1
|
Fayazi M, Rostami M, Amiri Moghaddam M, Nasiri K, Tadayonfard A, Roudsari MB, Ahmad HM, Parhizgar Z, Majbouri Yazdi A. A state-of-the-art review of the recent advances in drug delivery systems for different therapeutic agents in periodontitis. J Drug Target 2025; 33:612-647. [PMID: 39698877 DOI: 10.1080/1061186x.2024.2445051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Periodontitis (PD) is a chronic gum illness that may be hard to cure for a number of reasons, including the fact that no one knows what causes it, the side effects of anti-microbial treatment, and how various kinds of bacteria interact with one another. As a result, novel therapeutic approaches for PD treatment must be developed. Additionally, supplementary antibacterial regimens, including local and systemic medication administration of chemical agents, are necessary for deep pockets to assist with mechanical debridement of tooth surfaces. As our knowledge of periodontal disease and drug delivery systems (DDSs) grows, new targeted delivery systems like extracellular vesicles, lipid-based nanoparticles (NPs), metallic NPs, and polymer NPs have been developed. These systems aim to improve the targeting and precision of PD treatments while reducing the systemic side effects of antibiotics. Nanozymes, photodermal therapy, antibacterial metallic NPs, and traditional PD therapies have all been reviewed in this research. Medicinal herbs, antibiotics, photothermal therapy, nanozymes, antibacterial metallic NPs, and conventional therapies for PD have all been examined in this research. After that, we reviewed the key features of many innovative DDSs and how they worked for PD therapy. Finally, we have discussed the advantages and disadvantages of these DDSs.
Collapse
Affiliation(s)
- Mehrnaz Fayazi
- School of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Mitra Rostami
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Azadeh Tadayonfard
- Department of Prosthodontics, Dental Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Behnam Roudsari
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Zahra Parhizgar
- Resident of Periodontology, Department of Periodontics, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
2
|
Costa R, Reis-Pardal J, Arantes-Oliveira S, Ferreira JC, Azevedo LF, Melo P. Biomimetic Remineralization Strategies for Dentin Bond Stability-Systematic Review and Network Meta-Analysis. Int J Mol Sci 2025; 26:3488. [PMID: 40331951 PMCID: PMC12027409 DOI: 10.3390/ijms26083488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/05/2025] [Accepted: 04/06/2025] [Indexed: 05/08/2025] Open
Abstract
This systematic review and network meta-analysis aimed to evaluate the bond strength of artificial caries-affected dentin (ACAD) of permanent human teeth with and without biomimetic remineralization (BR), assessed based on in vitro studies. Following PRISMA guidelines, we conducted a systematic search until June 2023, identifying 82 eligible articles for full-text analysis. We assessed the study characteristics, methodological quality, and summary results. Bond strength was examined immediately and after artificial aging using three bond strength tests. We performed meta-regressions (using OpenBUGS software) to explore the relationship between the independent variable's adhesive application technique (Etch-and-Rinse or Self-Etch) and ACAD protocol (chemical or biological) and the dependent variable of bond strength. Additionally, we conducted random-effect NMAs (using CINEMA software) to compare the effect of multiple interventions per application technique and ACAD protocol simultaneously. Among the included studies that compared various BR strategies, most studies (19 out of 22) presented a medium risk of bias. In some comparisons, the meta-regression results revealed a significant association between bond strength at 24 h and both the adhesive application technique and the ACAD protocol. Our findings indicate the potential of BR to enhance bond strength in human ACAD in in vitro settings.
Collapse
Affiliation(s)
- Rosário Costa
- Faculty of Dental Medicine, Department of Operative Dentistry, University of Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; (J.C.F.); (P.M.)
| | - Joana Reis-Pardal
- CINTESIS@RISE—Center for Health Technology and Services Research (CINTESIS), Health Research Network Associated Laboratory (RISE), University of Porto, 4200-450 Porto, Portugal; (J.R.-P.); (L.F.A.)
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIS), Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Sofia Arantes-Oliveira
- Department of Dental Biomaterials, Faculty of Dental Medicine, University of Lisbon, Cidade Universitária, Rua Prof.ª Teresa Ambrósio, 1600-277 Lisbon, Portugal;
| | - João Cardoso Ferreira
- Faculty of Dental Medicine, Department of Operative Dentistry, University of Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; (J.C.F.); (P.M.)
| | - Luis Filipe Azevedo
- CINTESIS@RISE—Center for Health Technology and Services Research (CINTESIS), Health Research Network Associated Laboratory (RISE), University of Porto, 4200-450 Porto, Portugal; (J.R.-P.); (L.F.A.)
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIS), Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Paulo Melo
- Faculty of Dental Medicine, Department of Operative Dentistry, University of Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; (J.C.F.); (P.M.)
- EpiUnit, ITR, Institute of Public Health, University of Porto, Rua das Taipas, n° 135, 4050-600 Porto, Portugal
| |
Collapse
|
3
|
Dai D, Li D, Zhang C. Unraveling Nanomaterials in Biomimetic Mineralization of Dental Hard Tissue: Focusing on Advantages, Mechanisms, and Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405763. [PMID: 39206945 PMCID: PMC11516058 DOI: 10.1002/advs.202405763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The demineralization of dental hard tissue imposes considerable health and economic burdens worldwide, but an optimal method that can repair both the chemical composition and complex structures has not been developed. The continuous development of nanotechnology has created new opportunities for the regeneration and repair of dental hard tissue. Increasingly studies have reported that nanomaterials (NMs) can induce and regulate the biomimetic mineralization of dental hard tissue, but few studies have examined how they are involved in the different stages, let alone the relevant mechanisms of action. Besides their nanoscale dimensions and excellent designability, NMs play a corresponding role in the function of the raw materials for mineralization, mineralized microenvironment, mineralization guidance, and the function of mineralized products. This review comprehensively summarizes the advantages of NMs and examines the specific mineralization mechanisms. Design strategies to promote regeneration and repair are summarized according to the application purpose of NMs in the oral cavity, and limitations and development directions in dental hard tissue remineralization are proposed. This review can provide a theoretical basis to understand the interaction between NMs and the remineralization of dental hard tissue, thereby optimizing design strategy, rational development, and clinical application of NMs in the field of remineralization.
Collapse
Affiliation(s)
- Danni Dai
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Dan Li
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Chao Zhang
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| |
Collapse
|
4
|
Toledano M, Fernández-Romero E, Aguilera FS, Osorio E, Rodríguez-Santana JA, Garrido M, Solís PA, García-Godoy F, Osorio R. Tunable polymer-peptide hybrids for dentin tissue repair. J Dent 2024; 148:105027. [PMID: 38679137 DOI: 10.1016/j.jdent.2024.105027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024] Open
Abstract
OBJECTIVES This study targets to assess the remineralization capability of conditioned dentin infiltrated with polymeric nanoparticles (NPs) doped with tideglusib (TDg) (TDg-NPs). METHODS Dentin conditioned surfaces were infiltrated with NPs and TDg-NPs. Bonded interfaces were created, stored for 24 h and submitted to mechanical and thermal challenging. Resin-dentin interfaces were evaluated through nanohardness, Masson's trichrome staining microscopy, and Raman analysis. RESULTS Dentin surfaces treated with TDg-NPs and load cycled produced higher nanohardness than the rest of the groups at the hybrid layer. At the bottom of the hybrid layer, all samples treated with TDg-NPs showed higher nanohardness than the rest of the groups. Active remineralization underneath the hybrid layer was detected in all groups after TDg application and load cycling, inducting new dentinal tubuli formation. After thermocycling, remineralization at the hybrid layer was not evidenced in the absence of NPs. Raman analysis showed increase mineralization, enriched carbonate apatite formation, and improved crosslinking and scaffolding of the collagen. CONCLUSIONS Mechanical loading on the specimens obtained after TDg-NPs dentin infiltration inducts an increase of mineralization at the resin/dentin interface, indicating remineralization of peritubular and intertubular dentin with augmented crystallographic maturity in crystals. Enriched collagen quality was produced, generating an adequate matrix organization to promote apatite nucleation, after tideglusib infiltration. CLINICAL SIGNIFICANCE At the present research, it has been proved the creation of reparative dentin, at the resin-dentin interface, after tideglusib dentin infiltration. Chemical stability, to favor integrity of the resin-dentin interface, is warranted in the presence of the TDg-NPs in the demineralized dentin collagen.
Collapse
Affiliation(s)
- Manuel Toledano
- University of Granada, Faculty of Dentistry. Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Enrique Fernández-Romero
- University of Granada, Faculty of Dentistry. Colegio Máximo de Cartuja s/n, Granada 18071, Spain; Medicina Clínica y Salud Pública PhD Programme, University of Granada, 18071 Granada, Spain
| | - Fátima S Aguilera
- University of Granada, Faculty of Dentistry. Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Estrella Osorio
- University of Granada, Faculty of Dentistry. Colegio Máximo de Cartuja s/n, Granada 18071, Spain.
| | - José A Rodríguez-Santana
- University of Granada, Faculty of Dentistry. Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Macarena Garrido
- University of Granada, Faculty of Dentistry. Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Pedro A Solís
- University of Granada, Faculty of Dentistry. Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Franklin García-Godoy
- Health Science Center, College of Dentistry, University of Tennessee, 875 Union Avenue, Memphis, TN 38103, United States
| | - Raquel Osorio
- University of Granada, Faculty of Dentistry. Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| |
Collapse
|
5
|
Li M, Zheng H, Xu Y, Qiu Y, Wang Y, Jin X, Zhang Z, Zhang L, Fu B. The influence of neutral MDP-Na salt on dentin bond performance and remineralization potential of etch-&-rinse adhesive. BMC Oral Health 2024; 24:997. [PMID: 39182086 PMCID: PMC11344973 DOI: 10.1186/s12903-024-04756-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVES To investigate the effect of neutral 10-methacryloyloxydecyl dihydrogen phosphate salt (MDP-Na) on the dentin bond strength and remineralization potential of etch-&-rinse adhesive. METHODS Two experimental etch-&-rinse adhesives were formulated by incorporating 0 wt% (E0) or 20 wt% (E20) neutral MDP-Na into a basic primer. A commercial adhesive, Adper Single Bond 2 (SB, 3 M ESPE), served as the control. Sixty prepared teeth were randomly allocated into three groups (n = 20) and bonded using either one of the experimental adhesives or SB. Following 24 h of water storage, the bonded specimens were sectioned into resin-dentin sticks, with four resin-dentin sticks obtained from each tooth for microtensile bond strength (MTBS) test. Half of the sticks from each group were immediately subjected to tensile loading using a microtensile tester at a crosshead speed of 1 mm/min, while the other half underwent tensile loading after 6-month incubation in artificial saliva (AS). The degree of conversion (DC) of both the control and experimental adhesives (n = 6 in each group) and the adsorption properties of MDP-Na on the dentin organic matrix (n = 5 in each group) were determined using Fourier-transform infrared spectrometry. Furthermore, the effectiveness of neutral MDP-Na in promoting the mineralization of two-dimensional collagen fibrils and the adhesive-dentin interface was explored using transmission electron microscopy and selected-area electron diffraction. Two- and one-way ANOVA was employed to assess the impact of adhesive type and water storage on dentin bond strength and the DC (α = 0.05). RESULTS The addition of MDP-Na into the primer increased both the short- and long-term MTBS of the experimental adhesives (p = 0.00). No difference was noted in the DC between the control, E0 and E20 groups (p = 0.366). The MDP-Na remained absorbed on the demineralized dentin even after thorough rinsing. The intra- and extra-fibrillar mineralization of the two-dimensional collagen fibril and dentin bond hybrid layer was confirmed by transmission electron microscopy and selected-area electron diffraction when the primer was added with MDP-Na. CONCLUSIONS The use of neutral MDP-Na results in high-quality hybrid layer that increase the dentin bond strength of etch-&-rinse adhesive and provides the adhesive with remineralizing capability. This approach may represent a suitable bonding strategy for improving the dentin bond strength and durability of etch-&-rinse adhesive.
Collapse
Affiliation(s)
- Mingxing Li
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Yan'an Rd 395, Hangzhou, 310000, Zhejiang, China
| | - Haiyan Zheng
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Yan'an Rd 395, Hangzhou, 310000, Zhejiang, China
| | - Yuedan Xu
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Yan'an Rd 395, Hangzhou, 310000, Zhejiang, China
| | - Yuan Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Yan'an Rd 395, Hangzhou, 310000, Zhejiang, China
| | - Yinlin Wang
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Yan'an Rd 395, Hangzhou, 310000, Zhejiang, China
| | - Xiaoting Jin
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Yan'an Rd 395, Hangzhou, 310000, Zhejiang, China
| | - Zhengyi Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Yan'an Rd 395, Hangzhou, 310000, Zhejiang, China
| | - Ling Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Yan'an Rd 395, Hangzhou, 310000, Zhejiang, China.
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Yan'an Rd 395, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
6
|
Toledano M, Osorio E, Osorio MT, Aguilera FS, Toledano R, Romero EF, Osorio R. Dexamethasone-doped nanoparticles improve mineralization, crystallinity and collagen structure of human dentin. J Dent 2023; 130:104447. [PMID: 36754111 DOI: 10.1016/j.jdent.2023.104447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023] Open
Abstract
OBJECTIVES Bioactive materials have been used for functionalization of adhesives to promote dentin remineralization. This study aims to evaluate bonding ability and both mechanical and chemical behavior of demineralized dentin infiltrated with polymeric nanoparticles doped with dexamethasone (Dex-NPs). METHODS Dentin conditioned surfaces were infiltrated with NPs, Dex-NPs or Dex-Zn-NPs. Bonded interfaces were also created and stored for 24 h or 21d, and then submitted to microtensile bond strength testing. Dentin remineralization was analyzed by Nanohardness, Young's modulus and Raman analysis. RESULTS At 21d of storage, dentin treated with undoped-NPs attained the lowest nanohardness and Young's modulus. Dex-NPs and Zn-Dex-NPs increased dentin nanohardness and Young's modulus after 21d Raman analysis showed high remineralization, crystallinity, crosslinking and better structure of collagen when functionalized Dex-NPs were present at the dentin interface. CONCLUSIONS Infiltration of dentin with Dex-NPs promoted functional remineralization as proved by nanomechanical and morpho-chemical evaluation tests. Dexamethasone in dentin facilitated crystallographic maturity, crystallinity and improved maturity and secondary structure of dentin collagen. CLINICAL SIGNIFICANCE Using dexamethasone-functionalized NPs before resin infiltration is a clear option to obtain dentin remineralization, as these NPs produce the reinforcement of the dentin structure, which will lead to the improvement of the longevity of resin restorations.
Collapse
Affiliation(s)
- Manuel Toledano
- Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, University of Granada, Granada 18071, Spain
| | - Estrella Osorio
- Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, University of Granada, Granada 18071, Spain
| | - María T Osorio
- Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, University of Granada, Granada 18071, Spain
| | - Fátima S Aguilera
- Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, University of Granada, Granada 18071, Spain.
| | - Raquel Toledano
- Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, University of Granada, Granada 18071, Spain
| | - Enrique Fernández- Romero
- Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, University of Granada, Granada 18071, Spain
| | - Raquel Osorio
- Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, University of Granada, Granada 18071, Spain
| |
Collapse
|
7
|
Porto ICCDM, Lôbo TDLGF, Rodrigues RF, Lins RBE, da Silva MAB. Insight into the development of versatile dentin bonding agents to increase the durability of the bonding interface. FRONTIERS IN DENTAL MEDICINE 2023; 4:1127368. [PMID: 39916922 PMCID: PMC11797806 DOI: 10.3389/fdmed.2023.1127368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2025] Open
Abstract
Despite the huge improvements made in adhesive technology over the past 50 years, there are still some unresolved issues regarding the durability of the adhesive interface. A complete sealing of the interface between the resin and the dentin substrate remains difficult to achieve, and it is doubtful whether an optimal interdiffusion of the adhesive system within the demineralized collagen framework can be produced in a complete and homogeneous way. In fact, it is suggested that hydrolytic degradation, combined with the action of dentin matrix enzymes, destabilizes the tooth-adhesive bond and disrupts the unprotected collagen fibrils. While a sufficient resin-dentin adhesion is usually achieved immediately, bonding efficiency declines over time. Thus, here, a review will be carried out through a bibliographic survey of scientific articles published in the last few years to present strategies that have been proposed to improve and/or develop new adhesive systems that can help prevent degradation at the adhesive interface. It will specially focus on new clinical techniques or new materials with characteristics that contribute to increasing the durability of adhesive restorations and avoiding the recurrent replacement restorative cycle and the consequent increase in damage to the tooth.
Collapse
Affiliation(s)
- Isabel Cristina Celerino de Moraes Porto
- Laboratory of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Brazil
- Laboratory of Quality Control of Drugs, Medicines, Foods and Biomaterials, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Brazil
| | - Teresa de Lisieux Guedes Ferreira Lôbo
- Laboratory of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Brazil
- Laboratory of Quality Control of Drugs, Medicines, Foods and Biomaterials, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Brazil
| | - Raphaela Farias Rodrigues
- Laboratory of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Brazil
| | - Rodrigo Barros Esteves Lins
- Laboratory of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Brazil
| | - Marcos Aurélio Bomfim da Silva
- Laboratory of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Brazil
| |
Collapse
|
8
|
Inglês M, Vasconcelos e Cruz J, Mano Azul A, Polido M, Delgado AHS. Comparative Assessment of Different Pre-Treatment Bonding Strategies to Improve the Adhesion of Self-Adhesive Composites to Dentin. Polymers (Basel) 2022; 14:3945. [PMID: 36235894 PMCID: PMC9570807 DOI: 10.3390/polym14193945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this study is to compare the adhesive interface formed in dentin, using self-adhesive composites applied with different bonding strategies, by testing the microtensile bond strength (μTBS) and ultramorphology through the use of light microscopy. Permanent, sound human molars were randomly allocated to six experimental groups. The groups included a negative control group, where only etching was performed via EtchOnly; a positive control group where an adhesive was applied, OptiBondFL (OBFL); and an experimental group where a primer was applied using a co-curing strategy together with a composite (Primer_CoCuring). The samples were sectioned into microspecimens for μTBS (n = 8) and into 1-mm thick slabs for light microscopy using Masson’s trichrome staining protocol (n = 3). The statistical analysis included a two-way ANOVA for μTBS data and Tukey’s HSD was used as a post-hoc test (significance level of 5%; SPSS v. 26.0). The results of the μTBS revealed that the self-adhesive composite (F = 6.0, p < 0.018) and the bonding strategy (F = 444.1, p < 0.001) significantly affected the bond strength to dentin. However, their interactions were not significant (F = 1.2, p = 0.29). Etching dentin with no additional treatment revealed the lowest μTBS (VF_EtchOnly = 2.4 ± 0.8 MPa; CC_EtchOnly = 2.0 ± 0.4 MPa), which was significantly different from using a primer (VF_CoCu = 8.8 ± 0.8 MPa; CC_CoCu = 6.3 ± 1.0 MPa) or using the full adhesive (VF_OptiBondFL = 22.4 ± 0.3 MPa; CC_OptibondFL = 21.2 ± 0.4 MPa). Microscopy images revealed that the experimental Primer_CoCuring was the only group with no collagen fibers exposed to the dentin−composite interface. Overall, the use of a primer, within the limitations of this study, increased the bonding of the self-adhesive composite and provided sufficient infiltration of the collagen based on light-microscopic imaging.
Collapse
Affiliation(s)
- Magali Inglês
- Instituto Universitário Egas Moniz (IUEM), Monte de Caparica, 2829-511 Almada, Portugal
| | - Joana Vasconcelos e Cruz
- Instituto Universitário Egas Moniz (IUEM), Monte de Caparica, 2829-511 Almada, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Monte de Caparica, 2829-511 Almada, Portugal
| | - Ana Mano Azul
- Instituto Universitário Egas Moniz (IUEM), Monte de Caparica, 2829-511 Almada, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Monte de Caparica, 2829-511 Almada, Portugal
| | - Mário Polido
- Instituto Universitário Egas Moniz (IUEM), Monte de Caparica, 2829-511 Almada, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Monte de Caparica, 2829-511 Almada, Portugal
| | - António H. S. Delgado
- Instituto Universitário Egas Moniz (IUEM), Monte de Caparica, 2829-511 Almada, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Monte de Caparica, 2829-511 Almada, Portugal
- Division of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, Hampstead, London NW3 2PF, UK
| |
Collapse
|
9
|
Hardan L, Daood U, Bourgi R, Cuevas-Suárez CE, Devoto W, Zarow M, Jakubowicz N, Zamarripa-Calderón JE, Radwanski M, Orsini G, Lukomska-Szymanska M. Effect of Collagen Crosslinkers on Dentin Bond Strength of Adhesive Systems: A Systematic Review and Meta-Analysis. Cells 2022; 11:cells11152417. [PMID: 35954261 PMCID: PMC9368291 DOI: 10.3390/cells11152417] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to identify the role of crosslinking agents in the resin–dentin bond strength (BS) when used as modifiers in adhesives or pretreatments to the dentin surface through a systematic review and meta-analysis. This paper was conducted according to the directions of the PRISMA 2020 statement. The research question of this review was: “Would the use of crosslinkers agents improve the BS of resin-based materials to dentin?” The literature search was conducted in the following databases: Embase, PubMed, Scielo, Scopus, and Web of Science. Manuscripts that reported the effect on the BS after the use of crosslinking agents were included. The meta-analyses were performed using Review Manager v5.4.1. The comparisons were performed by comparing the standardized mean difference between the BS values obtained using the crosslinker agent or the control group. The subgroup comparisons were performed based on the adhesive strategy used (total-etch or self-etch). The immediate and long-term data were analyzed separately. A total of 50 articles were included in the qualitative analysis, while 45 articles were considered for the quantitative analysis. The meta-analysis suggested that pretreatment with epigallocatechin-3-gallate (EGCG), carbodiimide, ethylenediaminetetraacetic acid (EDTA), glutaraldehyde, and riboflavin crosslinking agents improved the long-term BS of resin composites to dentin (p ≤ 0.02). On the other hand, the use of proanthocyanidins as a pretreatment improved both the immediate and long-term BS values (p ≤ 0.02). When incorporated within the adhesive formulation, only glutaraldehyde, riboflavin, and EGCG improved the long-term BS to dentin. It could be concluded that the application of different crosslinking agents such as carbodiimide, EDTA, glutaraldehyde, riboflavin, and EGCG improved the long-term BS of adhesive systems to dentin. This effect was observed when these crosslinkers were used as a separate step and when incorporated within the formulation of the adhesive system.
Collapse
Affiliation(s)
- Louis Hardan
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon
| | - Umer Daood
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Wilayah Persekutuan, Kuala Lumpur 57000, Malaysia
| | - Rim Bourgi
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon
| | - Carlos Enrique Cuevas-Suárez
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, Circuito Ex Hacienda La Concepción S/N, San Agustín Tlaxiaca 42160, Mexico
- Correspondence: (C.E.C.-S.); (M.L.-S.); Tel.: +52-(771)-72000 (C.E.C.-S.); +48-42-675-74-61 (M.L.-S.)
| | | | - Maciej Zarow
- “NZOZ SPS Dentist” Dental Clinic and Postgraduate Course Centre, pl. Inwalidow 7/5, 30-033 Cracow, Poland
| | - Natalia Jakubowicz
- “NZOZ SPS Dentist” Dental Clinic and Postgraduate Course Centre, pl. Inwalidow 7/5, 30-033 Cracow, Poland
| | - Juan Eliezer Zamarripa-Calderón
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, Circuito Ex Hacienda La Concepción S/N, San Agustín Tlaxiaca 42160, Mexico
| | - Mateusz Radwanski
- Department of Endodontics, Chair of Conservative Dentistry and Endodontics, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
| | - Giovana Orsini
- Department of Clinical Sciences and Stomatology, School of Medicine, Polytechnic University of Marche, Via Tronto 10, 60126 Ancona, Italy
| | - Monika Lukomska-Szymanska
- Department of General Dentistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
- Correspondence: (C.E.C.-S.); (M.L.-S.); Tel.: +52-(771)-72000 (C.E.C.-S.); +48-42-675-74-61 (M.L.-S.)
| |
Collapse
|
10
|
Wu L, Cao X, Meng Y, Huang T, Zhu C, Pei D, Weir MD, Oates TW, Lu Y, Xu HHK, Li Y. Novel bioactive adhesive containing dimethylaminohexadecyl methacrylate and calcium phosphate nanoparticles to inhibit metalloproteinases and nanoleakage with three months of aging in artificial saliva. Dent Mater 2022; 38:1206-1217. [PMID: 35718597 DOI: 10.1016/j.dental.2022.06.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/05/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The objectives of this study were to: (1) develop a multifunctional adhesive via dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP); and (2) investigate its ability to provide metalloproteinases (MMPs) deactivation and remineralization for long-term dentin bonding durability. METHODS DMAHDM and NACP were incorporated into Adper™ Single Bond 2 Adhesive (SB2) at mass fractions of 5% and 20%, respectively. Degree of conversion and contact angle were measured. Endogenous MMP activity of the demineralized dentin beams, Masson's trichrome staining, nano-indentation, microtensile bond strength and interfacial nanoleakage analyses were investigated after 24 h and 3 months of storage aging in artificial saliva. RESULTS Adding DMAHDM and NACP did not compromise the degree of conversion and contact angle of SB2 (p > 0.05). DMAHDM and NACP incorporation reduced the endogenous MMP activity by 53 %, facilitated remineralization, and increased the Young's modulus of hybrid layer by 49 % after 3 months of aging in artificial saliva, compared to control. For SB2 Control, the dentin bond strength decreased by 38 %, with greater nanoleakage expression, after 3 months of aging (p < 0.05). However, DMAHDM+NACP group showed no loss in bond strength, with much less nanoleakage, after 3 months of aging (p > 0.05). SIGNIFICANCE DMAHDM+NACP adhesive greatly reduced MMP-degradation activity in demineralized dentin, induced remineralization at adhesive-dentin interface, and maintained the dentin bond strength after aging, without adversely affecting polymerization and dentin wettability. This new adhesive has great potential to help eliminate secondary caries, prevent hybrid layer degradation, and increase the resin-dentin bond longevity.
Collapse
Affiliation(s)
- Linyue Wu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Xiao Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yuchen Meng
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Tianjia Huang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Changze Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Michael D Weir
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Thomas W Oates
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Yi Lu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore County, MD 21250, USA.
| | - Yuncong Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
11
|
Toledano-Osorio M, Osorio R, Osorio E, Medina-Castillo AL, Toledano M. Novel Pastes Containing Polymeric Nanoparticles for Dentin Hypersensitivity Treatment: An In Vitro Study. NANOMATERIALS 2021; 11:nano11113150. [PMID: 34835914 PMCID: PMC8624272 DOI: 10.3390/nano11113150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 01/20/2023]
Abstract
Tubule occlusion and remineralization are considered the two main goals of dentin hypersensitivity treatment. The objective is to assess the ability of dentifrices containing zinc-doped polymeric nanoparticles (NPs) to enduringly occlude the dentinal tubules, reinforcing dentin’s mechanical properties. Fifteen dentin surfaces were acid-treated for dentinal tubule exposure and brushed with (1) distilled water, or with experimental pastes containing (2) 1% of zinc-doped NPs, (3) 5% of zinc-doped NPs, (4) 10% of zinc-doped NPs or (5) Sensodyne®. Topographical and nanomechanical analyses were performed on treated dentin surfaces and after a citric acid challenge. ANOVA and Student–Newman–Keuls tests were used (p < 0.05). The main results indicate that all pastes produced tubule occlusion (100%) and reinforced mechanical properties of intertubular dentin (complex modulus was above 75 GPa). After the citric acid challenge, only those pastes containing zinc-doped NPs were able to maintain tubular occlusion, as specimens treated with Sensodyne® have around 30% of tubules opened. Mechanical properties were maintained for dentin treated with Zn-doped NPs, but in the case of specimens treated with Sensodyne®, complex modulus values were reduced below 50 GPa. It may be concluded that zinc-doped NPs at the lowest tested concentration produced acid-resistant tubular occlusion and increased the mechanical properties of dentin.
Collapse
Affiliation(s)
- Manuel Toledano-Osorio
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.T.-O.); (R.O.); (M.T.)
| | - Raquel Osorio
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.T.-O.); (R.O.); (M.T.)
| | - Estrella Osorio
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.T.-O.); (R.O.); (M.T.)
- Correspondence:
| | - Antonio L. Medina-Castillo
- Analytic Chemistry Department, Faculty of Sciences, Campus Fuentenueva s/n, University of Granada, 18071 Granada, Spain;
- NanoMyP, Spin-Off Company, Edificio BIC-Granada, Av. Innovación s/n, Armilla, 18016 Granada, Spain
| | - Manuel Toledano
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.T.-O.); (R.O.); (M.T.)
| |
Collapse
|
12
|
Alamgir M, Mallick A, Nayak GC. Mechanical and thermal behavior of pHEMA and pHEMA nanocomposites targeting for dental materials. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Toledano M, Vallecillo-Rivas M, Aguilera FS, Osorio MT, Osorio E, Osorio R. Polymeric zinc-doped nanoparticles for high performance in restorative dentistry. J Dent 2021; 107:103616. [PMID: 33636241 DOI: 10.1016/j.jdent.2021.103616] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES The aim was to state the different applications and the effectiveness of polymeric zinc-doped nanoparticles to achieve dentin remineralization. DATA, SOURCES AND STUDY SELECTION Literature search was conducted using electronic databases, such as PubMed, MEDLINE, DIMDI, Embase, Scopus and Web of Science. A narrative exploratory review was undertaken. CONCLUSIONS Polymeric nanospheres (NPs) were efficiently loaded with zinc. NPs sequestered calcium and phosphate in the presence of silicon, and remained effectively embedded at the hybrid layer. NPs incorporation did not alter bond strength and inhibited MMP-mediated dentin collagen degradation. Zn-loaded NPs remineralized the hybrid layer inducing a generalized low-carbonate substitute apatite precipitation, chemically crystalline with some amorphous components, and an increase in mechanical properties was also promoted. Viscoelastic analysis determined that dentin infiltrated with Zn-NPs released the stress by breaking the resin-dentin interface and creating specific mineral formations in response to the energy dissipation. Bacteria were scarcely encountered at the resin-dentin interface. The combined antibacterial and remineralizing effects, when Zn-NPs were applied, reduced biofilm formation. Zn-NPs application at both cervical and radicular dentin attained the lowest microleakage and also promoted durable sealing ability. The new zinc-based salt minerals generated covered the dentin surface totally occluding cracks, porosities and dentinal tubules. CLINICAL SIGNIFICANCE Zinc-doped NPs are proposed for effective dentin remineralization and tubular occlusion. This offers new strategies for regeneration of eroded cervical dentin, effective treatment of dentin hypersensitivity and in endodontically treated teeth previous to the canal filling. Zn-NPs also do reduce biofilm formation due to antibacterial properties.
Collapse
Affiliation(s)
- Manuel Toledano
- University of Granada, Faculty of Dentistry, Dental Materials Section. Colegio Máximo de Cartuja s/n, Granada, 18071, Spain.
| | - Marta Vallecillo-Rivas
- University of Granada, Faculty of Dentistry, Dental Materials Section. Colegio Máximo de Cartuja s/n, Granada, 18071, Spain
| | - Fátima S Aguilera
- University of Granada, Faculty of Dentistry, Dental Materials Section. Colegio Máximo de Cartuja s/n, Granada, 18071, Spain
| | - María T Osorio
- University of Granada, Faculty of Dentistry, Dental Materials Section. Colegio Máximo de Cartuja s/n, Granada, 18071, Spain
| | - Estrella Osorio
- University of Granada, Faculty of Dentistry, Dental Materials Section. Colegio Máximo de Cartuja s/n, Granada, 18071, Spain
| | - Raquel Osorio
- University of Granada, Faculty of Dentistry, Dental Materials Section. Colegio Máximo de Cartuja s/n, Granada, 18071, Spain
| |
Collapse
|
14
|
Bastos NA, Bitencourt SB, Martins EA, De Souza GM. Review of nano-technology applications in resin-based restorative materials. J ESTHET RESTOR DENT 2020; 33:567-582. [PMID: 33368974 DOI: 10.1111/jerd.12699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Nanotechnology has progressed significantly and particles as small as 3 nm are being employed in resin-based restorative materials to improve clinical performance. The goal of this review is to report the progress of nanotechnology in Restorative Dentistry by reviewing the advantages, limitations, and applications of resin-based restorative materials with nanoparticles. MATERIALS AND METHODS A literature review was conducted using PubMed/Medline, Scopus and Embase databases. In vitro, in vivo and in situ research studies published in English between 1999 and 2020, and which focused on the analysis of resin-based restorative materials containing nanoparticles were included. RESULTS A total of 140 studies were included in this review. Studies reported the effect of incorporating different types of nanoparticles on adhesive systems or resin composites. Mechanical, physical, and anti-bacterial properties were described. The clinical performance of resin-based restorative materials with nanoparticles was also reported. CONCLUSIONS The high surface area of nanoparticles exponentially increases the bioactivity of materials using bioactive nanofillers. However, the tendency of nanoparticles to agglomerate, the chemical instability of the developed materials and the decline of rheological properties when high ratios of nanoparticles are employed are some of the obstacles to overcome in the near future. CLINICAL SIGNIFICANCE In spite of the recent advancements of nanotechnology in resin-based restorative materials, some challenges need to be overcome before new nano-based restorative materials are considered permanent solutions to clinical problems.
Collapse
Affiliation(s)
- Natalia Almeida Bastos
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Sandro Basso Bitencourt
- Department of Dental Materials and Prosthodontics, Sao Paulo State University (UNESP), Araçatuba, Brazil
| | | | | |
Collapse
|
15
|
Arias-Moliz MT, Baca P, Solana C, Toledano M, Medina-Castillo AL, Toledano-Osorio M, Osorio R. Doxycycline-functionalized polymeric nanoparticles inhibit Enterococcus faecalis biofilm formation on dentine. Int Endod J 2020; 54:413-426. [PMID: 33107032 DOI: 10.1111/iej.13436] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022]
Abstract
AIM To evaluate in a laboratory setting the antimicrobial properties and the potential to inhibit biofilm formation of novel remineralizing polymeric nanoparticles (NPs) when applied to dentine surfaces and to ascertain the effect of the functionalization of these NPs with zinc, calcium or doxycycline. METHODOLOGY The antimicrobial activity and inhibition of biofilm formation of polymeric NPs were analysed on human dentine blocks that were infected with Enterococcus faecalis before or after application of NPs. LIVE/DEAD ® testing under Confocal Laser Scanning Microscopy and bacterial culturing were employed to analyse biofilm biovolume and bacterial viability. Field Emission Scanning Electron Microscopy was also employed to assess biofilm morphology. One-way anova with Welch's correction and post hoc comparison by the Games-Howell test were performed for comparisons between groups. RESULTS The un-functionalized NPs displayed the greatest antimicrobial activity against E. faecalis biofilms as they provided the lowest biovolume (3865.7 ± 2926.97 µm3 ; P < 0.001) and the highest dead/injured cells percentage (79.93 ± 18.40%; P < 0.001), followed by Dox-NPs (biovolume: 19,041.55 ± 17,638.23 µm3 , dead/injured cells: 45.53 ± 26.50%; P < 0.001). Doxycycline-loaded NPs had the largest values of inhibition of biofilm formation with the lowest biofilm biovolume (8517.65 ± 7055.81 µm3 ; P < 0.001) and a high dead/injured bacterial percentage (68.68 ± 12.50%; P < 0.001). Un-functionalized NPs did not reduce biomass growth (P > 0.05), but attained the largest percentage of compromised cells (93 ± 8.23%; P < 0.001), being able to disrupt biofilm formation. It also produced occlusion of dentinal tubules, potentially interfering with bacterial tubule penetration. CONCLUSIONS A new generation of bioactive nano-fillers (doxycycline-functionalized polymeric NPs) had antibacterial activity and occluded dentinal tubules. Incorporating these NPs into endodontic sealers may have the potential to enhance the outcome of root canal treatment.
Collapse
Affiliation(s)
| | - P Baca
- Faculty of Dentistry, University of Granada, Granada, Spain
| | - C Solana
- Faculty of Dentistry, University of Granada, Granada, Spain
| | - M Toledano
- Faculty of Dentistry, University of Granada, Granada, Spain
| | | | | | - R Osorio
- Faculty of Dentistry, University of Granada, Granada, Spain
| |
Collapse
|
16
|
State of the Art on Biomaterials for Soft Tissue Augmentation in the Oral Cavity. Part II: Synthetic Polymers-Based Biomaterials. Polymers (Basel) 2020; 12:polym12081845. [PMID: 32824577 PMCID: PMC7465038 DOI: 10.3390/polym12081845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 01/10/2023] Open
Abstract
Most of the polymers used as biomaterials for scaffolds are naturally occurring, synthetic biodegradable, and synthetic non-biodegradable polymers. Since synthetic polymers can be adapted for obtaining singular desired characteristics by applying various fabrication techniques, their use has increased in the biomedical field, in dentistry in particular. The manufacturing methods of these new structures include many processes, such as electrospinning, 3D printing, or the use of computer-aided design/computer-aided manufacturing (CAD/CAM). Synthetic polymers show several drawbacks that can limit their use in clinical applications, such as the lack of cellular recognition, biodegradability, and biocompatibility. Moreover, concerning biodegradable polymers, the time for matrix resorption is not predictable, and non-resorbable matrices are preferred for soft tissue augmentation in the oral cavity. This review aimed to determine a new biomaterial to offset the present shortcomings in the oral environment. Researchers have recently proposed a novel non-resorbable composite membrane manufactured via electrospinning that has allowed obtaining remarkable in vivo outcomes concerning angiogenesis and immunomodulation throughout the polarization of macrophages. A prototype of the protocol for in vitro and in vivo experimentation with hydrogels is explained in order to encourage innovation into the development of promising biomaterials for soft tissue augmentation in the near future.
Collapse
|
17
|
Polymeric nanoparticles protect the resin-dentin bonded interface from cariogenic biofilm degradation. Acta Biomater 2020; 111:316-326. [PMID: 32439613 DOI: 10.1016/j.actbio.2020.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/15/2022]
Abstract
The objective was to assess doxycycline (Dox) and zinc (Zn) doped nanoparticles' (NPs) potential to protect the resin-dentin interface from cariogenic biofilm. Three groups of polymeric NPs were tested: unloaded, loaded with zinc and with doxycycline. NPs were applied after dentin etching. The disks were exposed to a cariogenic biofilm challenge in a Drip-Flow Reactor during 72 h and 7 d. Half of the specimens were not subjected to biofilm formation but stored 72 h and 7 d. LIVE/DEAD® viability assay, nano-dynamic mechanical assessment, Raman spectroscopy and field emission electron microscopy (FESEM) analysis were performed. The measured bacterial death rates, at 7 d were 46% for the control group, 51% for the undoped-NPs, 32% for Dox-NPs, and 87% for Zn-NPs; being total detected bacteria reduced five times in the Dox-NPs group. Zn-NPs treated samples reached, in general, the highest complex modulus values at the resin-dentin interface over time. Regarding the mineral content, Zn-NPs-treated dentin interfaces showed the highest mineralization degree associated to the phosphate peak and the relative mineral concentration. FESEM images after Zn-NPs application permitted to observe remineralization of the etched and non-resin infiltrated collagen layer, and bacteria were scarcely encountered. The combined antibacterial and remineralizing effects, when Zn-NPs were applied, reduced biofilm formation. Dox-NPs exerted an antibacterial role but did not remineralize the bonded interface. Undoped-NPs did not improve the properties of the interfaces. Application of Zn-doped NPs during the bonding procedure is encouraged. STATEMENT OF SIGNIFICANCE: Application of Zn-doped nanoparticles on acid etched dentin reduced biofilm formation and viability at the resin-dentin interface due to both remineralization and antibacterial properties. Doxycycline-doped nanoparticles also diminished oral biofilm viability, but did not remineralize the resin-dentin interface.
Collapse
|
18
|
Daood U, Fawzy AS. Minimally invasive high-intensity focused ultrasound (HIFU) improves dentine remineralization with hydroxyapatite nanorods. Dent Mater 2020; 36:456-467. [DOI: 10.1016/j.dental.2020.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/14/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022]
|
19
|
BRAGA RR, FRONZA BM. The use of bioactive particles and biomimetic analogues for increasing the longevity of resin-dentin interfaces: A literature review. Dent Mater J 2020; 39:62-68. [DOI: 10.4012/dmj.2019-293] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Roberto Ruggiero BRAGA
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo
| | - Bruna Marin FRONZA
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo
| |
Collapse
|
20
|
Toledano M, Osorio E, Aguilera FS, Muñoz-Soto E, Toledano-Osorio M, López-López MT, Medina-Castillo AL, Carrasco-Carmona Á, Osorio R. Polymeric nanoparticles for endodontic therapy. J Mech Behav Biomed Mater 2019; 103:103606. [PMID: 32090933 DOI: 10.1016/j.jmbbm.2019.103606] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 11/16/2022]
Abstract
The effectiveness of novel polymeric nanoparticles (NPs) application in reducing dentin permeability and facilitating dentin remineralization after endodontic treatment was evaluated. The effect of undoped NPs, zinc, calcium and doxycycline-doped NPs (Zn-NPs, Ca-NPs and D-NPs, respectively) was tested in radicular dentin. A control group without NPs was included. Radicular dentin was assessed for fluid filtration. Dentin remineralization was analyzed by scanning and transmission electron microscopy, energy-dispersive analysis, AFM, Young's modulus (Ei), Nano DMA, Raman, and X-Ray Diffraction analysis. Ca-NPs and Zn-NPs treated dentin exhibited the lowest microleakage with hermetically sealed dentinal tubules and a zinc-based salt generation onto dentin. Zn-NPs favored crystallinity and promoted the highest Ei and functional remineralization at the apical dentin, generating differences between the values of complex modulus among groups. Ca-NPs produced closure of tubules and porosities at the expense of a relative mineral amorphization, without creating zones of stress concentration. The highest sealing efficacy was obtained in Zn-NPs-treated samples, along with the highest values of Young's modulus and dentin mineralization. These high values of Ei were obtained by closing voids, cracks, pores and tubules, and by strengthening the root dentin. When using undoped NPs or Ca-NPs, deposition of minerals occurred, but radicular dentin was not mechanically reinforced. Therefore, application of Zn-NPs in endodontically treated teeth previous to the canal filling is encouraged.
Collapse
Affiliation(s)
- Manuel Toledano
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja S/n, Granada, 18071, Spain
| | - Estrella Osorio
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja S/n, Granada, 18071, Spain
| | - Fátima S Aguilera
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja S/n, Granada, 18071, Spain
| | - Esther Muñoz-Soto
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja S/n, Granada, 18071, Spain
| | - Manuel Toledano-Osorio
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja S/n, Granada, 18071, Spain.
| | - Modesto T López-López
- University of Granada, Faculty of Science, Applied Physics Department, Fuente Nueva S/n, Granada, 18071, Spain
| | - Antonio L Medina-Castillo
- NanoMyP, Spin-Off Enterprise from University of Granada, Edificio BIC-Granada, Avda. Innovación 1, Armilla, Granada, 18016, Spain
| | - Álvaro Carrasco-Carmona
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja S/n, Granada, 18071, Spain
| | - Raquel Osorio
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja S/n, Granada, 18071, Spain
| |
Collapse
|
21
|
Collares F, Leitune VB, Schiroky P, Genari B, Camassola M, S FL, Samuel SW. Nanoneedle-like zinc oxide as a filler particle for an experimental adhesive resin. Indian J Dent Res 2019; 30:777-782. [DOI: 10.4103/ijdr.ijdr_779_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
22
|
Zn-containing polymer nanogels promote cervical dentin remineralization. Clin Oral Investig 2018; 23:1197-1208. [PMID: 29971511 DOI: 10.1007/s00784-018-2548-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Nanogels designing for effective treatment of eroded cervical dentin lesions. MATERIALS AND METHODS Polymethylmetacrylate-based nanoparticles (NPs) were doxycycline (D), calcium, or zinc loaded. They were applied on eroded cervical dentin. Treated surfaces were characterized morphologically by atomic force and scanning electron microscopy, mechanically probed by a nanoindenter to test nanohardness and Young's modulus, and chemically analyzed by Raman spectroscopy at 24 h and 7 days of storage. Data were submitted to ANOVA and Student-Newman-Keuls multiple comparisons tests. RESULTS Dentin treated with Zn-NPs attained the highest nanomechanical properties, mineralization, and crystallinity among groups. Nanoroughness was lower in Zn-treated surfaces in comparison to dentin treated with undoped gels. Dentin treated with Ca-NPs created the minimal calcification at the surface and showed the lowest Young's modulus at peritubular dentin. Intertubular dentin appeared remineralized. Dentinal tubules were empty in samples treated with D-NPs, partially occluded in cervical dentin treated with undoped NPs and Ca-NPs, and mineral covered when specimens were treated with Zn-NPs. CONCLUSIONS Zn-loaded NPs permit functional remineralization of eroded cervical dentin. Based on the tested nanomechanical and chemical properties, Zn-based nanogels are suitable for dentin remineralization. CLINICAL RELEVANCE The ability of zinc-loaded nanogels to promote dentin mineralization may offer new strategies for regeneration of eroded cervical dentin and effective treatment of dentin hypersensitivity.
Collapse
|
23
|
Toledano-Osorio M, Babu JP, Osorio R, Medina-Castillo AL, García-Godoy F, Toledano M. Modified Polymeric Nanoparticles Exert In Vitro Antimicrobial Activity Against Oral Bacteria. MATERIALS 2018; 11:ma11061013. [PMID: 29904023 PMCID: PMC6024984 DOI: 10.3390/ma11061013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/05/2018] [Accepted: 06/13/2018] [Indexed: 11/25/2022]
Abstract
Polymeric nanoparticles were modified to exert antimicrobial activity against oral bacteria. Nanoparticles were loaded with calcium, zinc and doxycycline. Ions and doxycycline release were measured by inductively coupled plasma optical emission spectrometer and high performance liquid chromatography. Porphyromonas gingivalis, Lactobacillus lactis, Streptoccocus mutans, gordonii and sobrinus were grown and the number of bacteria was determined by optical density. Nanoparticles were suspended in phosphate-buffered saline (PBS) at 10, 1 and 0.1 mg/mL and incubated with 1.0 mL of each bacterial suspension for 3, 12, and 24 h. The bacterial viability was assessed by determining their ability to cleave the tetrazolium salt to a formazan dye. Data were analyzed by ANOVA and Scheffe’s F (p < 0.05). Doxycycline doping efficacy was 70%. A burst liberation effect was produced during the first 7 days. After 21 days, a sustained release above 6 µg/mL, was observed. Calcium and zinc liberation were about 1 and 0.02 µg/mL respectively. The most effective antibacterial material was found to be the Dox-Nanoparticles (60% to 99% reduction) followed by Ca-Nanoparticles or Zn-Nanoparticles (30% to 70% reduction) and finally the non-doped nanoparticles (7% to 35% reduction). P. gingivalis, S. mutans and L. lactis were the most susceptible bacteria, being S. gordonii and S. sobrinus the most resistant to the tested nanoparticles.
Collapse
Affiliation(s)
| | - Jegdish P Babu
- College of Dentistry, University of Tennessee Health Science Center, 875 Union Avenue, Memphis, TN 381632110, USA.
| | - Raquel Osorio
- Dental School, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.
| | - Antonio L Medina-Castillo
- NanoMyP, Spin-Off Enterprise from University of Granada, Edificio BIC-Granada, Av. Innovación 1, Armilla, 18016 Granada, Spain.
| | - Franklin García-Godoy
- College of Dentistry, University of Tennessee Health Science Center, 875 Union Avenue, Memphis, TN 381632110, USA.
| | - Manuel Toledano
- Dental School, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.
| |
Collapse
|
24
|
Toledano-Osorio M, Osorio E, Aguilera FS, Luis Medina-Castillo A, Toledano M, Osorio R. Improved reactive nanoparticles to treat dentin hypersensitivity. Acta Biomater 2018; 72:371-380. [PMID: 29581027 DOI: 10.1016/j.actbio.2018.03.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/02/2018] [Accepted: 03/19/2018] [Indexed: 12/30/2022]
Abstract
The aim of this study was to evaluate the effectiveness of different nanoparticles-based solutions for dentin permeability reduction and to determine the viscoelastic performance of cervical dentin after their application. Four experimental nanoparticle solutions based on zinc, calcium or doxycycline-loaded polymeric nanoparticles (NPs) were applied on citric acid etched dentin, to facilitate the occlusion and the reduction of the fluid flow at the dentinal tubules. After 24 h and 7 d of storage, cervical dentin was evaluated for fluid filtration. Field emission scanning electron microscopy, energy dispersive analysis, AFM and Nano-DMA analysis were also performed. Complex, storage, loss modulus and tan delta (δ) were assessed. Doxycycline-loaded NPs impaired tubule occlusion and fluid flow reduction trough dentin. Tubules were 100% occluded in dentin treated with calcium-loaded NPs or zinc-loaded NPs, analyzed at 7 d. Dentin treated with both zinc-NPs and calcium-NPs attained the highest reduction of dentinal fluid flow. Moreover, when treating dentin with zinc-NPs, complex modulus values attained at intertubular and peritubular dentin were higher than those obtained after applying calcium-NPs. Zinc-NPs are then supposed to fasten active dentin remodeling, with increased maturity and high mechanical properties. Zinc-based nanoparticles are then proposed for effective dentin remineralization and tubular occlusion. Further research to finally prove for clinical benefits in patients with dentin hypersensitivity using Zn-doped nanoparticles is encouraged. STATEMENT OF SIGNIFICANCE Erosion from acids provokes dentin hypersensitivity (DH) which presents with intense pain of short duration. Open dentinal tubules and demineralization favor DH. Nanogels based on Ca-nanoparticles and Zn-nanoparticles produced an efficient reduction of fluid flow. Dentinal tubules were filled by precipitation of induced calcium-phosphate deposits. When treating dentin with Zn-nanoparticles, complex modulus values attained at intertubular and peritubular dentin were higher than those obtained after applying Ca-nanoparticles. Zn-nanoparticles are then supposed to fasten active dentin remodeling, with increased maturity and high mechanical properties. Zinc-based nanogels are, therefore, proposed for effective dentin remineralization and tubular occlusion. Further research to finally prove for clinical benefits in patients with dentin hypersensitivity using Zn-doped nanogels is encouraged.
Collapse
|
25
|
Toledano M, Toledano-Osorio M, Medina-Castillo AL, López-López MT, Aguilera FS, Osorio R. Ion-modified nanoparticles induce different apatite formation in cervical dentine. Int Endod J 2018; 51:1019-1029. [PMID: 29489013 DOI: 10.1111/iej.12918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/23/2018] [Indexed: 12/24/2022]
Abstract
AIM To investigate if crystallinity and ultrastructure are modified when cervical dentine is treated with four different nanogels-based solutions for remineralizing purposes. METHODOLOGY Experimental nanogels based on polymeric nanoparticles (NPs) and zinc, calcium or doxycycline-loaded NPs were applied to citric acid etched dentine to facilitate the occlusion of tubules and the mineralization of the dentine surface. Dentine surfaces were studied by X-ray diffraction and transmission electron microscopy through selected area diffraction and bright-field imaging. RESULTS Crystals at the dentine surface were identified as hydroxyapatite with the highest crystallographic maturity and crystallite size in dentine treated with Zn-NPs-based gel. Texture increased in all samples from 24 h to 7 days, except in dentine surfaces treated with Zn-NPs gel. Polyhedral, plate-like and drop-like shaped apatite crystals constituted the bulk of minerals in dentine treated with Zn-NPs gel, after 7 days. Polymorphic, cubic and needle-like shaped crystals distinguished minerals, with more amorphous characteristics in dentine treated with Ca-NPs gel after 7 days than that found when Zn-NPs were applied. Doxycycline-NPs produced the smallest crystallites with poor crystallinity, maturity and chemical stability. CONCLUSIONS Crystalline and amorphous phases of newly formed hydroxyapatite were described in both types of dentine treated with Zn-NPs as well as Ca-NPs gels with multiple shapes of crystallites. Crystal shapes ranged from rounded/drop-like or plate-like crystals to needle-like or polyhedral and cubic apatite appearance.
Collapse
Affiliation(s)
- M Toledano
- Dental Materials Section, Faculty of Dentistry, Granada, Spain
| | | | | | - M T López-López
- Applied Physics Department, Faculty of Science, University of Granada, Granada, Spain
| | - F S Aguilera
- Dental Materials Section, Faculty of Dentistry, Granada, Spain
| | - R Osorio
- Dental Materials Section, Faculty of Dentistry, Granada, Spain
| |
Collapse
|
26
|
Lingling J, Qianbing W. [Progress on matrix metalloproteinase inhibitors]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:208-214. [PMID: 28682555 DOI: 10.7518/hxkq.2017.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Continuing advances in dentin bonding technology and adhesives revolutionized bonding of resin-based composite restorations. However, hybrid layers created by contemporary dentin adhesives present imperfect durability, and degradation of collagen matrix by endogenous enzymes is a significant factor causing destruction of hybrid layers. Bond durability can be improved by using enzyme inhibitors to prevent collagen degradation and to preserve integrity of collagen matrix. This review summarizes progress on matrix metalloproteinase inhibitors (including chlorhexidine, ethylenediaminetetraacetic acid, quaternary ammonium salt, tetracycline and its derivatives, hydroxamic acid inhibitors, bisphosphonate derivative, and cross-linking agents) and suggests prospects for these compounds.
Collapse
Affiliation(s)
- Jia Lingling
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Prosthetics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wan Qianbing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Prosthetics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
27
|
Ions-modified nanoparticles affect functional remineralization and energy dissipation through the resin-dentin interface. J Mech Behav Biomed Mater 2017; 68:62-79. [DOI: 10.1016/j.jmbbm.2017.01.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 01/22/2023]
|
28
|
An S, Gong Q, Huang Y. Promotive Effect of Zinc Ions on the Vitality, Migration, and Osteogenic Differentiation of Human Dental Pulp Cells. Biol Trace Elem Res 2017; 175:112-121. [PMID: 27260533 DOI: 10.1007/s12011-016-0763-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/24/2016] [Indexed: 01/02/2023]
Abstract
Zinc is an essential trace element for proper cellular function and bone formation. However, its exact role in the osteogenic differentiation of human dental pulp cells (hDPCs) has not been fully clarified before. Here, we speculated that zinc may be effective to regulate their growth and osteogenic differentiation properties. To test this hypothesis, different concentrations (1 × 10-5, 4 × 10-5, and 8 × 10-5 M) of zinc ions (Zn2+) were added to the basic growth culture medium and osteogenic inductive medium. Cell viability and migration were measured by cell counting kit-8 (CCK-8) and transwell migration assay in the basic growth culture medium, respectively. The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the gene expression levels of selective osteogenic differentiation markers and zinc transporters. Alkaline phosphatase (ALP) activity analysis and alizarin red S staining were used to investigate the mineralization of hDPCs. Exposure of hDPCs to Zn2+ stimulated their viability and migration capacity in a dose- and time-dependent manner. RT-qPCR assay revealed elevated expression levels of osteogenic differentiation-related genes and zinc transporters genes in various degrees. ALP activity was also increased with elevated Zn2+ concentrations and extended culture periods, but enhanced matrix nodules formation were observed only in 4 × 10-5 and 8 × 10-5 M Zn2+ groups. These findings suggest that specific concentrations of Zn2+ could potentiate the vitality, migration, and osteogenic differentiation of hDPCs. We may combine optimum zinc element into pulp capping materials to improve their biological performance.
Collapse
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No.56 Lingyuan Xi Road, Guangzhou, Guangdong, 510055, People's Republic of China.
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No.74 Zhongshan Er Road, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Qimei Gong
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No.56 Lingyuan Xi Road, Guangzhou, Guangdong, 510055, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No.74 Zhongshan Er Road, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yihua Huang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No.56 Lingyuan Xi Road, Guangzhou, Guangdong, 510055, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No.74 Zhongshan Er Road, Guangzhou, Guangdong, 510080, People's Republic of China
| |
Collapse
|
29
|
Osorio R, Alfonso-Rodríguez CA, Medina-Castillo AL, Alaminos M, Toledano M. Bioactive Polymeric Nanoparticles for Periodontal Therapy. PLoS One 2016; 11:e0166217. [PMID: 27820866 PMCID: PMC5098795 DOI: 10.1371/journal.pone.0166217] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/25/2016] [Indexed: 11/19/2022] Open
Abstract
Aims to design calcium and zinc-loaded bioactive and cytocompatible nanoparticles for the treatment of periodontal disease. Methods PolymP-nActive nanoparticles were zinc or calcium loaded. Biomimetic calcium phosphate precipitation on polymeric particles was assessed after 7 days immersion in simulated body fluid, by scanning electron microscopy attached to an energy dispersive analysis system. Amorphous mineral deposition was probed by X-ray diffraction. Cell viability analysis was performed using oral mucosa fibroblasts by: 1) quantifying the liberated deoxyribonucleic acid from dead cells, 2) detecting the amount of lactate dehydrogenase enzyme released by cells with damaged membranes, and 3) by examining the cytoplasmic esterase function and cell membranes integrity with a fluorescence-based method using the Live/Dead commercial kit. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests. Results Precipitation of calcium and phosphate on the nanoparticles surfaces was observed in calcium-loaded nanoparticles. Non-loaded nanoparticles were found to be non-toxic in all the assays, calcium and zinc-loaded particles presented a dose dependent but very low cytotoxic effect. Conclusions The ability of calcium-loaded nanoparticles to promote precipitation of calcium phosphate deposits, together with their observed non-toxicity may offer new strategies for periodontal disease treatment.
Collapse
Affiliation(s)
- Raquel Osorio
- Dental School. University of Granada. Colegio Máximo, Campus de Cartuja s/n. 18017 Granada, Spain
- * E-mail:
| | | | - Antonio L. Medina-Castillo
- NanoMyP. Spin-Off Enterprise from University of Granada. Edificio BIC-Granada. Av. Innovación 1. 18016 Armilla, Granada, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, University of Granada, 18012, Granada, Spain
| | - Manuel Toledano
- Dental School. University of Granada. Colegio Máximo, Campus de Cartuja s/n. 18017 Granada, Spain
| |
Collapse
|