1
|
Urushima H, Matsubara T, Qiongya G, Daikoku A, Takayama M, Kadono C, Nakai H, Ikeya Y, Yuasa H, Ikeda K. AHCC inhibited hepatic stellate cells activation by regulation of cytoglobin induction via TLR2-SAPK/JNK pathway and collagen production via TLR4-NF-κβ pathway. Am J Physiol Gastrointest Liver Physiol 2024; 327:G741-G753. [PMID: 39316687 PMCID: PMC11684891 DOI: 10.1152/ajpgi.00134.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Cirrhosis, which represents the end stage of liver fibrosis, remains a life-threatening condition without effective treatment. Therefore, prevention of the progression of liver fibrosis through lifestyle habits such as diet and exercise is crucial. The functional food AHCC, a standardized extract of cultured Lentinula edodes mycelia produced by Amino Up Co., Ltd. (Sapporo, Japan)] has been reported to be effective in improving the pathophysiology of various liver diseases. In this study, the aim was to analyze the influence of AHCC on hepatic stellate cells, which are responsible for liver fibrosis. Eight-week-old male C57BL6/j mice were induced with liver fibrosis by intraperitoneal injection of carbon tetrachloride. Simultaneously, they were orally administered 3% AHCC to investigate its impact on the progression of liver fibrosis. Using the human hepatic stellate cell (HHSteC) line, we analyzed the influence of AHCC on the expression of molecules related to hepatic stellate cell activation. The administration of AHCC resulted in reduced expression of collagen1a, α smooth muscle actin (αSMA), and heat shock protein 47 in the liver. Furthermore, the expression of cytoglobin, a marker for quiescent hepatic stellate cells, was enhanced. In vitro study, it was confirmed that AHCC inhibited αSMA by inducing cytoglobin via upregulating the stress-activated protein kinase/Jun NH2-terminal kinase (SAPK/JNK) pathway through Toll-like receptor (TLR) 2. In addition, AHCC suppressed collagen1a production by hepatic stellate cells through TLR4-NF-κβ pathway. AHCC was suggested to suppress hepatic fibrosis by inhibition of hepatic stellate cells activation. Daily intake of AHCC from mild fibrotic stages may have the potential to prevent the progression of liver fibrosis.NEW & NOTEWORTHY AHCC, a standardized extract of cultured Lentinula edodes mycelia, suppresses liver fibrosis progression by induction of cytoglobin via the Toll-like receptor 2 (TLR2)-stress-activated protein kinase/Jun NH2-terminal kinase (SAPK/JNK) pathway and the inhibition of collagen production via the TLR4-NFκβ pathway in hepatic stellate cells. Daily oral administration of AHCC from the stage of MASLD may have the potential to prevent disease progression to MASH with fibrosis.
Collapse
Affiliation(s)
- Hayato Urushima
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Laboratory Animal Facility, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Gu Qiongya
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Atsuko Daikoku
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Misako Takayama
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Chiho Kadono
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hikaru Nakai
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yukinobu Ikeya
- Faculty of Pharmacy, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Hideto Yuasa
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kazuo Ikeda
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
2
|
Lee S, Kim M, Hong S, Kim EJ, Kim JH, Sohn Y, Jung HS. Effects of Sparganii Rhizoma on Osteoclast Formation and Osteoblast Differentiation and on an OVX-Induced Bone Loss Model. Front Pharmacol 2022; 12:797892. [PMID: 35058781 PMCID: PMC8764242 DOI: 10.3389/fphar.2021.797892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022] Open
Abstract
Postmenopausal osteoporosis is caused by an imbalance between osteoclasts and osteoblasts and causes severe bone loss. Osteoporotic medicines are classified into bone resorption inhibitors and bone formation promoters according to the mechanism of action. Long-term use of bisphosphonate and selective estrogen receptor modulators (SERMs) can cause severe side effects in postmenopausal osteoporosis patients. Therefore, it is important to find alternative natural products that reduce osteoclast activity and increase osteoblast formation. Sparganii Rhizoma (SR) is the dried tuberous rhizome of Sparganium stoloniferum Buchanan-Hamilton and is called “samreung” in Korea. However, to date, the effect of SR on osteoclast differentiation and the ovariectomized (OVX)-induced bone loss model has not been reported. In vitro, tartrate-resistant acid phosphatase (TRAP) staining, western blots, RT-PCR and other methods were used to examine the effect of SR on osteoclast differentiation and osteoblasts. In vivo, we confirmed the effect of SR in a model of OVX-induced postmenopausal osteoporosis. SR inhibited osteoclast differentiation and decreased the expression of TNF receptor-associated factor 6 (TRAF6), nuclear factor of activated T cells 1 (NFATc1) and c-Fos pathway. In addition, SR stimulates osteoblast differentiation and increased protein expression of the bone morphogenetic protein 2 (BMP-2)/SMAD signaling pathway. Moreover, SR protected against bone loss in OVX-induced rats. Our results appear to advance our knowledge of SR and successfully demonstrate its potential role as a osteoclastogenesis-inhibiting and osteogenesis-promoting herbal medicine for the treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Sungyub Lee
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Minsun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sooyeon Hong
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Eom Ji Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jae-Hyun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
3
|
Alizadehgharib S, Östberg AK, Dahlstrand Rudin A, Dahlgren U, Christenson K. The effects of the dental methacrylates TEGDMA, Bis-GMA, and UDMA on neutrophils in vitro. Clin Exp Dent Res 2020; 6:439-447. [PMID: 32543782 PMCID: PMC7453771 DOI: 10.1002/cre2.296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 12/30/2022] Open
Abstract
Objectives The prevalent usage of methacrylates in modern dentistry demands good knowledge of their biological impacts. While there have been several studies demonstrating the effects of different methacrylic monomers on mononuclear white blood cells, very little is known about the effects caused by these monomers on neutrophilic granulocytes. The objective of this study was to add novel knowledge about how neutrophils are affected by exposure to triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA), and bisphenol A glycol dimethacrylate (Bis‐GMA) alone or in combinations. Materials and Methods Isolated neutrophils were cultured in the presence or absence of methacrylates. The IL‐8 release was measured using a DuoSet ELISA development kit. Apoptosis and necrosis were analyzed using flow cytometry. The formation of neutrophil extracellular traps (NETs) was investigated using Sytox green DNA staining combined with microscopically examination of released DNA and myeloperoxidase (MPO). Results The release of IL‐8 was significantly increased after exposure to TEGDMA, Bis‐GMA, UDMA, or TEGDMA in combination with Bis‐GMA or UDMA compared to the unstimulated controls. Exposure to TEGDMA, UDMA, and Bis‐GMA for 24 hr separately or in combination did not affect apoptosis or necrosis of the exposed neutrophils. NET structures were formed by neutrophils after exposure to the different combinations of the methacrylates. Conclusion The combination of TEGDMA and Bis‐GMA had a synergistic proinflammatory effect on neutrophils by increasing the release of IL‐8 and the formation of NET structures. The changes in the normal functions of neutrophils caused by methacrylate exposure may lead to altered inflammatory response and relate to previously reported adverse immune reactions caused by these substances.
Collapse
Affiliation(s)
- Sara Alizadehgharib
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ann-Karin Östberg
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Agnes Dahlstrand Rudin
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Dahlgren
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Christenson
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Mountcastle SE, Cox SC, Sammons RL, Jabbari S, Shelton RM, Kuehne SA. A review of co-culture models to study the oral microenvironment and disease. J Oral Microbiol 2020; 12:1773122. [PMID: 32922679 PMCID: PMC7448840 DOI: 10.1080/20002297.2020.1773122] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/25/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Co-cultures allow for the study of cell-cell interactions between different eukaryotic species or with bacteria. Such an approach has enabled researchers to more closely mimic complex tissue structures. This review is focused on co-culture systems modelling the oral cavity, which have been used to evaluate this unique cellular environment and understand disease progression. Over time, these systems have developed significantly from simple 2D eukaryotic cultures and planktonic bacteria to more complex 3D tissue engineered structures and biofilms. Careful selection and design of the co-culture along with critical parameters, such as seeding density and choice of analysis method, have resulted in several advances. This review provides a comparison of existing co-culture systems for the oral environment, with emphasis on progression of 3D models and the opportunity to harness techniques from other fields to improve current methods. While filling a gap in navigating this literature, this review ultimately supports the development of this vital technique in the field of oral biology.
Collapse
Affiliation(s)
- Sophie E Mountcastle
- EPSRC Centre for Doctoral Training in Physical Sciences for Health, University of Birmingham, Birmingham, UK
- School of Dentistry, University of Birmingham, Birmingham, UK
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | | | - Sara Jabbari
- School of Mathematics, University of Birmingham, Birmingham, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | - Sarah A Kuehne
- School of Dentistry, University of Birmingham, Birmingham, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Ghilardi SJ, O'Reilly BM, Sgro AE. Intracellular signaling dynamics and their role in coordinating tissue repair. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1479. [PMID: 32035001 PMCID: PMC7187325 DOI: 10.1002/wsbm.1479] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/20/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022]
Abstract
Tissue repair is a complex process that requires effective communication and coordination between cells across multiple tissues and organ systems. Two of the initial intracellular signals that encode injury signals and initiate tissue repair responses are calcium and extracellular signal-regulated kinase (ERK). However, calcium and ERK signaling control a variety of cellular behaviors important for injury repair including cellular motility, contractility, and proliferation, as well as the activity of several different transcription factors, making it challenging to relate specific injury signals to their respective repair programs. This knowledge gap ultimately hinders the development of new wound healing therapies that could take advantage of native cellular signaling programs to more effectively repair tissue damage. The objective of this review is to highlight the roles of calcium and ERK signaling dynamics as mechanisms that link specific injury signals to specific cellular repair programs during epithelial and stromal injury repair. We detail how the signaling networks controlling calcium and ERK can now also be dissected using classical signal processing techniques with the advent of new biosensors and optogenetic signal controllers. Finally, we advocate the importance of recognizing calcium and ERK dynamics as key links between injury detection and injury repair programs that both organize and execute a coordinated tissue repair response between cells across different tissues and organs. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Biological Mechanisms > Cell Signaling Laboratory Methods and Technologies > Imaging Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models.
Collapse
Affiliation(s)
- Samuel J. Ghilardi
- Department of Biomedical Engineering and the Biological Design CenterBoston UniversityBostonMassachusetts
| | - Breanna M. O'Reilly
- Department of Biomedical Engineering and the Biological Design CenterBoston UniversityBostonMassachusetts
| | - Allyson E. Sgro
- Department of Biomedical Engineering and the Biological Design CenterBoston UniversityBostonMassachusetts
| |
Collapse
|
6
|
Becher R, Valen H, Olderbø BP, Bølling AK, Samuelsen JT. The dental monomer 2-hydroxyethyl methacrylate (HEMA) causes transcriptionally regulated adaptation partially initiated by electrophilic stress. Dent Mater 2019; 35:125-134. [DOI: 10.1016/j.dental.2018.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022]
|
7
|
Le Clerc J, Tricot-Doleux S, Pellen-Mussi P, Pérard M, Jeanne S, Pérez F. Expression of factors involved in dental pulp physiopathological processes by nemotic human pulpal fibroblasts. Int Endod J 2017; 51 Suppl 2:e94-e106. [DOI: 10.1111/iej.12762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/06/2017] [Indexed: 12/16/2022]
Affiliation(s)
- J. Le Clerc
- Faculté d'Odontologie; Equipe Verres et Céramiques; UMR CNRS 6226; Institut des Sciences Chimiques de Rennes, Université de Rennes 1; Rennes France
- Service d'Odontologie Conservatrice et Endodontie; Centre Hospitalier Universitaire; Rennes France
| | - S. Tricot-Doleux
- Faculté d'Odontologie; Equipe Verres et Céramiques; UMR CNRS 6226; Institut des Sciences Chimiques de Rennes, Université de Rennes 1; Rennes France
| | - P. Pellen-Mussi
- Faculté d'Odontologie; Equipe Verres et Céramiques; UMR CNRS 6226; Institut des Sciences Chimiques de Rennes, Université de Rennes 1; Rennes France
| | - M. Pérard
- Faculté d'Odontologie; Equipe Verres et Céramiques; UMR CNRS 6226; Institut des Sciences Chimiques de Rennes, Université de Rennes 1; Rennes France
- Service d'Odontologie Conservatrice et Endodontie; Centre Hospitalier Universitaire; Rennes France
| | - S. Jeanne
- Faculté d'Odontologie; Equipe Verres et Céramiques; UMR CNRS 6226; Institut des Sciences Chimiques de Rennes, Université de Rennes 1; Rennes France
- Service de Parodontologie; Centre Hospitalier Universitaire; Rennes France
| | - F. Pérez
- Service d'Odontologie Conservatrice et Endodontie; Centre Hospitalier Universitaire; Nantes France
| |
Collapse
|