1
|
Chaves HGDS, Figueiredo B, Maia CA, Reis-Prado AHD, Antunes MM, Mesquita RAD, Tavares WLF, Menezes GB, Diniz IMA, Crovace MC, Avelar GFD, Benetti F. Tissue response and expression of interleukins (IL)-1ß, IL-6, IL-10 after pulp capping with bioglasses in mice. Braz Oral Res 2024; 38:e096. [PMID: 39661790 DOI: 10.1590/1807-3107bor-2024.vol38.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/06/2024] [Indexed: 12/13/2024] Open
Abstract
This study aimed to evaluate the pulp response to F18 and cobalt-doped F18 bioglass (F18Co) in comparison with calcium hydroxide (CH) after pulp capping. The maxillary first molars of 48 rats were divided into F18, F18Co, CH, and control (no intervention) groups. The pulp was exposed, the materials were placed, and the teeth were capped. After 7 and 15 days, the animals were euthanized for pulp evaluation and interleukin (IL) expression determination. Statistical analysis was carried out using the SigmaPlot® program (Systat Software Inc., for Windows, version 12.0). The data obtained in the analyses were subjected to the non-parametric Kruskal-Wallis test, followed by Dunn's test. For all tests, statistical significance was set at p < 0.05. The CH group exhibited mild to moderate inflammation, whereas the bioglass groups displayed moderate to severe inflammation, indicating a notable difference between the control and bioglass groups. At 7 days, both the CH and most of the bioglass specimens showed moderate disorganization. On day 15, CH displayed mildto-moderate disorganization, whereas F18 and F18Co exhibited significantly more moderate-to-severe disorganization. There were no significant differences in IL-6 and IL-10 expressions between groups at 7 days, but a noteworthy increase in IL-1β was observed in both CH and F18. After 15 days, there was a greater expression of IL-6 and IL-1β in the bioglass groups. No significant IL-10 expression was observed. Bioglass performed less effectively than CH when in direct contact with the pulp tissue.
Collapse
Affiliation(s)
| | - Barbara Figueiredo
- Universidade Federal de Minas Gerias - UFMG, School of Dentistry, Restorative Dentistry, Belo Horizonte, MG, Brazil
| | - Caroline Andrade Maia
- Universidade Federal de Minas Gerias - UFMG, School of Dentistry, Restorative Dentistry, Belo Horizonte, MG, Brazil
| | | | - Maísa Mota Antunes
- Universidade Federal de Minas Gerias - UFMG, Biological Science Institute, Department of Morphology, Belo Horizonte, MG, Brazil
| | - Ricardo Alves de Mesquita
- Universidade Federal de Minas Gerias - UFMG, School of Dentistry, Department of Oral Surgery and Pathology, Belo Horizonte, MG, Brazil
| | | | - Gustavo Batista Menezes
- Universidade Federal de Minas Gerias - UFMG, Biological Science Institute, Department of Morphology, Belo Horizonte, MG, Brazil
| | - Ivana Márcia Alves Diniz
- Universidade Federal de Minas Gerias - UFMG, School of Dentistry, Restorative Dentistry, Belo Horizonte, MG, Brazil
| | - Murilo Camuri Crovace
- Universidade Federal de São Carlos - UFSCar, Bioactive Materials Laboratory, São Carlos, SP, Brazil
| | - Gleide Fernandes de Avelar
- Universidade Federal de Minas Gerias - UFMG, Biological Science Institute, Department of Morphology, Belo Horizonte, MG, Brazil
| | - Francine Benetti
- Universidade Federal de Minas Gerias - UFMG, School of Dentistry, Restorative Dentistry, Belo Horizonte, MG, Brazil
| |
Collapse
|
2
|
Chandra J, Nakamura S, Shindo S, Leon E, Castellon M, Pastore MR, Heidari A, Witek L, Coelho PG, Nakatsuka T, Kawai T. Surface Pre-Reacted Glass-Ionomer Eluate Suppresses Osteoclastogenesis through Downregulation of the MAPK Signaling Pathway. Biomedicines 2024; 12:1835. [PMID: 39200299 PMCID: PMC11352117 DOI: 10.3390/biomedicines12081835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 09/02/2024] Open
Abstract
Surface pre-reacted glass-ionomer (S-PRG) is a new bioactive filler utilized for the restoration of decayed teeth by its ability to release six bioactive ions that prevent the adhesion of dental plaque to the tooth surface. Since ionic liquids are reported to facilitate transepithelial penetration, we reasoned that S-PRG applied to root caries could impact the osteoclasts (OCs) in the proximal alveolar bone. Therefore, this study aimed to investigate the effect of S-PRG eluate solution on RANKL-induced OC-genesis and mineral dissolution in vitro. Using RAW264.7 cells as OC precursor cells (OPCs), TRAP staining and pit formation assays were conducted to monitor OC-genesis and mineral dissolution, respectively, while OC-genesis-associated gene expression was measured using quantitative real-time PCR (qPCR). Expression of NFATc1, a master regulator of OC differentiation, and the phosphorylation of MAPK signaling molecules were measured using Western blotting. S-PRG eluate dilutions at 1/200 and 1/400 showed no cytotoxicity to RAW264.7 cells but did significantly suppress both OC-genesis and mineral dissolution. The same concentrations of S-PRG eluate downregulated the RANKL-mediated induction of OCSTAMP and CATK mRNAs, as well as the expression of NFATc1 protein and the phosphorylation of ERK, JNK, and p38. These results demonstrate that S-PRG eluate can downregulate RANKL-induced OC-genesis and mineral dissolution, suggesting that its application to root caries might prevent alveolar bone resorption.
Collapse
Affiliation(s)
- Janaki Chandra
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.C.); (S.S.); (E.L.); (M.C.); (M.R.P.); (A.H.)
| | - Shin Nakamura
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.C.); (S.S.); (E.L.); (M.C.); (M.R.P.); (A.H.)
- Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Satoru Shindo
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.C.); (S.S.); (E.L.); (M.C.); (M.R.P.); (A.H.)
| | - Elizabeth Leon
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.C.); (S.S.); (E.L.); (M.C.); (M.R.P.); (A.H.)
| | - Maria Castellon
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.C.); (S.S.); (E.L.); (M.C.); (M.R.P.); (A.H.)
| | - Maria Rita Pastore
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.C.); (S.S.); (E.L.); (M.C.); (M.R.P.); (A.H.)
| | - Alireza Heidari
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.C.); (S.S.); (E.L.); (M.C.); (M.R.P.); (A.H.)
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA;
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33146, USA;
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33146, USA
| | | | - Toshihisa Kawai
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.C.); (S.S.); (E.L.); (M.C.); (M.R.P.); (A.H.)
| |
Collapse
|
3
|
Mendes Soares IP, Anselmi C, Fernandes LDO, Peruchi V, de Lima CM, Pires MLBA, Ribeiro RADO, de Souza Costa CA, Hebling J. Transdentinal effects of S-PRG fillers on odontoblast-like cells. Dent Mater 2024; 40:1259-1266. [PMID: 38871524 DOI: 10.1016/j.dental.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVES To investigate the transdentinal effects of surface reaction-type pre-reacted glass-ionomer (S-PRG) fillers on odontoblast-like cells. METHODS An eluate of S-PRG fillers was obtained by dissolving the particles in distilled water (1:1 m/v). Dentin discs with similar permeability were mounted into artificial pulp chambers and MDPC-23 cells were seeded on their pulpal surface. The occlusal surface was treated with (n = 10): ultrapure water (negative control - NC), hydrogen peroxide (positive control - PC), S-PRG eluate exposure for 1 min (S-PRG 1 min), or S-PRG filler eluate exposure for 30 min (S-PRG 30 min). After 24 h, cell viability (alamarBlue) and morphology (SEM) were evaluated. The extract obtained from transdentinal diffusion was applied to MDPC-23 pre-cultured in plates for another 24 h to evaluate viability (alamarBlue, 1, 3, and 7 days), gene expression of Col1a1, Alpl, Dspp, and Dmp1 (RT-qPCR, 1 and 7 days), and mineralization (Alizarin Red, 7 days). Data were analyzed with ANOVA (α = 5 %). RESULTS While S-PRG 1 min did not differ from NC, S-PRG 30 min reduced 17.9 % viability of cells from discs. S-PRG treatments resulted in low cell detaching from dentin, and the remaining cells exhibited typical morphology or minor cytoplasmic contraction. S-PRG 30 min slightly increased cell viability (6 %) 1 day after contact with the extract. S-PRG treatments upregulated the expression of the investigated genes, especially after 1 day. S-PRG 30 min stimulated mineralization activity by 39.7 %. CONCLUSIONS S-PRG filler eluate does not cause transdentinal cytotoxicity on odontoblast-like cells, and long-term exposure can stimulate their dentinogenic-related mineralization activity. SIGNIFICANCE The transdentinal elution of ions from S-PRG fillers is not expected to be harmful to the dental pulp and may exert bioactive effects by inducing dentin matrix deposition through the metabolism of underlying odontoblasts.
Collapse
Affiliation(s)
- Igor Paulino Mendes Soares
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
| | - Caroline Anselmi
- Department of Morphology, Orthodontics, and Pediatric Dentistry, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
| | - Lídia de Oliveira Fernandes
- Department of Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
| | - Victoria Peruchi
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
| | - Caroline Meronha de Lima
- Department of Morphology, Orthodontics, and Pediatric Dentistry, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
| | - Maria Luiza Barucci Araujo Pires
- Department of Morphology, Orthodontics, and Pediatric Dentistry, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
| | - Rafael Antonio de Oliveira Ribeiro
- Department of Morphology, Orthodontics, and Pediatric Dentistry, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
| | | | - Josimeri Hebling
- Department of Morphology, Orthodontics, and Pediatric Dentistry, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil.
| |
Collapse
|
4
|
Tatsumi Y, Kawaki H, Shintani K, Ueno K, Hotta M, Kondoh N, Burrow MF, Nikaido T. Bioactivity of human dental pulp-derived stem cells with boron-controlled S-PRG filler eluate by anion exchange. Dent Mater J 2024; 43:255-262. [PMID: 38432951 DOI: 10.4012/dmj.2023-145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Surface pre-reacted glass-ionomer (S-PRG) filler is a bioactive glass filler capable of releasing various ions. A culture medium to which was added an S-PRG filler eluate rich in boron was reported to enhance alkaline phosphatase (ALP) activity in human dental pulp-derived stem cells (hDPSC). To clarify the role of boron eluted from S-PRG fillers, the modified S-PRG filler eluate with different boron concentrations was prepared by using an anion exchange material. Therefore, elemental mapping analysis of anion exchange material, adsorption ratio, hDPSCs proliferation and ALP activity were evaluated. For statistical analysis, Kruskal-Wallis test was used, with statistical significance determined at p<0.05. ALP activity enhancement was not observed in hDPSC cultured in the medium that contained the S-PRG filler eluate from which boron had been removed. The result suggested the possibility that an S-PRG filler eluate with controlled boron release could be useful for the development of novel dental materials.
Collapse
Affiliation(s)
- Yusuke Tatsumi
- Department of Operative Dentistry, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| | - Harumi Kawaki
- Department of Oral Biochemistry, Division of Oral Structure, Function, and Development, Asahi University School of Dentistry
| | - Kohei Shintani
- Department of Dental Materials Science, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| | - Kyohei Ueno
- Department of Oral Biochemistry, Division of Oral Structure, Function, and Development, Asahi University School of Dentistry
| | | | - Nobuo Kondoh
- Department of Chemistry, Division of Dental Basic Education, Asahi University School of Dentistry
| | - Michael F Burrow
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital
| | - Toru Nikaido
- Department of Operative Dentistry, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| |
Collapse
|
5
|
Miyano Y, Mikami M, Katsuragi H, Shinkai K. Effects of Sr 2+, BO 33-, and SiO 32- on Differentiation of Human Dental Pulp Stem Cells into Odontoblast-Like Cells. Biol Trace Elem Res 2023; 201:5585-5600. [PMID: 36917393 DOI: 10.1007/s12011-023-03625-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/06/2023] [Indexed: 03/15/2023]
Abstract
This study aimed to clarify the effects of strontium (Sr2+), borate (BO33-), and silicate (SiO32-) on cell proliferative capacity, the induction of differentiation into odontoblast-like cells (OLCs), and substrate formation of human dental pulp stem cells (hDPSCs). Sr2+, BO33-, and SiO32- solutions were added to the hDPSC culture medium at three different concentrations, totaling nine experimental groups. The effects of these ions on hDPSC proliferation, calcification, and collagen formation after 14, 21, and 28 days of culture were evaluated using a cell proliferation assay, a quantitative alkaline phosphatase (ALP) activity assay, and Alizarin Red S and Sirius Red staining, respectively. Furthermore, the effects of these ions on hDPSC differentiation into OLCs were assessed via quantitative polymerase chain reaction and immunocytochemistry. Sr2+ and SiO32- increased the expression of odontoblast markers; i.e., nestin, dentin matrix protein-1, dentin sialophosphoprotein, and ALP genes, compared with the control group. BO33- increased the ALP gene expression and activity. The results of this study suggested that Sr2+, BO33-, and SiO32- may induce hDPSC differentiation into OLCs.
Collapse
Affiliation(s)
- Yuko Miyano
- Advanced Operative Dentistry-Endodontics, The Nippon Dental University Graduate School of Life Dentistry at Niigata, Nigata, Japan
| | - Masato Mikami
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Niigata, Nigata, Japan
| | - Hiroaki Katsuragi
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Niigata, Nigata, Japan
| | - Koichi Shinkai
- Department of Operative Dentistry, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-Cho, Chuo-Ku, Nigata, 951-8580, Japan.
| |
Collapse
|
6
|
Raszewski Z, Chojnacka K, Mikulewicz M, Alhotan A. Bioactive Glass-Enhanced Resins: A New Denture Base Material. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4363. [PMID: 37374547 DOI: 10.3390/ma16124363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND The creation of the denture base material with bioactive properties that releases ions and produces hydroxyapatite. METHODS Acrylic resins were modified by the addition of 20% of four types of bioactive glasses by mixing with powders. Samples were subjected to flexural strength (1, 60 days), sorption and solubility (7 days), and ion release at pH 4 and pH 7 for 42 days. Hydroxyapatite layer formation was measured using infrared. RESULTS Biomin F glass-containing samples release fluoride ions for a period of 42 days (pH = 4; Ca = 0.62 ± 0.09; P = 30.47 ± 4.35; Si = 22.9 ± 3.44; F = 3.1 ± 0.47 [mg/L]). The Biomin C (contained in the acrylic resin releases (pH = 4; Ca = 41.23 ± 6.19; P = 26.43 ± 3.96; Si = 33.63 ± 5.04 [mg/L]) ions for the same period of time. All samples have a flexural strength greater than 65 MPa after 60 days. CONCLUSION The addition of partially silanized bioactive glasses allows for obtaining a material that releases ions over a longer period of time. CLINICAL SIGNIFICANCE This type of material could be used as a denture base material, helping to preserve oral health by preventing the demineralization of the residual dentition through the release of appropriate ions that serve as substrates for hydroxyapatite formation.
Collapse
Affiliation(s)
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Marcin Mikulewicz
- Department of Dentofacial Orthopedics and Orthodontics, Division of Facial Abnormalities, Medical University of Wroclaw, 50-367 Wroclaw, Poland
| | - Abdulaziz Alhotan
- Department of Dental Health, College of Applied Medical Sciences, King Saud University, Riyadh P.O. Box 12372, Saudi Arabia
| |
Collapse
|
7
|
Imazato S, Nakatsuka T, Kitagawa H, Sasaki JI, Yamaguchi S, Ito S, Takeuchi H, Nomura R, Nakano K. Multiple-Ion Releasing Bioactive Surface Pre-Reacted Glass-Ionomer (S-PRG) Filler: Innovative Technology for Dental Treatment and Care. J Funct Biomater 2023; 14:jfb14040236. [PMID: 37103326 PMCID: PMC10142353 DOI: 10.3390/jfb14040236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023] Open
Abstract
Surface Pre-Reacted Glass-ionomer (S-PRG) filler, which releases strontium (Sr2+), borate (BO33-), fluoride (F-), sodium (Na+), silicate (SiO32-), and aluminum (Al3+) ions at high concentrations, is a unique glass filler that are utilized in dentistry. Because of its multiple-ion releasing characteristics, S-PRG filler exhibits several bioactivities such as tooth strengthening, acid neutralization, promotion of mineralization, inhibition of bacteria and fungi, inhibition of matrix metalloproteinases, and enhancement of cell activity. Therefore, S-PRG filler per se and S-PRG filler-containing materials have the potential to be beneficial for various dental treatments and care. Those include restorative treatment, caries prevention/management, vital pulp therapy, endodontic treatment, prevention/treatment of periodontal disease, prevention of denture stomatitis, and perforation repair/root end filling. This review summarizes bioactive functions exhibited by S-PRG filler and its possible contribution to oral health.
Collapse
Affiliation(s)
- Satoshi Imazato
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan
| | - Toshiyuki Nakatsuka
- Marketing Department, Shofu Inc., 11 Kamitakamatsu-cho, Fukuine, Higashiyama, Kyoto 605-0983, Kyoto, Japan
| | - Haruaki Kitagawa
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan
| | - Jun-Ichi Sasaki
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan
| | - Satoshi Yamaguchi
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan
| | - Shuichi Ito
- Division of Clinical Cariology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Ishikari 061-0293, Hokkaido, Japan
| | - Hiroki Takeuchi
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Hiroshima, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan
| |
Collapse
|
8
|
Moroto H, Inoue H, Morikawa Y, Tanimoto H, Yoshikawa K, Goda S, Yamamoto K. Effects of a co-stimulation with S-PRG filler eluate and muramyl dipeptide (MDP) on matrix metalloproteinase-1 production by human dental pulp fibroblast-like cells. Dent Mater J 2023. [PMID: 36775335 DOI: 10.4012/dmj.2022-201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The present study investigated the effects of a co-stimulation with surface reaction-type pre-reacted glass-ionomer (S-PRG) filler eluate and muramyl dipeptide (MDP) on matrix metalloproteinase (MMP)-1 production by human dental pulp fibroblast-like cells (hDPFs). S-PRG filler eluate contains 6 ions (F, Na, Al, B, Sr, and Si) released from S-PRG filler. Each S-PRG filler eluate and MDP stimulation enhanced MMP-1 production by hDPFs. The co-stimulation with S-PRG filler eluate and MDP enhanced MMP-1 production more than the MDP stimulation alone. A similar stimulation induced the phosphorylation of ERK 1/2. The increased secretion of MMP-1 and enhanced phosphorylation of ERK 1/2 by the co-stimulation with S-PRG filler eluate and MDP were suppressed by the selective and potent CaSR antagonist NPS 2143. Since strontium binds to CaSR, these results suggest that the enhanced production of MMP-1 by the co-stimulation with S-PRG filler eluate and MDP was due to the effects of strontium.
Collapse
Affiliation(s)
- Hidetoshi Moroto
- Graduate School of Dentistry, Department of Operative Dentistry, Osaka Dental University
| | | | - Yuto Morikawa
- Department of Operative Dentistry, Osaka Dental University
| | | | | | - Seiji Goda
- Department of Physiology, Osaka Dental University
| | | |
Collapse
|
9
|
Salim I, Seseogullari-Dirihan R, Imazato S, Tezvergil-Mutluay A. The inhibitory effects of various ions released from S-PRG fillers on dentin protease activity. Dent Mater J 2023; 42:99-104. [PMID: 36450455 DOI: 10.4012/dmj.2022-141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
This study investigates the effect of ions released from S-PRG fillers on host-derived enzymatic degradation of dentin collagen matrices. Dentin beams (n=80) were demineralized and distributed to eight groups following baseline dry mass and total MMP activity assessments. Each group treated with boron, fluoride, sodium, silicone, strontium, aluminium, or S-PRG eluate solutions for 5 min. Untreated beams served as control. After pre-treatment, MMP activity was reassessed, beams were incubated in complete medium for 1 week, dry mass was reassessed. Incubation media were analyzed for MMP and cathepsin-K-mediated degradation fragments. Data were analyzed with ANOVA and Tukey's test. All pretreatment groups showed significant reduction in total MMP activity (p<0.05) that was sustainable after incubation in all groups except for boron and silicone groups (p<0.05). Cathepsin-K activity did not differ between control or treatment groups. The results indicated that ions released from S-PRG fillers have the potential to partly inhibit MMP-mediated endogenous enzymatic activity.
Collapse
Affiliation(s)
- Ikram Salim
- Finnish Doctoral Program in Oral Sciences (FINDOS), University of Turku, Institute of Dentistry.,Department of Cariology and Restorative Dentistry, Institute of Dentistry, University of Turku.,Adhesive Dentistry Research Group, Biomaterials, and Medical Device Research Program, Biocity
| | - Roda Seseogullari-Dirihan
- Department of Cariology and Restorative Dentistry, Institute of Dentistry, University of Turku.,Adhesive Dentistry Research Group, Biomaterials, and Medical Device Research Program, Biocity
| | - Satoshi Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry
| | - Arzu Tezvergil-Mutluay
- Department of Cariology and Restorative Dentistry, Institute of Dentistry, University of Turku.,Adhesive Dentistry Research Group, Biomaterials, and Medical Device Research Program, Biocity.,Turku University Hospital, TYKS, University of Turku
| |
Collapse
|
10
|
Neto CCL, das Neves AM, Arantes DC, Sa TCM, Yamauti M, de Magalhães CS, Abreu LG, Moreira AN. Evaluation of the clinical performance of GIOMERs and comparison with other conventional restorative materials in permanent teeth: a systematic review and meta-analysis. Evid Based Dent 2022:10.1038/s41432-022-0281-8. [PMID: 35915167 DOI: 10.1038/s41432-022-0281-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/25/2021] [Indexed: 11/08/2022]
Abstract
Aim The aim of this systematic review and meta-analysis was to analyse the clinical performance of GIOMER restorative composites and compare them with other conventional restorative materials in permanent teeth.Methods Searches in PubMed, Web of Science, Scopus, Ovid and Cochrane Library were conducted. Grey literature search was also performed. Clinical trials that evaluated the clinical performance of restorations with GIOMER restorative composites in permanent teeth compared to those using composite resin, glass ionomer cement, resin-modified glass ionomer cement (RMGIC) and other GIOMERs were included. Meta-analyses comparing GIOMER restorative composites with RMGIC at 6- and 12-month follow-ups and comparing two types of GIOMER were feasible.Results Ten studies fulfilled the inclusion criteria. In these studies, GIOMER was compared to different types of dental restoration materials. Dental restorations were evaluated by United States Public Health Service criteria in all included studies. Four studies were suitable for meta-analysis, which showed significant differences between GIOMER and RMGIC surface roughness at 6-month (odds ratio [OR] = 6.56; 95% confidence interval [CI] = 2.38-18.13) and 12-month (OR = 8.76; CI = 3.19-24.07) follow-ups. No significant differences between GIOMER restorative composites and RMGIC for marginal adaptation were found at 6- and 12-month follow-ups. When comparing two GIOMERs, significant differences were seen between Beautifil II and Beautifil Flowable Plus F00 for marginal staining (OR = 2.58; CI = 1.42-23.27; I2 = 0%) and surface roughness (OR = 4.59; CI = 1.11-18.97; I2 = 0%) at the 36-month follow-up. No significant differences between Beautifil II and Beautifil Flowable Plus F00 were seen for marginal adaptation and anatomic form at 6-, 18- and 36-month follow-ups.Conclusions GIOMER restorative composites presented similar performance concerning marginal adaptation and better surface roughness when compared to RMGIC. GIOMER Beautifil II presented similar performance to GIOMER Beautifil Flow Plus F00 concerning marginal adaptation and anatomic form and worse marginal staining and surface roughness when compared to Beautifil Flowable Plus F00.
Collapse
Affiliation(s)
- Clóvis Ciryllo Limonge Neto
- Department of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais, Avenida Antônio Carlos, 6627, Campus Pampulha, CEP 31270-091, Belo Horizonte, Minas Gerais, Brazil
| | - André Martins das Neves
- Department of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais, Avenida Antônio Carlos, 6627, Campus Pampulha, CEP 31270-091, Belo Horizonte, Minas Gerais, Brazil
| | - Diandra Costa Arantes
- Department of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais, Avenida Antônio Carlos, 6627, Campus Pampulha, CEP 31270-091, Belo Horizonte, Minas Gerais, Brazil
| | - Tassiana Cançado Melo Sa
- Department of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais, Avenida Antônio Carlos, 6627, Campus Pampulha, CEP 31270-091, Belo Horizonte, Minas Gerais, Brazil
| | - Monica Yamauti
- Associate Professor, Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, 17 Chome Minami 1 Jonishi, Chuo Ward, Sapporo, Hokkaido 060-8556, Japan
| | - Cláudia Silami de Magalhães
- Full Professor, Department of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais, Avenida Antônio Carlos, 6627, Campus Pampulha, CEP 31270-091, Belo Horizonte, Minas Gerais, Brazil
| | - Lucas Guimarães Abreu
- Adjunct Professor, Department of Paediatric Dentistry, School of Dentistry, Federal University of Minas Gerais, Avenida Antônio Carlos, 6627, Campus Pampulha, CEP 31270-091, Belo Horizonte, Minas Gerais, Brazil.
| | - Allyson Nogueira Moreira
- Full Professor, Department of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais, Avenida Antônio Carlos, 6627, Campus Pampulha, CEP 31270-091, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
11
|
Inhibitory activity of S-PRG filler on collagen-bound MMPs and dentin matrix degradation. J Dent 2022; 124:104237. [PMID: 35863550 DOI: 10.1016/j.jdent.2022.104237] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES To evaluate the inhibitory activity of an ion-releasing filler (S-PRG) eluate on dentin collagen-bound metalloproteinases (MMPs) and dentin matrix degradation. METHODS Dentin beams (5 × 2 × 0.5 mm) from human molars were completely demineralized to produce dentin matrix specimens. The dry mass was measured, and a colorimetric assay (Sensolyte) determined the initial total MMP activity to allocate the beams into four treatment groups (n = 10/group): 1) water for 1 min (negative control); 2) 2% chlorhexidine digluconate (CHX - inhibitor control) for 1 min; 3) S-PRG eluate for 1 min; 4) S-PRG eluate for 30 min. After the treatments, the total MMP activity was reassessed. The specimens were stored in simulated body fluid (SBF) at 37 °C for up to 21 days. The dry mass was reassessed weekly. On day 7, the dentin matrix degradation was analyzed for the presence of collagen fragments (CF; Sirius Red) and hydroxyproline (Hyp) in the SBF. Statistical analyses were performed with ANOVA/Tukey, paired t-tests, and RM-ANOVA/Sidak (α = 5%). RESULTS S-PRG eluate exposure for 1 and 30 min reduced (p < 0.0001) MMP activity. S-PRG exposure for 30 min presented MMP activity inhibition equivalent to CHX (p = 0.061). S-PRG and CHX decreased CF (p ≤ 0.007) and Hyp (p < 0.046) release. After 21 days of storage, S-PRG-treated beams, regardless of exposure time, presented a reduced (p ≤ 0.017) mass loss, intermediate between CHX and control. CONCLUSION Treating demineralized dentin with S-PRG eluate for 1 or 30 min reduced matrix-bound MMP activity and dentin matrix degradation for up to 21 days. CLINICAL SIGNIFICANCE S-PRG filler may hinder the progression of dentin carious/erosive lesions and enhance the stabilization of dentin bonding interfaces.
Collapse
|
12
|
Ali M, Okamoto M, Watanabe M, Huang H, Matsumoto S, Komichi S, Takahashi Y, Hayashi M. Biological properties of lithium-containing surface pre-reacted glass fillers as direct pulp-capping cements. Dent Mater 2021; 38:294-308. [PMID: 34953627 DOI: 10.1016/j.dental.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 11/25/2021] [Accepted: 12/08/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Surface pre-reacted glass fillers (S-PRG) can release different types of ions and in our previous study, we modified these fillers with lithium chloride (S-PRG/Li-100 mM) to induce reparative dentin formation by activating the Wnt/β-catenin signaling pathway. Here, we assessed the biological performance of S-PRG/Li-100 mM and compared it with that of mineral trioxide aggregate (MTA) and S-PRG without additives. METHODS In vivo studies were conducted on male Wistar rats using Masson's trichrome staining in pulp-capped molars. The test materials were implanted subcutaneously to evaluate their capacity for vascularization and biocompatibility. The ability of the test materials to form apatite was tested by immersing them in simulated body fluid. Rhodamine-B staining was conducted to assess their sealing ability in bovine teeth, while their antibacterial activity was evaluated against Streptococcus mutans and Lactobacillus casei in terms of colony-forming units and by live/dead staining. RESULTS Masson's trichrome staining and tissue-implantation tests confirmed the biocompatibility of S-PRG/Li-100 mM and it was similar to that of MTA and S-PRG; inflammation regression was observed 14 days after operation in the subcutaneous tissues. S-PRG/Li-100 mM promoted the formation of apatite on its surface. Both the S-PRG groups showed higher sealing capability and bactericidal/bacteriostatic activity against oral bacterial biofilms than MTA. SIGNIFICANCE Lithium-containing surface pre-reacted glass cements exhibit better antibacterial and sealing capabilities than MTA, suggesting their potential as high-performance direct pulp-capping materials.
Collapse
Affiliation(s)
- Manahil Ali
- Department of Restorative Dentistry and Endodontology, Graduate School of Dentistry, Osaka University, 1-8, Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Restorative Dentistry, Faculty of Dentistry, University of Khartoum, P.O. 11111 Khartoum, Sudan.
| | - Motoki Okamoto
- Department of Restorative Dentistry and Endodontology, Graduate School of Dentistry, Osaka University, 1-8, Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Masakatsu Watanabe
- Department of Restorative Dentistry and Endodontology, Graduate School of Dentistry, Osaka University, 1-8, Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hailing Huang
- Department of Restorative Dentistry and Endodontology, Graduate School of Dentistry, Osaka University, 1-8, Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Sayako Matsumoto
- Department of Restorative Dentistry and Endodontology, Graduate School of Dentistry, Osaka University, 1-8, Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Shungo Komichi
- Department of Restorative Dentistry and Endodontology, Graduate School of Dentistry, Osaka University, 1-8, Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yusuke Takahashi
- Department of Restorative Dentistry and Endodontology, Graduate School of Dentistry, Osaka University, 1-8, Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Mikako Hayashi
- Department of Restorative Dentistry and Endodontology, Graduate School of Dentistry, Osaka University, 1-8, Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
13
|
Effectiveness of Direct Pulp Capping Bioactive Materials in Dentin Regeneration: A Systematic Review. MATERIALS 2021; 14:ma14226811. [PMID: 34832214 PMCID: PMC8621741 DOI: 10.3390/ma14226811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 12/18/2022]
Abstract
Background: Regenerative endodontics aims to restore normal pulp function in necrotic and infected teeth, restoring protective functions, such as innate pulp immunity, pulp repair through mineralization, and pulp sensibility. The aim of this systematic review was to assess the dentin regeneration efficacy of direct pulp capping (DPC) biomaterials. Methods: The literature published between 2005 and 2021 was searched by using PubMed, Web of Science, Science Direct, Google Scholar, and Scopus databases. Clinical controlled trials, randomized controlled trials, and animal studies investigating DPC outcomes or comparing different capping materials after pulp exposure were included in this systematic review. Three independent authors performed the searches, and information was extracted by using a structured data format. Results: A total of forty studies (21 from humans and 19 from animals) were included in this systemic review. Histological examinations showed complete/partial/incomplete dentin bridge/reparative dentin formation during the pulp healing process at different follow-up periods, using different capping materials. Conclusions: Mineral trioxide aggregate (MTA) and Biodentine can induce dentin regeneration when applied over exposed pulp. This systematic review can conclude that MTA and its variants have better efficacy in the DPC procedure for dentin regeneration.
Collapse
|
14
|
Toida Y, Kawano S, Islam R, Jiale F, Chowdhury AA, Hoshika S, Shimada Y, Tagami J, Yoshiyama M, Inoue S, Carvalho RM, Yoshida Y, Sano H. Pulpal response to mineral trioxide aggregate containing phosphorylated pullulan-based capping material. Dent Mater J 2021; 41:126-133. [PMID: 34602588 DOI: 10.4012/dmj.2021-153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study aimed to evaluate the pulpal responses of monkey's pulp after direct pulp capping (DPC) with the novel mineral trioxide aggregate containing phosphorylated pullulan-based material (MTAPPL). Seventy-two teeth were randomly divided into four groups: MTAPPL; Nex-Cem MTA (NX); TheraCal LC (TH); and Dycal (DY). Histopathological changes in the pulps were observed at days 3, 7 and 70. On day 3, mild inflammatory responses were observed in the MTAPPL, no to moderate inflammatory responses in the TH, whereas moderate inflammatory responses in the NX and DY. No mineralized tissue formation (MTF) was observed in all groups. On day 7, no or mild inflammatory responses were observed in all groups. Initial MTF was observed except for DY. No inflammation with complete MTF including presence of odontoblast-like cells was observed in the MTAPPL, NX and TH groups at day 70. These findings indicate that MTAPPL could be an efficient DPC material.
Collapse
Affiliation(s)
- Yu Toida
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University
| | - Shimpei Kawano
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University.,Sapporo Prison, Sapporo Regional Correction Headquarters, Correction Bureau, Ministry of Justice, Government of Japan
| | - Rafiqul Islam
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University
| | - Fu Jiale
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease
| | - Afm A Chowdhury
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University.,Department of Conservative Dentistry and Endodontics, Sapporo Dental College and Hospital
| | - Shuhei Hoshika
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University
| | - Yasushi Shimada
- Department of Operative Dentistry, Field of Study of Biofunctional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Junji Tagami
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Masahiro Yoshiyama
- Department of Operative Dentistry, Field of Study of Biofunctional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Satoshi Inoue
- Section for Clinical Education, Faculty of Dental Medicine, Hokkaido University
| | - Ricardo M Carvalho
- Division of Biomaterials, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia
| | - Yasuhiro Yoshida
- Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University
| | - Hidehiko Sano
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University
| |
Collapse
|
15
|
Ishigure H, Kawaki H, Shintani K, Ueno K, Mizuno-Kamiya M, Takayama E, Hotta M, Kondoh N, Nikaido T. Effects of multi-components released from S-PRG filler on the activities of human dental pulp-derived stem cells. Dent Mater J 2021; 40:1329-1337. [PMID: 34234045 DOI: 10.4012/dmj.2020-390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Numerous studies have shown that the sustained release of ions from dental restorative materials have acid buffering capacity, prevents tooth enamel demineralization, and inhibits bacterial adhesion. Herein, the release behavior and bioresponsiveness of ions released from surface pre-reacted glass-ionomer (S-PRG) fillers were investigated in different types of media based on human dental pulp-derived stem cell (hDPSC) responses. The hDPSCs were cultured for 1-7 days in S-PRG eluates diluted with varying amounts of cell culture media. S-PRG released several types of ions, such as F-, Sr2+, Na+, Al3+, BO33-, and SiO32-. The balance of eluted ions differed depending on the dilution and solvent, which in turn affected the cytotoxicity, cell morphology, cell proliferation, and alkane phosphatase activity of hDPSCs, among other properties. The results suggest that tailored S-PRG filler eluates could be designed and prepared for application in dental practice.
Collapse
Affiliation(s)
- Hiroshi Ishigure
- Department of Operative Dentistry, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| | - Harumi Kawaki
- Department of Oral Biochemistry, Division of Oral Structure, Function, and Development, Asahi University School of Dentistry
| | - Kohei Shintani
- Department of Dental Materials Science, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| | - Kyohei Ueno
- Department of Oral Biochemistry, Division of Oral Structure, Function, and Development, Asahi University School of Dentistry
| | - Masako Mizuno-Kamiya
- Chemistry Laboratory, Department of Management and Information studies, Asahi University School of Business Administration
| | - Eiji Takayama
- Department of Oral Biochemistry, Division of Oral Structure, Function, and Development, Asahi University School of Dentistry
| | | | - Nobuo Kondoh
- Department of Oral Biochemistry, Division of Oral Structure, Function, and Development, Asahi University School of Dentistry
| | - Toru Nikaido
- Department of Operative Dentistry, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| |
Collapse
|
16
|
Kono Y, Tamura M, Cueno ME, Tonogi M, Imai K. S-PRG Filler Eluate Induces Oxidative Stress in Oral Microorganism: Suppression of Growth and Pathogenicity, and Possible Clinical Application. Antibiotics (Basel) 2021; 10:antibiotics10070816. [PMID: 34356737 PMCID: PMC8300820 DOI: 10.3390/antibiotics10070816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022] Open
Abstract
Controlling the oral microbial flora is putatively thought to prevent not only oral diseases, but also systemic diseases caused by oral diseases. This study establishes the antibacterial effect of the novel bioactive substance “S-PRG filler” on oral bacteria. We examined the state of oxidative stress caused by the six types of ions released in eluate from the S-PRG filler in oral bacterial cells. Moreover, we investigated the effects of these ions on the growth and pathogenicity of Gram-positive and Gram-negative bacteria. We found that the released ions affected SOD amount and hydrogen peroxide in bacterial cells insinuating oxidative stress occurrence. In bacterial culture, growth inhibition was observed depending on the ion concentration in the medium. Additionally, released ions suppressed Streptococcus mutans adhesion to hydroxyapatite, S. oralis neuraminidase activity, and Porphyromonas gingivalis hemagglutination and gingipain activity in a concentration-dependent manner. From these results, it was suggested that the ions released from the S-PRG filler may suppress the growth and pathogenicity of the oral bacterial flora. This bioactive material is potentially useful to prevent the onset of diseases inside and outside of the oral cavity, which in turn may have possible applications for oral care and QOL improvement.
Collapse
Affiliation(s)
- Yu Kono
- Department of Oral and Maxillofacial Surgery I, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (Y.K.); (M.T.)
| | - Muneaki Tamura
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (M.E.C.); (K.I.)
- Correspondence: ; Tel.: +81-3219-8125
| | - Marni E. Cueno
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (M.E.C.); (K.I.)
| | - Morio Tonogi
- Department of Oral and Maxillofacial Surgery I, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (Y.K.); (M.T.)
| | - Kenichi Imai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (M.E.C.); (K.I.)
| |
Collapse
|
17
|
Islam R, Toida Y, Chen F, Tanaka T, Inoue S, Kitamura T, Yoshida Y, Chowdhury AFMA, Ahmed HMA, Sano H. Histological evaluation of a novel phosphorylated pullulan-based pulp capping material: An in vivo study on rat molars. Int Endod J 2021; 54:1902-1914. [PMID: 34096634 DOI: 10.1111/iej.13587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
AIM To evaluate the dental pulp response to a novel mineral trioxide aggregate containing phosphorylated pullulan (MTAPPL) in rats after direct pulp capping. METHODS Ninety-six cavities were prepared in the maxillary first molars of 56 male Wistar rats. The dental pulps were intentionally exposed and randomly divided into four groups according to the application of pulp capping materials: MTAPPL; phosphorylated pullulan (PPL); a conventional MTA (Nex-Cem MTA, NCMTA; positive control); and Super-Bond (SB; negative control). All cavities were restored with SB and observed for pulpal responses at 1-, 3-, 7- and 28-day intervals using a histological scoring system. Statistical analysis was performed using Kruskal-Wallis and Mann-Whitney U-test with Bonferroni's correction, and the level of significance was set at 0.05. DMP1 and CD34 antigen were used to evaluate odontoblast differentiation and pulpal vascularization, respectively. RESULTS On day 1, mild inflammatory cells were present in MTAPPL and NCMTA groups; fewer inflammatory cells were present in the PPL, whereas SB was associated with a mild-to-moderate inflammatory response. A significant difference was observed between PPL and SB (p < .05). No mineralized tissue deposition was observed. On day 3, moderate-to-severe inflammatory cells were present in PPL and SB, whereas MTAPPL and NCMTA had a mild inflammatory response. Initial mineralized tissue deposition was observed in the NCMTA, MTAPPL and SB. A significant difference was observed between MTAPPL and PPL (p < .05). On day 7, a thin layer of mineralized tissue was observed in all tested groups with no or mild inflammatory response. On day 28, no inflammatory response was observed in MTAPPL, whereas NCMTA, PPL and SB had mild inflammatory responses. A significant difference was observed between MTAPPL and SB (p < .05). Complete mineralized tissue barrier formation was observed in MTAPPL, NCMTA and PPL with no significant difference (p > .05). SB exhibited incomplete mineralized tissue barriers, significantly different from NCMTA, MTAPPL and PPL (p < .05). The staining with CD34 was positive in all the groups on all observation days. CONCLUSION The favourable pulpal responses and induction of mineralized tissue formation associated with MTAPPL indicate its potential application as a direct pulp capping material.
Collapse
Affiliation(s)
- Rafiqul Islam
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Hokkaido, Japan
| | - Yu Toida
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Hokkaido, Japan
| | - Fei Chen
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Hokkaido, Japan
| | - Toru Tanaka
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Hokkaido, Japan
| | - Satoshi Inoue
- Section for Clinical Education, Faculty of Dental Medicine, Hokkaido University, Hokkaido, Japan
| | - Tetsuya Kitamura
- Department of Vascular Biology and Molecular Pathology, Faculty of Dental Medicine, Hokkaido University, Hokkaido, Japan
| | - Yasuhiro Yoshida
- Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Hokkaido, Japan
| | - Abu Faem Mohammad Almas Chowdhury
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Hokkaido, Japan.,Department of Conservative Dentistry and Endodontics, Sapporo Dental College and Hospital, Dhaka, Bangladesh
| | - Hany Mohamed Aly Ahmed
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Hidehiko Sano
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
18
|
Shinkai K, Yoshii D. Effect of the S-PRG filler content in the multi-ion releasing paste on the acid resistance of the enamel surface after polishing with the paste. Dent Mater J 2021; 40:1136-1141. [PMID: 34024883 DOI: 10.4012/dmj.2020-303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study aimed to investigate the effect of the multi-ion releasing paste (MP) on the acid resistance of the enamel surface of an extracted human tooth. Five kinds of MP were prepared according to the content (wt%) of S-PRG fillers: 0 wt% (MP0, control), 1 wt% (MP1), 5 wt% (MP5), 20 wt% (MP20), and 30 wt% (MP30). The buccal coronal surfaces of the extracted anterior teeth were polished with each kind of MP for 1 min. After removing radicular parts, the coronal parts underwent a pH cycling, and then sliced to make thin sections. The lesion depth of each section was measured using a polarization microscope. Each lesion's depth of enamel polished with MP5, MP20, and MP30 was significantly shallower than that polished with MP0.
Collapse
Affiliation(s)
- Koichi Shinkai
- Department of Operative Dentistry, The Nippon Dental University School of Life Dentistry at Niigata
| | - Daiki Yoshii
- Department of Operative Dentistry, The Nippon Dental University School of Life Dentistry at Niigata
| |
Collapse
|
19
|
Nishimaki M, Nassar M, Tamura Y, Hiraishi N, Dargham A, Nikaido T, Tagami J. The effect of surface pre-reacted glass-ionomer filler eluate on dental pulp cells and mineral deposition on dentin: In vitro study. Eur J Oral Sci 2021; 129:e12777. [PMID: 33724553 DOI: 10.1111/eos.12777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/13/2020] [Accepted: 01/25/2021] [Indexed: 11/28/2022]
Abstract
The effects of surface pre-reacted glass-ionomer (S-PRG) filler on pulpal cells and on the composition of dentinal deposits were investigated. Proliferation (CCK-8), cytotoxicity (LDH), and differentiation activity (ALP) tests, along with cell morphology observations, were conducted at 6 and 24 h after treatment of pulpal cells with different S-PRG filler eluate concentrations. Dentinal surfaces were immersed in deionized water or S-PRG filler eluate followed by immersion in deionized water or simulated body fluid and observed under scanning electron microscope and elemental analysis using energy dispersive x-ray spectrometer. At 24 h, there were significant differences in CCK-8 and ALP activity values between the groups in a concentration-dependent manner. LDH test data were not significantly different among the groups. Cell morphology was not altered at either exposure time. However, decreased cellular density was observed with the highest eluate concentration. Crystalline deposits and occluded dentinal tubules were observed in samples immersed in S-PRG filler with a later immersion in simulated body fluid, which also showed higher concentrations of certain ions compared to surfaces that were not initially treated with S-PRG filler. The lowest two eluate concentrations did not show significant toxicity. S-PRG enhanced the effect of simulated body fluid in the formation of mineral deposits.
Collapse
Affiliation(s)
- Mayuri Nishimaki
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mohannad Nassar
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Yukihiko Tamura
- Department of Bio-Matrix (Dental Pharmacology), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Noriko Hiraishi
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ahmad Dargham
- Ras Al Khaimah College of Dental Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Toru Nikaido
- Department of Operative Dentistry, Division of Oral Functional Sciences and Rehabilitation, School of Dentistry, Asahi University, Gifu, Japan
| | - Junji Tagami
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
20
|
Günaydın A, Çakıcı EB. Effect of Photobiomodulation Therapy following Direct Pulp Capping on Postoperative Sensitivity by Thermal Stimulus: A Retrospective Study. Med Princ Pract 2021; 30:347-354. [PMID: 33827095 PMCID: PMC8436640 DOI: 10.1159/000516342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/05/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the effect of photobiomodulation therapy (PBMT) on postoperative pain provoked by thermal stimulation in direct pulp capping (DPC). SUBJECTS AND METHODS A retrospective study was performed using the records of patients who received DPC using mineral trioxide aggregate. Teeth irradiated with a laser were assigned as the PBMT group, and nonirradiated teeth were considered as the control group. Before treatment and 6 h, 1 day, and 7 days after treatment, tooth sensitivity to a cold stimulus was recorded using a visual analog scale. RESULTS From a total of 123 documented DPC procedures, only 72 directly capped permanent teeth met the inclusion criteria. Age, gender, and tooth location were comparable between the groups. A statistically significant difference was found in sensitivity to cold stimulus between groups on day 7 (p = 0.007), but no difference was found at the preoperative, 6 h, and day 1 time points (p = 0.055, p = 0.132, and p = 0.100, respectively). In the intragroup evaluation, a significantly greater decrease in sensitivity to cold stimulus was detected in the PBMT group than that in the control group, although both groups showed a reduction in discomfort throughout the follow-up period (p = 0.000). CONCLUSION PBMT is an effective method for enhancing patient comfort by reducing thermal sensitivity following DPC procedures.
Collapse
|
21
|
Xiong B, Shirai K, Matsumoto K, Abiko Y, Furuichi Y. The potential of a surface pre-reacted glass root canal dressing for treating apical periodontitis in rats. Int Endod J 2020; 54:255-267. [PMID: 32961600 DOI: 10.1111/iej.13414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 09/14/2020] [Indexed: 12/27/2022]
Abstract
AIM To evaluate the efficacy of a prototype root canal dressing containing surface pre-reacted glass-ionomer (S-PRG) fillers on repairing induced periapical lesions in a rat model. Calcium hydroxide [Ca(OH)2 ] was applied as a comparison in the healing process. METHODOLOGY The pulp chambers of the maxillary first molars in 64 male Wistar rats aged 16 weeks were opened to induce periapical lesions. After 28 days, the mesial canal of each tooth was prepared, irrigated with 2.5% sodium hypochlorite only (control group: irrigation) or followed by the respective dressing [Ca(OH)2 group, irrigation + Ca(OH)2 ; S-PRG group, irrigation + S-PRG] and restored with composite resin for 3 or 7 days (10/group). Four rats with healthy molars were used as blank controls. Descriptive analysis of the periapical radiographs, haematoxylin and eosin staining and immunohistochemical observation was performed 3 and 7 days after treatment. The periapical grey value, CD68 macrophages and osteoclasts (cathepsin-K) were quantified and statistically analysed with Tukey's honest significant difference test. A significant difference was achieved when P values were <0.05. RESULTS S-PRG and Ca(OH)2 dressings were associated with increased periapical grey values and inhibited osteoclast activity at 3 and 7 days; a significant difference in radiographic results and the number of osteoclasts was obtained at 3 and 7 days compared with the control group (P < 0.05). Reparative tissue was observed histologically in the space of the periapical resorbed necrotic area after S-PRG and Ca(OH)2 treatment for 3 and 7 days. The number of macrophages was significantly decreased at 3 and 7 days in the S-PRG and Ca(OH)2 specimens when compared with the controls (P < 0.05). CONCLUSIONS In a rat experimental model, the S-PRG root canal dressing was comparable to Ca(OH)2 in promoting the healing of experimentally induced periapical lesions. S-PRG paste has the potential to be used as an alternative intracanal dressing in teeth with apical periodontitis.
Collapse
Affiliation(s)
- B Xiong
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - K Shirai
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - K Matsumoto
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Y Abiko
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Y Furuichi
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| |
Collapse
|
22
|
A Novel Bioactive Endodontic Sealer Containing Surface-Reaction-Type Prereacted Glass-Ionomer Filler Induces Osteoblast Differentiation. MATERIALS 2020; 13:ma13204477. [PMID: 33050334 PMCID: PMC7599720 DOI: 10.3390/ma13204477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/27/2022]
Abstract
Surface‑reaction‑type prereacted glass-ionomer (S‑PRG) fillers exhibit bioactive properties by the release of multiple ions. This study examined whether a novel endodontic sealer containing S‑PRG fillers (PRG+) has the capacity to induce osteoblast differentiation. Kusa‑A1 osteoblastic cells were cultured with extracts of PRG+, PRG- (an experimental sealer containing S‑PRG‑free silica fillers), AH Plus (an epoxy-resin‑based sealer), and Canals N (a zinc-oxide noneugenol sealer). Cell viability and mineralized nodule formation were determined using WST‑8 assay and Alizarin red staining, respectively. Osteoblastic-marker expression was analyzed with RT‑qPCR and immunofluorescence. Phosphorylation of extracellular signal‑regulated kinase (ERK) and p38 mitogen‑activated protein kinase (MAPK) was determined with Western blotting. Extracts of freshly mixed PRG+, PRG-, and AH Plus significantly decreased cell growth, but extracts of the set samples were not significantly cytotoxic. Set PRG+ significantly upregulated mRNAs for alkaline phosphatase and bone sialoprotein (IBSP) compared to set PRG-, and upregulation was blocked by NPS2143, a calcium‑sensing receptor antagonist. Set PRG+ significantly accelerated IBSP expression, mineralized nodule formation, and enhanced the phosphorylation of ERK and p38 compared with set PRG-. In conclusion, PRG+ induced the differentiation and mineralization of Kusa‑A1 cells via the calcium-sensing receptor-induced activation of ERK and p38 MAPK.
Collapse
|
23
|
Imazato S, Kohno T, Tsuboi R, Thongthai P, Xu HH, Kitagawa H. Cutting-edge filler technologies to release bio-active components for restorative and preventive dentistry. Dent Mater J 2020; 39:69-79. [PMID: 31932551 DOI: 10.4012/dmj.2019-350] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Advancements in materials used for restorative and preventive treatment is being directed toward "bio-active" functionality. Incorporation of filler particles that release active components is a popular method to create bio-active materials, and many approaches are available to develop fillers with the ability to release components that provide "bio-protective" or "bio-promoting" properties; e.g. metal/calcium phosphate nanoparticles, multiple ion-releasing glass fillers, and non-biodegradable polymer particles. In this review paper, recent developments in cutting-edge filler technologies to release bio-active components are addressed and summarized according to their usefulness and functions, including control of bacterial infection, tooth strengthening, and promotion of tissue regeneration.
Collapse
Affiliation(s)
- Satoshi Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry.,Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry
| | - Tomoki Kohno
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry
| | - Ririko Tsuboi
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry
| | - Pasiree Thongthai
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry
| | - Hockin Hk Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry
| | - Haruaki Kitagawa
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry
| |
Collapse
|
24
|
Surface Pre-Reacted Glass Filler Contributes to Tertiary Dentin Formation through a Mechanism Different Than That of Hydraulic Calcium-Silicate Cement. J Clin Med 2019; 8:jcm8091440. [PMID: 31514356 PMCID: PMC6780685 DOI: 10.3390/jcm8091440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 12/18/2022] Open
Abstract
The induction of tissue mineralization and the mechanism by which surface pre-reacted glass-ionomer (S-PRG) cement influences pulpal healing remain unclear. We evaluated S-PRG cement-induced tertiary dentin formation in vivo, and its effect on the pulp cell healing process in vitro. Induced tertiary dentin formation was evaluated with micro-computed tomography (μCT) and scanning electron microscopy (SEM). The distribution of elements from the S-PRG cement in pulpal tissue was confirmed by micro-X-ray fluorescence (μXRF). The effects of S-PRG cement on cytotoxicity, proliferation, formation of mineralized nodules, and gene expression in human dental pulp stem cells (hDPSCs) were assessed in vitro. μCT and SEM revealed that S-PRG induced tertiary dentin formation with similar characteristics to that induced by hydraulic calcium-silicate cement (ProRoot mineral trioxide aggregate (MTA)). μXRF showed Sr and Si ion transfer into pulpal tissue from S-PRG cement. Notably, S-PRG cement and MTA showed similar biocompatibility. A co-culture of hDPSCs and S-PRG discs promoted mineralized nodule formation on surrounding cells. Additionally, S-PRG cement regulated the expression of genes related to osteo/dentinogenic differentiation. MTA and S-PRG regulated gene expression in hDPSCs, but the patterns of regulation differed. S-PRG cement upregulated CXCL-12 and TGF-β1 gene expression. These findings showed that S-PRG and MTA exhibit similar effects on dental pulp through different mechanisms.
Collapse
|