasible. Result Independent screening of 213 unique papers resulted in 10 eligible publications that provided 14 comparisons. Stannous fluoride and triclosan dentifrices were found as the active ingredients. The descriptive analysis indicated that all, but two comparisons demonstrated an additional effect on the active‐ingredient dentifrice. The meta‐analysis supported and strengthened these findings. It showed that when plaque was scored digitally, a DiffM was −3.15(95% CI [−4.61:‐1.69], P < .001, prediction interval [−5.07;‐1.24]). When plaque was scored clinically, the difference of means (DiffM) was −0.33(95% CI [−0.49:‐0.16], P < .001, prediction interval [−0.87; 0.21]). Conclusion The results of this review demonstrate moderate‐quality evidence that brushing with an active‐ingredient dentifrice with stannous fluoride or triclosan does provide an added clinically relevant effect concerning plaque inhibition capabilities that surpass the effect of a regular sodium fluoride dentifrice.
Collapse
Affiliation(s)
- Cees Valkenburg
- General Dentist and Clinical Epidemiologist, Hoevelaken, The Netherlands.,Department of Periodontology Academic Centre for Dentistry, Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dagmar Else Slot
- Department of Periodontology Academic Centre for Dentistry, Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ga Fridus Van der Weijden
- Department of Periodontology Academic Centre for Dentistry, Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Kusuma Yulianto HD, Rinastiti M, Cune MS, de Haan-Visser W, Atema-Smit J, Busscher HJ, van der Mei HC. Biofilm composition and composite degradation during intra-oral wear. Dent Mater 2019; 35:740-750. [PMID: 30833012 DOI: 10.1016/j.dental.2019.02.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/13/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES The oral environment limits the longevity of composite-restorations due to degradation caused by chewing, salivary and biofilm-produced enzymes and acids. This study investigates degradation of two resin-composites in relation with biofilm composition in vitro and in vivo. METHODS Surface-chemical-composition of two Bis-GMA/TEGDMA composites was compared using X-ray-Photoelectron-Spectroscopy from which the number ester-linkages was derived. Composite-degradation was assessed through water contact angles, yielding surface-exposure of filler-particles. Degradation in vitro was achieved by composite immersion in a lipase solution. In order to evaluate in vivo degradation, composite samples were worn in palatal devices by 15 volunteers for 30-days periods in absence and presence of manually-brushing with water. PCR-DGGE analysis was applied to determine biofilm composition on the samples, while in addition to water contact angles, degradation of worn composites was assessed through surface-roughness and micro-hardness measurements. RESULTS In vitro degradation by lipase exposure was highest for the high ester-linkage composite and virtually absent for the low ester-linkage composite. Filler-particle surface-exposure, surface-roughness and micro-hardness of both resin-composites increased during intra-oral wear, but filler-particle surface-exposure was affected most. However, based on increased filler-particle surface-exposure, the high ester-linkage composite degraded most in volunteers harvesting composite biofilms comprising Streptococcus mutans, a known esterase and lactic acid producer. This occurred especially in absence of brushing. SIGNIFICANCE Degradation during intra-oral wear of a low ester-linkage composite was smaller than of a high ester-linkage composite, amongst possible other differences between both composites. S. mutans herewith is not only a cariogenic, but also a composite-degradative member of the oral microbiome.
Collapse
Affiliation(s)
- H Dedy Kusuma Yulianto
- Universitas Gadjah Mada, Faculty of Dentistry, Department of Dental Biomedical Science, Yogyakarta, Indonesia; University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Groningen, The Netherlands
| | - Margareta Rinastiti
- Universitas Gadjah Mada, Faculty of Dentistry, Department of Dental Conservative, Yogyakarta, Indonesia
| | - Marco S Cune
- University of Groningen and University Medical Center Groningen, Center for Dentistry and Oral Hygiene, Department of Fixed and Removable Prosthodontics and Biomaterials, Groningen, The Netherlands
| | - Willy de Haan-Visser
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Groningen, The Netherlands
| | - Jelly Atema-Smit
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Groningen, The Netherlands
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Groningen, The Netherlands
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Groningen, The Netherlands.
| |
Collapse
|
5
|
Liu Y, Ren Y, Li Y, Su L, Zhang Y, Huang F, Liu J, Liu J, van Kooten TG, An Y, Shi L, van der Mei HC, Busscher HJ. Nanocarriers with conjugated antimicrobials to eradicate pathogenic biofilms evaluated in murine in vivo and human ex vivo infection models. Acta Biomater 2018; 79:331-343. [PMID: 30172935 DOI: 10.1016/j.actbio.2018.08.038] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/06/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022]
Abstract
Conventional antimicrobials are becoming increasingly ineffective for treating bacterial infection due to the emergence of multi-drug resistant (MDR) pathogens. In addition, the biofilm-mode-of-growth of infecting bacteria impedes antimicrobial penetration in biofilms. Here, we report on poly(ethylene)glycol-poly(β-amino esters) (PEG-PAE) micelles with conjugated antimicrobials, that can uniquely penetrate biofilms, target themselves to bacterial cell surfaces once inside the low-pH environment of a biofilm and release conjugated antimicrobials through degradation of their ester-linkage with PAE by bacterial lipases. In vitro, PEG-PAE micelles with conjugated Triclosan (PEG-PAE-Triclosan) yielded no inadvertent leakage of their antimicrobial cargo and better killing of MDR Staphylococcus aureus, Escherichia coli and oral streptococcal biofilms than Triclosan in solution. In mice, PEG-PAE-Triclosan micelles with conjugated Triclosan yielded better eradication efficacy towards a MDR S. aureus-infection compared with Triclosan in solution and Triclosan-loaded micelles at equal Triclosan-equivalent concentrations. Ex vivo exposure of multi-species oral biofilms collected from orthodontic patients to PEG-PAE-Triclosan micelles, demonstrated effective bacterial killing at 30-40 fold lower Triclosan-equivalent concentrations than achieved by Triclosan in solution. Importantly, Streptococcus mutans, the main causative organism of dental caries, was preferentially killed by PEG-PAE-Triclosan micelles. Thus PEG-PAE-Triclosan micelles present a promising addendum to the decreasing armamentarium available to combat infection in diverse sites of the body. STATEMENT OF SIGNIFICANCE: pH-adaptive polymeric micelles with conjugated antimicrobials can efficiently eradicate infectious biofilms from diverse body sites in mice and men. An antimicrobial was conjugated through an ester-linkage to a poly(ethylene glycol) (PEG)/poly(β-amino ester) block copolymer to create micellar nanocarriers. Stable micelle structures were formed by the hydrophobic poly(β-amino ester) inner core and a hydrophilic PEG outer shell. Thus formed PEG-PAE-Triclosan micelles do not lose their antimicrobial cargo underway to an infection site through the blood circulation, but penetrate and accumulate in biofilms to release antimicrobials once inside a biofilm through degradation of its ester-linkage by bacterial lipases, to kill biofilm-embedded bacteria at lower antimicrobial concentrations than when applied in solution. PEG-PAE-Triclosan micelles effectively eradicate biofilms of multi-drug-resistant pathogens and oral bacteria, most notably highly cariogenic Streptococcus mutans, in mice and men respectively, and possess excellent clinical translation possibilities.
Collapse
|
6
|
Walsh LJ. Minimal intervention management of the older patient. Br Dent J 2017; 223:151-161. [DOI: 10.1038/sj.bdj.2017.660] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2017] [Indexed: 01/08/2023]
|
7
|
de Freitas GC, Pinto TMP, Grellmann AP, Dutra DAM, Susin C, Kantorski KZ, Moreira CHC. Effect of self-performed mechanical plaque control frequency on gingival inflammation revisited: a randomized clinical trial. J Clin Periodontol 2016; 43:354-8. [DOI: 10.1111/jcpe.12520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Affiliation(s)
- Guilherme Camponogara de Freitas
- Division of Periodontology; Department of Stomatology; School of Dentistry; Federal University of Santa Maria; Santa Maria Brazil
| | - Tatiana Militz Perrone Pinto
- Division of Periodontology; Department of Stomatology; School of Dentistry; Federal University of Santa Maria; Santa Maria Brazil
| | - Alessandra Pascotini Grellmann
- Division of Periodontology; Department of Stomatology; School of Dentistry; Federal University of Santa Maria; Santa Maria Brazil
| | - Danilo Antonio Milbradt Dutra
- Division of Periodontology; Department of Stomatology; School of Dentistry; Federal University of Santa Maria; Santa Maria Brazil
| | - Cristiano Susin
- Department of Periodontics; College of Dental Medicine; Georgia Regents University; Augusta GA USA
| | - Karla Zanini Kantorski
- Division of Periodontology; Department of Stomatology; School of Dentistry; Federal University of Santa Maria; Santa Maria Brazil
| | - Carlos Heitor Cunha Moreira
- Division of Periodontology; Department of Stomatology; School of Dentistry; Federal University of Santa Maria; Santa Maria Brazil
| |
Collapse
|
8
|
Song L, Hou J, van der Mei H, Veeregowda D, Busscher H, Sjollema J. Antimicrobials Influence Bond Stiffness and Detachment of Oral Bacteria. J Dent Res 2016; 95:793-9. [DOI: 10.1177/0022034516634631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Oral biofilm can never be fully removed by oral hygiene measures. Biofilm left behind after brushing is often left behind on the same sites and exposed multiple times to antimicrobials from toothpastes and mouthrinses, after which removal becomes increasingly difficult. On the basis of this observation, we hypothesize that oral bacteria adhering to salivary conditioning films become more difficult to remove after adsorption of antimicrobials due to stiffening of their adhesive bond. To verify this hypothesis, bacteria adhering to bare and saliva-coated glass were exposed to 3 different mouthrinses, containing chlorhexidine-digluconate, cetylpyridinium-chloride, or amine-fluoride, after which bacterial vibration spectroscopy was carried out or a liquid-air interface was passed over the adhering bacteria to stimulate their detachment. Brownian motion–induced nanoscopic vibration amplitudes of 4 oral streptococcal strains, reflecting their bond stiffness, decreased after exposure to mouthrinses. Concurrently, the percentage detachment of adhering bacteria upon the passage of a liquid-air interface decreased after exposure to mouthrinses. A buffer control left both vibration amplitudes and detachment percentages unaffected. Exposure to either of the selected mouthrinses yielded more positively charged bacteria by particulate microelectrophoresis, suggesting antimicrobial adsorption to bacterial cell surface components. To rule out that exposure of adhering bacteria to the mouthrinses stimulated polysaccharide production with an impact on their detachment, Fourier transform infrared spectroscopy was carried out on bacteria adhering to an internal reflection element, prior to and after exposure to the mouthrinses. Infrared absorption band areas indicated no significant change in amount of polysaccharides after exposure of adhering bacteria to mouthrinses, but wave number shifts demonstrated stiffening of polysaccharides in the bond, as a result of antimicrobial adsorption to the bacterial cell surface and in line with changes in surface charge. Clinically, these findings suggest that accumulation of oral biofilm exposed to antimicrobials should be prevented (interdental cleaning aids, floss use), as removal becomes progressively more difficult upon multiple exposures.
Collapse
Affiliation(s)
- L. Song
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, AV Groningen, the Netherlands
| | - J. Hou
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, AV Groningen, the Netherlands
| | - H.C. van der Mei
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, AV Groningen, the Netherlands
| | - D.H. Veeregowda
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, AV Groningen, the Netherlands
| | - H.J. Busscher
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, AV Groningen, the Netherlands
| | - J. Sjollema
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, AV Groningen, the Netherlands
| |
Collapse
|
9
|
Jongsma MA, van de Lagemaat M, Busscher HJ, Geertsema-Doornbusch GI, Atema-Smit J, van der Mei HC, Ren Y. Synergy of brushing mode and antibacterial use on in vivo biofilm formation. J Dent 2015; 43:1580-6. [DOI: 10.1016/j.jdent.2015.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 07/07/2015] [Accepted: 08/04/2015] [Indexed: 11/28/2022] Open
|
10
|
In vivo biofilm formation on stainless steel bonded retainers during different oral health-care regimens. Int J Oral Sci 2015; 7:42-8. [PMID: 25572920 PMCID: PMC4817537 DOI: 10.1038/ijos.2014.69] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2014] [Indexed: 11/21/2022] Open
Abstract
Retention wires permanently bonded to the anterior teeth are used after orthodontic treatment to prevent the teeth from relapsing to pre-treatment positions. A disadvantage of bonded retainers is biofilm accumulation on the wires, which produces a higher incidence of gingival recession, increased pocket depth and bleeding on probing. This study compares in vivo biofilm formation on single-strand and multi-strand retention wires with different oral health-care regimens. Two-centimetre wires were placed in brackets that were bonded to the buccal side of the first molars and second premolars in the upper arches of 22 volunteers. Volunteers used a selected toothpaste with or without the additional use of a mouthrinse containing essential oils. Brushing was performed manually. Regimens were maintained for 1 week, after which the wires were removed and the oral biofilm was collected to quantify the number of organisms and their viability, determine the microbial composition and visualize the bacteria by electron microscopy. A 6-week washout period was employed between regimens. Biofilm formation was reduced on single-strand wires compared with multi-strand wires; bacteria were observed to adhere between the strands. The use of antibacterial toothpastes marginally reduced the amount of biofilm on both wire types, but significantly reduced the viability of the biofilm organisms. Additional use of the mouthrinse did not result in significant changes in biofilm amount or viability. However, major shifts in biofilm composition were induced by combining a stannous fluoride- or triclosan-containing toothpaste with the mouthrinse. These shifts can be tentatively attributed to small changes in bacterial cell surface hydrophobicity after the adsorption of the toothpaste components, which stimulate bacterial adhesion to the hydrophobic oil, as illustrated for a Streptococcus mutans strain.
Collapse
|
11
|
Kouidhi B, Al Qurashi YMA, Chaieb K. Drug resistance of bacterial dental biofilm and the potential use of natural compounds as alternative for prevention and treatment. Microb Pathog 2015; 80:39-49. [PMID: 25708507 DOI: 10.1016/j.micpath.2015.02.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/16/2015] [Accepted: 02/19/2015] [Indexed: 11/19/2022]
Abstract
Oral diseases, such as dental caries and periodontal disease are directly linked with the ability of bacteria to form biofilm. The development of dental caries involves acidogenic and aciduric Gram-positive bacteria colonizing the supragingival biofilm (Streptococcus, Lactobacillus and Actinomycetes). Periodontal diseases have been linked to anaerobic Gram-negative bacteria forming a subgingival plaque (Porphyromonas gingivalis, Actinobacillus, Prevotella and Fusobacterium). Cells embedded in biofilm are up to 1000-fold more resistant to antibiotics compared to their planctonic ones. Several mechanisms have been proposed to explain biofilms drug resistance. Given the increased bacterial resistance to antibiotics currently used in dentistry, a great importance is given to natural compounds for the prevention of oral bacterial growth, adhesion and colonization. Over the past decade, interest in drugs derived from medicinal plants has markedly increased. It has been well documented that medicinal plants and natural compounds confer considerable antibacterial activity against various microorganisms including cariogenic and periodontal pathogens. This paper provides a review of the literature focusing on the studies on (i) biofilm in the oral cavity, (ii) drug resistance of bacterial biofilm and (iii) the potential use of plant extracts, essential oils and natural compounds as biofilm preventive agents in dentistry, involving their origin and their mechanism of biofilm inhibition.
Collapse
Affiliation(s)
- Bochra Kouidhi
- College of Applied Medical Sciences, Medical Laboratory Department, Yanbu, Taibah University, Saudi Arabia.
| | | | - Kamel Chaieb
- College of Sciences, Biology Department, Yanbu, Taibah University, Saudi Arabia
| |
Collapse
|
12
|
On-demand antimicrobial release from a temperature-sensitive polymer — Comparison with ad libitum release from central venous catheters. J Control Release 2014; 188:61-6. [DOI: 10.1016/j.jconrel.2014.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/05/2014] [Accepted: 06/10/2014] [Indexed: 11/18/2022]
|
13
|
Jongsma MA, Pelser FDH, van der Mei HC, Atema-Smit J, van de Belt-Gritter B, Busscher HJ, Ren Y. Biofilm formation on stainless steel and gold wires for bonded retainers in vitro and in vivo and their susceptibility to oral antimicrobials. Clin Oral Investig 2012; 17:1209-18. [PMID: 22855266 DOI: 10.1007/s00784-012-0807-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 07/19/2012] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Bonded retainers are used in orthodontics to maintain treatment result. Retention wires are prone to biofilm formation and cause gingival recession, bleeding on probing and increased pocket depths near bonded retainers. In this study, we compare in vitro and in vivo biofilm formation on different wires used for bonded retainers and the susceptibility of in vitro biofilms to oral antimicrobials. MATERIALS AND METHODS Orthodontic wires were exposed to saliva, and in vitro biofilm formation was evaluated using plate counting and live/dead staining, together with effects of exposure to toothpaste slurry alone or followed by antimicrobial mouthrinse application. Wires were also placed intra-orally for 72 h in human volunteers and undisturbed biofilm formation was compared by plate counting and live/dead staining, as well as by denaturing gradient gel electrophoresis for compositional differences in biofilms. RESULTS Single-strand wires attracted only slightly less biofilm in vitro than multi-strand wires. Biofilms on stainless steel single-strand wires however, were much more susceptible to antimicrobials from toothpaste slurries and mouthrinses than on single-strand gold wires and biofilms on multi-strand wires. Also, in vivo significantly less biofilm was found on single-strand than on multi-strand wires. Microbial composition of biofilms was more dependent on the volunteer involved than on wire type. CONCLUSIONS Biofilms on single-strand stainless steel wires attract less biofilm in vitro and are more susceptible to antimicrobials than on multi-strand wires. Also in vivo, single-strand wires attract less biofilm than multi-strand ones. CLINICAL SIGNIFICANCE Use of single-strand wires is preferred over multi-strand wires, not because they attract less biofilm, but because biofilms on single-strand wires are not protected against antimicrobials as in crevices and niches as on multi-strand wires.
Collapse
Affiliation(s)
- Marije A Jongsma
- Department of Orthodontics, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700, Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|